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We describe a practical experimental protocol for robustly characterizing the error rates of non-
Clifford gates associated with dihedral groups, including small single-qubit rotations. Our dihedral
benchmarking protocol is a generalization of randomized benchmarking that relaxes the usual uni-
tary 2-design condition. Combining this protocol with existing randomized benchmarking schemes
enables practical universal gate sets for quantum information processing to be characterized in a
way that is robust against state-preparation and measurement errors. In particular, our protocol
enables direct benchmarking of the π/8 gate even under the gate-dependent error model that is
expected in leading approaches to fault-tolerant quantum computation.

A universal quantum computer is a device allowing
for the implementation of arbitrary unitary transforma-
tions. As with any scenario involving control, a prac-
tical quantum computation will inevitably have errors.
While the complexity of quantum dynamics is what en-
ables the unique capabilities of quantum computation,
including important applications such as quantum sim-
ulation and Shor’s factoring algorithm, that same com-
plexity poses a unique challenge to efficiently characteriz-
ing the errors. One approach is quantum process tomog-
raphy [1, 2], which completely characterizes the errors on
arbitrary quantum gates but requires resources that scale
exponentially in the number of qubits. Moreover, quan-
tum process tomography is sensitive to state-preparation
and measurement (SPAM) errors [3].

Randomized benchmarking [4–7] using a unitary 2-
design [8, 9], such as the Clifford group, overcomes both
of these limitations by providing an estimate of the error
rate per gate averaged over the 2-design. More specifi-
cally, it is a method for efficiently estimating the average
fidelity

Favg.(E) :=

∫
dψ〈ψ|E(ψ)|ψ〉 (1)

of a noise map E associated with any group of quan-
tum operations forming a unitary 2-design in a way that
is robust against SPAM errors. This partial informa-
tion is useful in practice as it provides an efficient means
of tuning-up experimental performance, and, moreover,
provides a bound on the threshold error rate required
for fault tolerant quantum computing [10] that becomes
tight when the noise is stochastic [7, 11–15].

An important limitation of existing randomized bench-
marking methods is that they are only efficient in the
number of qubits [4, 6, 9] for non-universal sets of gates
such as the Clifford group. While Clifford gates play
an important role in many fault-tolerant approaches to
quantum computation [10], one still needs a means of
benchmarking an additional non-Clifford gate required
for universality. One approach is to separately bench-
mark distinct unitary 2-designs [16]. While this approach
is relatively straightforward for characterizing gates at

the physical level, it is unclear how to apply this ap-
proach in the context of leading fault-tolerant proposals
wherein particular non-Clifford operations required for
universality, such as the π/8 gate, are implemented via
magic state distillation and gate injection [17, 18], which
is a complex procedure that will be subject to dramati-
cally different error rates than those of the (physical or
logical) Clifford gates. Alternatively, randomized bench-
marking tomography [19] can be employed, although the
fast decay curves can have a large uncertainty due to fit-
ting an exponential to a small number of significant data
points.

In the present paper, we describe a protocol for bench-
marking the average fidelity of a group of operations cor-
responding to the dihedral group which does not satisfy
the usual 2-design constraint for randomized benchmark-
ing. However, we show that the dihedral benchmarking
protocol still allows the average fidelity to be estimated
while retaining many of the benefits of standard random-
ized benchmarking. Furthermore, by combining our dihe-
dral benchmarking protocol with both standard [6] and
interleaved randomized benchmarking [20], we give an
explicit method for characterizing the average fidelity of
the π/8 gate directly. This is of particular interest be-
cause the π/8 gate combined with the generators of the
Clifford group (e.g., the CNOT, the Hadamard and the
Pauli gates) provides a standard gate set for generating
universal quantum computation. Moreover our proto-
col enables characterization of non-Clifford gates associ-
ated with small angle rotations, which are of interest to
achieve more efficient fault-tolerant circuits [21–23]. Fur-
thermore, the dihedral benchmarking protocol can be im-
plemented either at the physical or logical level, but will
find its greatest impact in the latter case, which is rel-
evant to fault-tolerant quantum computation via magic-
state injection. In that setting, the quality of a logi-
cal π/8 gate implemented via gate-injection will depend
in a complex way on the quality of the input (distilled)
magic state, the errors on the physical stabilizer opera-
tions, and the errors in the stabilizer measurements, all
of which are required for the injection routine. Applying
our protocol at the logical level provides a direct means
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FIG. 1. The orbit, under the action of the dihedral group D8,
of an input state located at a 45◦ degree latitude on the Bloch
sphere. R8(z) are the rotations of the octagon, while X is a
reflection (or a rotation in 3 dimensions, with the rotation axis
parallel to the octagon’s surface). The π/8 gate corresponds
to the smallest rotation R8(1).

