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We employ doubly-resonant two-photon excitation into the 74S Rydberg state to spectroscopically
measure the dynamic scalar polarizability, α0, and tensor polarizability, α2, of rubidium 5P3/2. A

cavity-generated 1064 nm optical lattice allows us reach intensities near 2× 1011 W/m2, where the
atom-field is larger than the hyperfine interaction, and magnetic sublevels are well resolved. In the
evaluation of the data we use a self-referencing method that renders the polarizability measurement
largely free from the intensity calibration of the laser light field. We obtain experimental values
α0 = −1149 (±2.5%) and α2 = 563 (±4.2%), in atomic units. Methods and results are supported
by simulations. The results provide an experimental test of atomic-structure calculations used to
determine systematic shifts in atomic clocks and to interpret fundamental-physics experiments.

PACS numbers: 32.80.Rm, 37.10.Jk, 32.10.Dk, 37.30.+i

Polarizabilities of atomic energy levels govern the re-
sponse of an atom to an external electric field and are
essential in atom trapping and high-precision measure-
ment. Theoretical calculations of dynamic polarizabili-
ties are complicated, and yet available experimental mea-
surements might carry large uncertainties due to the dif-
ficulty in calibrating the field strength experienced by
the atoms. Here, we report a measurement of rubidium
scalar and tensor polarizabilities conducted in a strong
1064 nm light field, where the magnetic sublevels of Rb
5P3/2 are resolved and the data analysis is largely free
from the calibration of laser intensity. Our work is not
only applicable to experiments utilizing Rb 5P3/2 levels
in 1064 nm laser traps, but also serves as an experimen-
tal test for validating and improving existing theoreti-
cal models for the polarizability, where complex Dirac-
Fock atomic-structure calculations are employed to de-
rive the required matrix elements [1–3]. Experimental
tests are valuable even if they are performed only at spe-
cific wavelengths. Accurate and precise information on
light and black-body shifts, obtained from a combina-
tion of theoretical and experimental work, is necessary,
for instance, to determine magic wavelengths for state-
insensitive trapping in optical lattices [4, 5], to character-
ize black-body shifts in optical atomic clocks [2] and to in-
terpret atomic parity nonconservation experiments [1, 3].

In the presence of an optical field, an atom is polarized
and its energy levels are shifted. The atom-field interac-
tion Hamiltonian, ĤE, in a linearly-polarized electric field
with amplitude E0 is
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]
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where α0(ω) and α2(ω) are frequency-dependent a.c.
scalar and tensor polarizabilities, and J and mJ are
electronic angular-momentum quantum numbers. For
Rb 5S1/2 it is α2 = 0, while for 5P3/2 both α0 and α2

contribute to the polarizability. The full Hamiltonian in-
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FIG. 1. (color online). Experimental details. (a) A near-
concentric cavity, which has a focus at its center, generates a
GHz-deep 1064 nm optical-lattice laser trap. (b) Timing se-
quence showing lattice intensity, Rydberg excitation and field
ionization pulses vs time (lattice rise time t = 30µs, repetition
rate = 100 Hz). (c) Key components of the Pound-Drever-
Hall cavity stabilization. The error signal is normalized by an
input power reference.

cludes the hyperfine structure, Ĥ = ĤHFS + ĤE, with

ĤHFS= AHFS Î · Ĵ+

BHFS

3(Î · Ĵ)2 + 3
2
Î · Ĵ− I(I + 1)J(J + 1)

2IJ(2I − 1)(2J − 1)
(2)

where Î is the nuclear spin. The magnetic-dipole and
electric-quadrupole hyperfine constants, AHFS and BHFS,
are well-known for Rb [6, 7].
We measure α0 and α2 using Rydberg two-photon exci-

tation spectroscopy. The data analysis is based on linear
fits of spectral data sets in a modified a.c. Stark map,
in which the frequencies of the two excitation lasers are
plotted against each other, with the unknown polarizabil-
ities as fitting parameters. Our method does not require
a precise calibration of the 1064 nm laser intensity at the
atom trapping site. Also, light shifts are in the range of
several GHz, which is important for a precise measure-
ment of α0 and α2 of Rb 5P3/2 (level width 6 MHz).
We utilize an in-vacuum near-concentric cavity [see

Fig. 1 (a)] at 1064 nm to generate deep optical-lattice
potentials in a linearly-polarized field (finesse ≈ 600; for
details see Ref. [8]). We load the lattice at low intensity
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directly from a 87Rb magneto-optical trap (MOT). After
the MOT light is pulsed off [timing see Fig. 1 (b)], a si-
nusoidal lattice-intensity ramp compresses the atom dis-
tribution in the lattice wells and increases the light shifts
to several GHz. During the loading phase, the 5S1/2
ground-state atoms have a trap frequency of ≈ 700 kHz
along Z and ≈ 7 kHz along X and Y . Hence, the 30 µs
lattice ramp leads to adiabatic compression in the Z and
mixed adiabatic/diabatic compression in the transverse
directions. Atoms are excited into Rydberg states while
the lattice is at high intensity. Rydberg atoms are de-
tected by field ionization [9] and ion counting.
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FIG. 2. (color online). Experimental spectra (lines) vs the
upper- and lower-transition detunings, (∆blue,∆red), defined
in the text. The grey drop lines mark the (∆blue,∆red) peak
coordinates of the evaluated spectral lines. The bold crosses
underneath the spectral lines indicate the uncertainties of the
peak coordinates. The dashed lines show linear fits through
the peak coordinates. In the background we show a sim-
ulated spectral-density plot (method explained in the text)
for a lattice intensity 1.8×1011W/cm2, α0(5P3/2) = −1149.3,
α2(5P3/2) = 563.3, and α0(5S1/2) = 687.3 (polarizabilities in
atomic units).

The lattice cavity is stabilized to the 1064 nm trap laser
(short-term bandwidth 100 kHz) by the Pound-Drever-
Hall (PDH) scheme [10] [see Fig. 1 (c)]. The electro-
optic modulator (EOM) generates PDH frequency side
bands. The reflection from the cavity is sampled by
a beam sampler for synthesizing the PDH error sig-
nal. The PDH feedback circuit has two outputs: a
high-voltage slow feedback is applied to a piezo, which
translates one of the cavity mirrors, and a fast feed-
back frequency-modulates the acousto-optic modulator
(AOM), which compensates the rapid frequency fluctua-
tions of the trap laser. The lattice intensity ramp is gen-
erated by amplitude-modulating the AOM. Our method
to stabilize the optical cavity at high intra-cavity power
differs from the strong-weak beam method [11] and from
methods that use a separate reference cavity [12].
The polarizabilities are derived from two-photon step-

wise (resonant) excitation signals from the light-shifted
5S1/2 ground state through a light-shifted 5P3/2 sublevel
into the 74S1/2 Rydberg state. The two-photon excita-
tion spectra are taken for a set of fixed lower-transition
detunings, ∆red, by recording Rydberg counts as a func-
tion of the upper-transition detuning, ∆blue. We refer-
ence ∆blue to a narrow spectral line that corresponds
to off-resonant two-photon excitation of Rydberg atoms
outside the lattice. The detuning ∆red is referenced to
the field-free 5S1/2 F = 2 → 5P3/2 F

′ = 3 transition.
The spectra are arranged in waterfall plots in which the
y-coordinate is given by ∆red, while ∆blue is plotted along
the x-axis. In Fig. 2 we show such a modified a.c. Stark
map measured for a transmitted lattice power of 20 mW,
which corresponds to a peak intracavity intensity at the
lattice sites of about 1.8×1011 W/m2. The uncertainty
of the transmitted lattice power is about 8% and that of
the peak intracavity intensity is even larger. It is an es-
sential advantage of our method that these uncertainties
do not affect the values of α0 and α2 obtained from the
data. This is because we derive α0 and α2 from slopes in
the modified a.c. Stark map, not from absolute level po-
sitions. The self-referencing characteristics follows from
the double-resonance condition under which both lower
and upper transitions need to be on resonance to yield a
signal. This allows us to express α0 and α2 in terms of
the well-known polarizabilities of the ground and Ryd-
berg states and measured level slopes. Also, reaching the
regime in which light shifts are much larger than residual
hyperfine shifts is important.
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FIG. 3. A.c. Stark shifts of the transitions 5S1/2 →
5P3/2 of 87Rb (85Rb) relative to the transition 5S1/2, F =
2(3) → 5P3/2, F′ = 3(4), calculated for α0(5S1/2) = 700,
α0(5P3/2) = −1100, and α2(5P3/2) = 550 atomic units.