of benchmarking the logical error rate of the injected π/8
gate, which may be dramatically different from the error
rates achieved for the logical Clifford operations under
the fault-tolerant encoding, without assessing the perfor-
mance of the individual components. Remarkably, di-
hedral benchmarking overcomes the key assumption of
‘weak gate-dependence’ of the noise that limits previ-
ous benchmarking protocols. Specifically, the protocol
is robust in the important setting when the error on the
non-Clifford gate, such as the π/8 gate, is substantially
different from the error on the Clifford operations. As
noted above, this is the expected scenario in leading ap-
proaches to fault-tolerant quantum computation.

Characterizing single-qubit unitary groups.—We now
outline a protocol that yields the average gate fidelity of
the experimental implementation of a single-qubit uni-
tary group of the form

Dj = 〈Rj(1), X〉, (2)

where 〈. . .〉 denotes the group generated by the argu-
ments, j is a positive integer (or an arbitrary real num-
ber), and

Rj(z) := eπizZ/j = cos(πz/j)I + i sin(πz/j)Z. (3)

Up to an overall sign, Dj is a representation of the dihe-
dral group of order 2j, with XRj(z) = Rj(−z)X, which
is not a unitary 2-design and includes gates producing
arbitrarily small rotations as j increases. Note that the
choice of rotation axis is arbitrary, and that any single-
qubit gate can be written as Rj(1) relative to some axis.
Consequently, our protocol will allow any single-qubit
gate to be benchmarked. The Bloch sphere representa-
tion of D8 acting on a qubit state is illustrated in fig. 1.
This group contains the so-called π/8 gate, which corre-
sponds to the R8(1) rotation.

The dihedral benchmarking protocol for a fixed integer
j is as follows. (Note that j can also be a real number,
in which case the sums below are replaced by integrals.)

1. Choose two strings of length m, z = (z1, . . . , zm) ∈
Zmj and x = (x1, . . . , xm) ∈ Zm2 , independently and
uniformly at random.

2. Prepare a system in an arbitrary initial state ρ.1

3. At each time step t = 1, . . . ,m, apply Rj(zt)X
xt .

4. Apply the inversion gate, defined as

Ginv. := Xb1Zb2
∏m
t=1[Rj(zt)X

xt ]†,

where b1, b2 ∈ Z2 are fixed by considerations below.

5. Perform a POVM {E, I − E} → {+1,−1}
for some E ≈ ρ, to estimate the probability
q(+1|m,x, z, b1, b2) of outome +1.

6. Repeat steps 1-5 k times, where k is fixed by the
requirement to estimate the average survival prob-
ability

p(m, b1, b2) := |2j|−(m+1)∑
x,z q(+1|m,x, z, b1, b2)

to a desired precision (see [7, 11, 24] for details on
the required sampling complexity).

For b1 = b2 = 0, the average survival probability is

p(m, 0, 0) = Ap̃m0 +Bp̃m1 + C , (4)

where A, B and C are constants absorbing SPAM factors.
Fitting two exponentials is generally more difficult than
fitting a single exponential, so we propose instead fitting
to

p(m, 0, 0) + p(m, 0, 1)

−p(m, 1, 0)− p(m, 1, 1) = 4Ap̃m0 (5)

and

p(m, 0, 0)− p(m, 0, 1) = 2Bp̃m1 . (6)

As we will show below, the average gate fidelity is related
to the fit parameters p̃0 and p̃1 by

Favg.(EDj ) =
1

2
+

1

6
(p̃0 + 2p̃1), (7)

where EDj is the noise over Dj and we assume that
the noise is completely positive and trace-preserving and