In Fig. 3 we show the light shifts of the 5S1/2 →5P3/2

transitions versus intensity, I0 = 1
2
cǫ0E

2
0 , calculated by

diagonalization of Ĥ (see Eqs.1 and 2) using approximate
values of α0 and α2. Since the 5S1/2 state has no a.c.-
split sublevels, the splitting is only due to the 5P3/2 state,

which has 16 sublevels for 87Rb and 24 for 85Rb. The
plots exhibit three intensity regimes. In the weak-field
regime, ĤHFS dominates, and |F,mF 〉 (F̂ = Ĵ + Î) is
the “good” basis. Levels with the same F and |mF |-
values are degenerate, and their energy shifts are linear in
intensity. At intermediate intensity neither ĤHFS or ĤE
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dominates, and the energy levels are generally nonlinear.
The level crossing at 7× 1010 W/m2 (for 87Rb) depends
mostly on α2 and the zero-field hyperfine splittings. For
the determination of α0 and α2 we utilize the strong-
field regime, which is analogous with the “Paschen-Back”
regime of the Zeeman effect and is comfortably reached
in our lattice cavity.

In the strong-field regime ĤE dominates, and
|IJmImJ〉 is the “good” basis. The energy levels become
linear functions of intensity again, and they separate into
two groups of fixed |mJ |. Since α2 > 0, the group
with higher (lower) energy includes levels with |mJ | =

1
2

(|mJ | =
3
2
). Within each subgroup, the energies are split

by the residual hyperfine perturbation. In the subspace
|mJ | = 3

2
the off-diagonal terms of Î · Ĵ and (Î · Ĵ)2

vanish in the |mImJ〉 basis, and the residual hyperfine-
induced shifts are given by the diagonal terms (for 87Rb,
mImJ = ± 9

4
or ± 3

4
). Thus, the lower subgroups in

Fig. 3 appear nearly equally spaced, due to the leading
magnetic-dipole hyperfine term AHFS Î ·Ĵ. The deviation
from an equal spacing is due to the electric-quadrupole
hyperfine term. In the subgroups with |mJ | =

1
2
the off-

diagonal elements of Î · Ĵ are generally non-zero, and the
residual hyperfine shifts are not approximately equidis-
tant. In our experiment we choose 87Rb, because the
number of mI sublevels is less and the hyperfine split-
tings are larger than for 85Rb.

FIG. 4. (color online). Relevant levels of the two-photon
double-resonant Rydberg excitation.(a) Outside lattice. (b,c)
Light-shifted levels (solid lines) in transverse (b) and Z-
direction (c) in the 1064 nm lattice. The “magic” 74S state
has a constant light shift along Z. Dotted lines indicate the
unshifted levels. The intervals between levels are not to scale.
The arrows illustrate several instances of doubly-resonant ex-
citation on one of the lines in Fig. 2 (see ♦ in Fig. 2).

The 5S1/2 and 5P3/2 levels exhibit a local response to
the 1064 nm lattice light field, i.e. their light shifts are
given by−(α/4)|E0(R)|2, where E0(R) is the field ampli-
tude at the center-of-mass location R of the atom. Due
to their size, Rydberg atoms have a non-local response
to the field [13, 14]. The Rydberg-atom light shift is

Vad(R) = −
1

4
αe

∫

|E0(R + r)|2|ψ(r)|2d3r (3)

where αe = −545 at. un. follows from the free-electron
ponderomotive energy. Thus, the Rydberg-atom light
shift is an average of the free-electron response, with
the Rydberg electron’s probability density |ψ(r)|2 as a
weighting factor. While generally ψ(r) also depends

on R, for the non-degenerate nS Rydberg levels it is
ψ(r) = 〈r|nS〉. In z-direction the averaging is important,
because the size of the Rydberg atom is on the order of
the lattice period, whereas in ρ direction it is not, be-
cause the cavity-mode waist w0 is much greater than the
size of the Rydberg atom. For a few “magic” states, such
as Rb 74S1/2 in a one-dimensional 1064 nm lattice, Vad
only depends on ρ and not on Z because the ratio of
Rydberg-atom size and lattice period is such that the re-
sult of Eq. 3 does not depend on Z (see Supplement [15]).
For the magic states,

Vad(ρ, Z) = Vad(ρ) = −
1

4

αe

2
E2

max exp(
−2ρ2

w2
0

) (4)

where Emax is the peak field amplitude in the entire lat-
tice. In Fig. 4 we show the position dependence of the
relevant light shifts as a function of atomic center-of-mass
coordinates X and Z. The peaks in Fig. 2 correspond to
doubly-resonant excitation of 74S1/2 through one of the
multiple 5P3/2 sublevels.
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FIG. 5. (color online). Simulated spectral-density Stark
maps. We overlay three calculations for the indicated lattice
intensities. The dashed lines indicate the levels and slopes
used to determine α0 and α2 for the 5P3/2 level. The lower
level is two-fold degenerate (states |mJ = 3/2, mI = 3/2〉
and |mJ = −3/2, mI = −3/2〉), while the upper level is
non-degenerate (state (|mJ = 1/2, mI = −1/2〉 + |mJ =
−1/2, mI = 1/2〉)/

√
2 in the high-field limit).

The density plot in the background of Fig. 2 shows
the result of a simulation. The simulation accounts for
the center-of-mass thermal distribution of the atoms in
the optical lattice (temperature T ), which causes most of
the spectral line broadening. Doppler shifts are negligible
and are ignored. The simulated count rate is an integral
over the lattice volume that includes the Boltzmann fac-
tor, exp[−α5S(E

2
max −E2

0 (ρ, Z))/(4kBT )], and the lower-
transition saturation parameter, 0.5s/(1+s+4( ∆

6 MHz
)2).

There, s = I/Isat with saturation intensity Isat and
position-dependent intensity I. Also, ∆ is the detun-
ing of the 780 nm laser from the light-shifted, position-
dependent 5S1/2 →5P3/2 transition frequency. The sim-
ulated count rate is summed over all intermediate 5P3/2
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states. Figure 5 shows a compilation of three simulations
for 87Rb for different peak lattice intensities, Imax, and
the same polarizabilities. The slopes in the modified a.c.
Stark map are insensitive to Imax. The value of Imax af-
fects the signal strength and the ∆blue cutoff, where the
doubly-resonant excitation condition is met at the field
maxima (which are at locations ρ = 0 and Z = k×532 nm
with integer k) for all 5P3/2 sublevels. While we can es-
timate Imax from the ∆blue cutoff, it is not required to
determine the polarizabilities.

The lattice-shifted spectral lines are asymmetric and
triangular due to the variation of the Rydberg light shift
along surfaces of fixed intensity. This variation is due
to the non-local response following Eqs. 3 and 4 (for
a detailed discussion see [15]). We use the positions
(∆blue,∆red) of the spectral-line peaks as primary mark-
ers, as shown in Fig. 2. These peaks correspond to com-
binations of intensity I, ∆blue and ∆red for which the
double-resonance condition for excitating 74S1/2 is met
at locations Z = k × 532 nm with integer k [15].