1 The constants A and B appearing in eqns. 5 and 6 depend on
state preparation, as shown in eqns. 23–25. These constants may
be maximized by choosing an appropriate state preparation (and
the corresponding measurement). In particular, optimal states
for eqn. 5 and eqn. 6 are |0〉〈0| and |+〉〈+| respectively.
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is also gate and time-independent (though perturbative
approaches to relax these assumptions can be consid-
ered [7, 11])

Characterizing the π/8 gate.—The π/8 gate, or R8(1)
in the notation of eqn. 3, is important in many imple-
mentations because it is used to supplement the Clif-
ford gates to achieve universal quantum computation.
In leading approaches to fault-tolerant error-correction,
the π/8 gate is physically realized via magic-state in-
jection [17], in which magic states are acted upon by
Clifford transformation and post-selected stabilizer mea-
surements. Because the physical (logical) Clifford gates
are applied directly (transversally) whereas the π/8 gate
is implemented through the above method, the error on
the π/8 gate may be substantially different and requires
separate characterization. While the quality of the in-
jected gate can be assessed by measuring the quality of
the input and output magic states as well as benchmark-
ing the required stabilizer operations, here we provide a
direct method to estimate the average gate fidelity of the
π/8 gate.

The π/8 gate is contained in D8 (see eqn. 2), which
contains D4 as a subgroup. One approach to characteriz-
ing the π/8 gate is to benchmark D4 and D8 separately.
If the average fidelity over D8 and D4 are similar, this
is an indication that the π/8 gate has similar average fi-
delity as the Clifford group. However, typically this will
not hold for the reasons stated above, in which case we
suggest the following protocol. First benchmark D4 as
per the above protocol. Then adapt interleaved random-
ized benchmarking [25] to the above protocol by replacing
steps 3 and 4 (with j = 4) with the two following steps:

3′. At each time step t = 1, . . . ,m, apply
R8(1)R4(zt)X

xt .

4′. Apply the inversion gate, defined as

Ginv. := Xb1Zb2
∏m
t=1[R8(1)R4(zt)X

xt ]†.

We require the sequence length to be even to ensure that
the inversion gate is in D4, which follows from the com-
mutation relation XRj(z) = Rj(−z)X. For b1 = b2 = 0,
the average survival probability is similar to eqn. 4, but
with different decay parameters:

p(m, 0, 0) = A′q̃m0 +B′q̃m1 + C ′ . (8)

As in the previous section, the curves

p(m, 0, 0) + p(m, 0, 1)

−p(m, 1, 0)− p(m, 1, 1) = 4A′q̃m0 (9)

and

p(m, 0, 0)− p(m, 0, 1) = 2B′q̃m1 (10)

can be fitted instead to extract the decay parameters.
The average gate fidelity of the composed noise channel
Eπ/8 ◦ ED4

(where Eπ/8 is the noise on the π/8 gate and

◦ denotes channel composition) is related to the fit pa-
rameters q̃0 and q̃1 by

Favg.(Eπ/8 ◦ ED4
) =

1

2
+

1

6
(q̃0 + 2q̃1). (11)

The average gate fidelity of the π/8 gate, Favg.(Eπ/8)
(as opposed to the fidelity of the composite noise chan-
nel), can then be estimated from the relation [19, 26]

|χEπ/800 − χED4
00 χ

Eπ/8◦ED4
00 − (1− χED4

00 )(1− χEπ/8◦ED4
00 )|

≤ 2

√
χ
ED4
00 χ

Eπ/8◦ED4
00 (1− χED4

00 )(1− χEπ/8◦ED4
00 ) ,

(12)

where

χE00 =
3

2
Favg.(E)− 1

2
. (13)

This bound is loose in general but tight when the Clif-
ford gates in D4 have much higher fidelity than the π/8
gate (which is the regime of interest when optimizing the
overhead and fidelity of the distillation and injection rou-
tines) [27].

Smaller rotations can also be characterized in a similar
fashion. The average fidelity of a small rotation RJ(1) is
estimated by implementing the same scheme, replacing
π/8 with RJ(1), D4 with Dj such that 2N · j = J for any
fixed choice of N ∈ N, and by restricting the sequence
lengths to be multiples of 2N .
Analysis.—We now derive the formula for the decay

curves expressed in eqns. 4–6, 8–10 together with the av-
erage fidelity eqns. 7 and 11. For convenience, we will use
the Pauli-Liouville representation of channels in which
channel composition corresponds to matrix multiplica-
tion (see, e.g., Ref. [11] for details). The Pauli-Liouville
representation of an abstract channel E , which we denote
with a bold font E, is the matrix of trace inner products
between Pauli matrices Pj and their images E(Pk) under
E ,

Ejk = Tr(PjE(Pk)) . (14)

We assume that the experimental noise is completely
positive and trace-preserving and is also gate and time-
independent (though perturbative approaches to relax
these assumptions can be considered [7, 11]), so that
we can represent the experimental implementation of
RJ(1)Rj(z)X

x as RJ(1)ERJ (1)EDjRj(z)X x. The stan-
dard Dj benchmarking protocol can be obtained by set-
ting J = 1 and ERJ (1) = I, while the interleaved case
corresponds to J = 2N · j.

For j > 2, the Pauli-Liouville representation of Dj is
block diagonal with three blocks, where the blocks corre-
sponds to three inequivalent irreducible representations
(irreps) of the dihedral group, namely,

1. Rj(z)X
x → 1 (trivial representation)

2. Rj(z)X
x →

(
cos(2πz/j) (−1)x+1 sin(2πz/j)
sin(2πz/j) (−1)x cos(2πz/j)

)
(faithful representation)



4

3. Rj(z)X
x → (−1)x (parity representation).

This is easily seen by looking at the action of Dj on
the Bloch sphere (see fig. 1). The trivial representation
emerges from the unitality and trace-preserving proper-
ties of unitary operations, which map any Bloch shell
of constant radius to itself, including the center point.
The parity representation encodes the fact that the ±Z
poles of the Bloch sphere are invariant under conjuga-
tion by Rj(z) and swapped under conjugation by X.
The two-dimensional representation encodes the action
of Rj(z)X

x on the XY -plane of the Bloch sphere.
The twirl of E over a group G is

EG = (|G|)−1
∑
U∈G

U−1EU . (15)

As a consequence of Schur’s lemmas (see the supplemen-
tary information of Ref. [25]), the twirl of any channel
over Dj is

EDj = (ERJ (1)EDj )
Dj =

 1 0 0 0
0 q̃1 0 0
0 0 q̃1 0
0 0 0 q̃0

 (16)

for j > 2, where q̃0 := E44 and q̃1 := E22+E33

2 and the di-
agonal blocks correspond to the three inequivalent irreps
of Dj . Defining

Am : = (2j)−m
∑
x,z

1∏
i=m

RJ(1)ERJ (1)EDjRj(zi)X xi

Bm : = (2j)−m
∑
x,z

m∏
i=1

X xi†Rj(zi)
†RJ(1)† , (17)

the average over all sequences of length m can be ex-
pressed as the effective channel

C = EDjX
b1Zb2BmAm . (18)

But BmAm can be re-expressed as

BmAm = Bm−1(ERJ (1)EDj )
DjAm−1

= (ERJ (1)EDj )
DjBm−1Am−1

=

m∏
j=1

(ERJ (1)EDj )
Dj , (19)

where the the second line follows from the fact that EDj
is proportional to the identity in each of the blocks.

With these definitions, the average fidelity is [19, 28]

Favg.(E) =
1

2
+

1

6
(E22 + E33 + E44)

=
1

2
+

1

6
(q̃0 + 2q̃1) (20)

as in eqn. 7 and 11. Using eqn. 16, the effective channel
C from eqn. 18 can readily be expressed as

C = EDj


1 0 0 0
0 (−1)b2 q̃m1 0 0
0 0 (−1)b1+b2 q̃m1 0
0 0 0 (−1)b1 q̃m0

 .