In the modified a.c. Stark map, the peak positions
(∆blue,∆red) satisfy

y = ∆red = ∆5S5P =
1

4
(α5S − α5P)E

2
0 (ρ, Z = 0)

x = ∆blue = ∆74S +∆5S5P −∆5P

= ∆5S5P +
1

4
(α5P − α74S)E

2
0(ρ, Z = 0) = y

α5S − α74S

α5S − α5P

where E0(ρ, Z = 0) is the maximal lattice field at a dis-
tance ρ from the axis. The slopes of the levels are inde-
pendent of E0 and are

dy

dx
=

α5S − α5P

α5S − α74S

(5)

In the high-field (Paschen-Back) regime, the polarizabil-
ities for the highest energy levels within the subgroups
|mj | =

1
2
and |mj | =

3
2
are given by α5P = α0 ∓ α2,

respectively. Their differential and average slopes are

dy
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2
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2α2
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(6)
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∣

∣

∣

∣

∣

|mj |=
3

2

)

=
α5S − α0

α5S − α74S

(7)

The slopes dy/dx are determined by linear fitting of
the sets of peaks (∆blue,∆red) associated with the respec-
tive lines in the modified a.c. Stark map. For |mj | =

3
2

we force the y-intercept to zero because this level has a
fixed slope through all field regimes and passes through
the origin. For |mj | =

1
2
we fit both the slope and the

intercept. This is because in the weak field regime the
|mj | =

1
2
level connects to |F = 3,mF = 0〉, which has

α5P = α0−
4
5
α2. Hence, the high-field fit of the |mj | =

1
2

level yields a slight negative y-intercept (about −30 MHz
for Imax = 1.8 × 1011W/m2). We fit the slopes for

measurements at several values of Imax and excitation-
pulse durations [15]. The weighted average slopes are
summarized in Table I. The α5S and α74S are, for the
present purpose, precisely known (α5S = 687.3(5) [16]
and α74S = −272.5(5) [13, 15], in atomic units). Eqs. 6
and 7 then yield α0 = −1149 and α2 = 563 at. un.

TABLE I. Experimental 5P3/2 scalar and tensor polarizabili-
ties in 1064 nm light field. The uncertainties are reading and
fitting uncertainties. Polarizabilities are in atomic units.

parameter value uncertainty

Experimental slope |mj | =
3
2

1.33 4.19×10−3

Experimental slope |mj | =
1
2

2.50 4.47×10−2

differential slope 1.17 4.49×10−2

average slope 1.91 2.24×10−2

α0 (experiment) -1149 22

α2 (experiment) 563 22

α0 (theory [16]) -1121 10

α2 (theory [16]) 551 4

The uncertainties listed in Table I only reflect the
linear-fitting uncertainty and the reading uncertainties
associated with the determination of the peak coordi-
nates (∆blue,∆red). The calibration uncertainties for
∆blue and ∆red are 1.6% and 0.2%, respectively. Adding
all relative uncertainties in quadrature, the final uncer-
tainties are 2.5% for α0 and 4.2% for α2 [15]. Our re-
sult is in good agreement with theoretical values α0 =
−1121(10) and α2 = 551(4) obtained in Ref. [16]. Also,
we have adopted the theoretical calculation of α5S =
687.3(5) in [16], instead of an earlier calculation from [17]
and an experimental value α5S = 769(61) [18].

A different approach to polarizability measurement in
1064 nm laser fields can be found in [19]. Also, related
work in fields up to ∼ 2 × 1010 W/m2 and with similar
results was recently published [20]. There, theoretical po-
larizabilities for both 5S1/2 [16] and 5P1/2 are required
to calibrate the laser electric field and to then infer ex-
perimental values for the 5P3/2 polarizabilites.

The scalar and tensor polarizabilities of 5P3/2 are im-
mediately useful in experiments that require on-resonant
transitions through 5P3/2, such as two-photon prepara-
tion of lattice-mixed hydrogenic Rydberg states in deep
1064 nm lattices [21], Rydberg-EIT in 1064 nm optical
traps, and evaporative cooling utilizing 1064 nm light
fields. The double-resonance, self-referencing, Rydberg-
based method to measure atomic polarizabilities could be
adapted for other atoms in a variety of optical traps and
at different wavelengths, such as for Cs in a deep 1064 nm
optical lattice or dipole trap, or for Rb in a high-power
CO2-laser trap. Instead of using a magic Rydberg state,
one may utilize low-lying Rydberg states that are suf-
ficiently small that they exhibit an approximately local
response to the field (given by the free-electron polariz-
ability, αe = −545).
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