(21)

Therefore the survival probability is

p(m, b1, b2) = Tr (E C(ρ))

= (−1)b1Aq̃m0 +
(
(−1)b1+b2B1 + (−1)b2B2

)
q̃m1 + C ,

(22)

where

A := 2−1 · Tr
(
E · EDj (Z)

)
· Tr (ρZ) , (23)

B1 := 2−1 · Tr
(
E · EDj (Y )

)
· Tr (ρY ) , (24)

B2 := 2−1 · Tr
(
E · EDj (X)

)
· Tr (ρX) , (25)

C := 2−1 · Tr
(
E · EDj (I)

)
. (26)

Eqns. 4–6, 8–10 then follow from appropriate choices of
b1, b2 and simple algebra.
Numerical simulation.—Although the previous analy-

sis is derived for gate- and time-independent noise, the
randomized benchmarking protocol is both theoretically
and practically robust to some level of gate-dependent
noise [7, 11]. We now illustrate through numerical simu-
lations that this robustness holds for the dihedral bench-
marking protocol, particularly in the regime where the
noise is strongly gate-dependent (as expected when the
gates are implemented using different methods, namely,
direct unitaries and magic state injection).

For our simulations, each operation within the dihe-
dral group D8 is generated by composing two gates; the
first from D4 and the second is either identity or the
π/8 gate. The error associated with the first gate is a
simple depolarizing channel with an average fidelity of
0.9975. For the second gate, the error arises only af-
ter the π/8 gate, and corresponds to an over-rotation
with an average fidelity of 0.99. The total average fi-
delity over D8 is 0.9925. Fig. 2 shows the two decay
curves described by eqns. 5 and 6. Weighted non-linear
regressions give an estimate of 0.9924(1) for the average
fidelity, which is consistent with the analytic value. We
also simulate the interleaved randomized benchmarking
protocol in two different regimes (see fig. 3). The first
regime (fig. 3a) corresponds to over-rotation errors that
are small for the Clifford operations, with average fidelity
1−10−6, but large for the π/8 gate, with average fidelity
1 − 10−2. The estimate of the fidelity of the π/8 gate
via our protocol, 0.9901(2), is extremely precise in this
regime. The second regime (fig. 3b) corresponds to a
similar over-rotation with average fidelity 0.99 both for
the Clifford group and the π/8 gate. In this case the es-
timated value of Favg.(Eπ/8) is 0.980 and the bound from
eqn. 12 only guarantees Favg.(Eπ/8) to lie the interval
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FIG. 2. (Color online) Decay curves corresponding to eqns. 5
and 6 for a standard randomized benchmarking simulation
with A ≈ 1

4
and B ≈ 1

2
respectively. The shallow (blue)

and steep (orange) lines correspond to eqn. 5 and eqn. 6 re-
spectively. Each data point is obtained after averaging 500
sequences of fixed length. A weighted non-linear regression
(performed using the scipy Python package) gives an estimate
of 0.9924(1) for the average fidelity over D8, compared to the
analytic value 0.9925. See Numerical simulation for details.

FIG. 3. Decay curves corresponding to eqns. 5 and 6 for an
interleaved randomized benchmarking simulation with with
A ≈ 1

4
and B ≈ 1

2
respectively. The shallow (blue) and steep

(orange) lines correspond to eqn. 5 and eqn. 6 respectively.
Each data point is obtained after averaging 500 sequences
of fixed length. Figure a) corresponds to high fidelity Clif-
ford operations and a relatively noisy π/8 gate. Figure b)
corresponds to errors of the same magnitude on the Clifford
operations and the π/8 gate. See Numerical simulation for
details.

[0.958, 1.000]. The rather loose bound in this regime is
an open problem for interleaved randomized benchmark-
ing and is not specific to the current protocol.

Conclusions.—We have provided a protocol that ex-
tracts the average fidelity of the error arising over a group
of single-qubit operations corresponding to the dihedral
group. While we have explicitly assumed that the rota-
tion axis is the z axis, this is an arbitrary choice. Since
any single-qubit unitary can be written as a rotation
about some axis on the Bloch sphere, our protocol can
be used to characterize any single-qubit gate.

Of particular importance are D8 and D4, which enable
efficient and precise benchmarking of the π/8 gate that
plays a unique and important role in leading proposals
for fault-tolerant quantum computation. We have illus-
trated numerically that the fidelity of the π/8 gate can
be estimated using an interleaved version of our proto-
col. This estimate is precise when the quality of Clifford
gates is significantly greater than the π/8 gate, which is a
regime relevant to near-term small-scale demonstrations
of universal fault-tolerant quantum computation where
Clifford operations are performed transversally while the
quality of the π/8 gate is limited by the relatively high
cost of magic state distillation.
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