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We evaluate a new method, based on the near-field properties of surface plasmon 
polaritons, to significantly enhance the dissipative optomechanical backaction mechanism. 
Although the large momentum of the surface plasmon polariton modes leads to the enhanced 
sensitivity of the scattering to the mechanical displacement, the overall efficiency will not 
improve unless an optical antenna efficiently couples the plasmonic modes to the far-field.  The 
predicted improvements in both efficiency and bandwidth make this approach uniquely suitable 
for many new applications. 

PACS numbers: 42.50.Ct, 42.50.Pq, 62.20.D-, 42.50.Wk 

 

The interaction of an optical mode and a mechanical mode within an optical cavity, known as 
dynamical backaction[1, 2], has been always at the center of attention  for ultrasensitive 
measurement and manipulation of the mechanical displacement and force[3, 4]. Significant 
progress in this field has made it possible to probe the non-classical nature of both photons and 
phonons[5]  leading to the observation of quantum coherence and entanglement[6-9]. Non-
equilibrium cooling by backaction optomechanics close to the ground state of vibration can be 
used for force measurements with precisions beyond the standard quantum limit[10]. 
Furthermore, due to the Kerr nonlinearity in these optomechanical systems, quantum non 
demolition (QND) measurements can be made possible[11]. 

The dynamical backaction is achieved when the displacement of some cavity components 
changes the optical energy within the cavity. The change of optical energy results in a 
corresponding exertion of optical force on the moving object, which when in correct phase, 
exchanges the energy between the optical and mechanical modes. This method has been 
proposed and used for a broad range of applications ranging from gravitational wave 
detection[12], to photonic clocks[13], high precision accelerometers[14], atomic force 
microscopy[15], laser cooling[16, 17] and parametric amplification[18].  The coupling of the 
mechanical mode to the optical cavity can be either dispersive or dissipative. In the dispersive 
coupling, the mechanical motion changes the optical energy by altering photons’ phase and the 
interference between them inside the cavity. It has been shown that the dispersive backaction 
coupling can be employed to annihilate the phonons completely in the “good cavity limit”[19, 



2 
 

20] (also known as “resolved side band regime”[20]) for  reaching the ground state of vibration . 
In the good cavity limit the mechanical vibration frequency is much larger than the photon 
damping rate (κ ), resulting in sufficient phase matching of the optical force for the efficient 
cooling. However, achieving this condition is quite challenging and requires fabrication of 
cavities with very high quality factors that limits its practical implementation for many sensing 
applications. Even if such cavities are perfectly fabricated, the cavity quality factor (Qo) is prone 
to change by the environmental conditions (for instance when used as a biosensor it can be 
affected by the micro fluidic channel and the scattering induced by the surrounding 
particles[21]). On the other hand a very high optical quality factor necessitates the use of an 
ultra-narrowband laser beam which is accurately detuned from the cavity resonance frequency 
(fo) by the mechanical vibration frequency (fm)[18]. These ultra-narrowband lasers with fine 
tuning capability add to the cost of the total system. Furthermore the narrowband nature of this 
technique is a limitation that prevents its application for broadband detection and sensing of 
molecules. The alternative approach is  the dissipative backaction mechanism[3] in which the 
mechanical displacement changes the optical energy of the cavity by changing the photons’ 
damping rate. This technique has been theoretically predicted[3] and experimentally verified by 
a vibrating ridge waveguide coupled to a microdisk cavity[22] and a fiber taper waveguide 
coupled to nano-cavity formed between the two suspended cantilevers[23, 24] that has the 
capability of both dissipative and dispersive coupling[23] . In contrast to the dispersive coupling, 
ground state cooling can be achieved even without being in the good cavity limit[3]. Although  
this outstanding feature alleviates the stringent requirement for the cavity quality factor, however 
the change in the photon damping rate due to the motion should be large enough to have a 
significant mechanical damping for ground state cooling[3, 23]. In this Letter, we discuss the 
potential of surface plasmon polaritons for significant enhancement of the dissipative coupling. 
The work described here is motivated by recent demonstration of unique properties of surface 
plasmon polaritons for nanoscale optical transduction[25].  We present an in-depth inspection of 
various physical properties of surface plasmon polaritons to realize cavity backaction 
optomechanical devices with significantly lower optical quality factors that are efficient, 
compact and broadband.  

To see whether plasmonic structures can be useful for this purpose, we start by recalling that 
the mechanical damping rate can be calculated as[3]:  
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which is equal to the mechanical damping rate of the cavity when the dissapative optomechanical 
intercation is dominant. Such scheme is an alternative for the more popular sideband-resolved 
laser cooling regime that makes exclusive use of dispersive coupling.The above experssion is  
valid at optimum detuning, i.e ( / 2 ( / )opt m A Bω κΔ = + , where / (2 )m mfω π=  and κ  and n   are  
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FIG. 1 (a) Schematics of a plasmonic structure which scatters photons out of the cavity through a fictional 
aperture in the far field at the cavity wall. The aperture covers a polar angle range ( θΔ  ) and an azimuthal 
angle range ( ϕΔ  ) with respect to the center of the plasmonic structure. The numerical aperture of the 
fictional aperture is defined as ( )nSin θΔ  (b) Schematics of the plasmonic optomechanical coupling to far-
field modes.  While the mechanical frequency of vibration increases with the reduction of the length as ~ 
1/L2, coupling to the structure decreases linearly. An optical antenna can significantly enhance the weak 
coupling of sub-wavelength plasmonic optomechanical structures to the far-field modes.   

 

the damping rate and the average number of photons inside the cavity respectively. A and B are 
the dispersive and dissapative coupling coefficents[3]. The phonon number at equilibrium (

( / ( ))ph m opt m eqn nγ γ γ= + where mγ  is the mechanical damping rate and neq is the phonons 

occupation number governed by Bose-Einstein distribution function) can be lowered by 
maximizing the optically induced damping rate. In this respect, the damping rate per photon 
number inside the cavity can be used as a figure of merit. In previous attempts[22, 26], the best 
structure for dissipative cooling consisted of an ultrahigh quality disk resonator coupled to a 
suspended ridge waveguide. 

Looking back at Eq.(1), the denominator indicates that the photon damping rate should be 
kept as low as possible to maintain the cavity feedback mechanism and prevent substantial loss 
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of optical energy in the system in order to achieve a high efficiency. On the other hand, in order 
to increase the numerator both the mechanical vibration frequency and the dissipative coupling 
coefficient i.e. ( / )( / )zptB x d dxκ κ= , should be increased. Consequently both the relative 

change of damping rate versus position and the zero point fluctuation amplitude ( zptx ) should be 

maximized. It should be noted that the dispersive coupling coefficient for a cavity with optical 
radial resonance frequency of Rω  , is equal to ( / )( / )zpt RA x d dxκ ω=   and should be minimized 

to have maximum dissipative cooling and amplification. In the example that we shall work out 
later, the dispersive coupling for the lateral motion of the plasmonic structure is negligible 
compared to the dissipative coupling. 

The change of photon decay rate versus position is usually achieved by changing the 
transmission through one of the cavity ports upon motion. The change in the transmission can be 
enhanced by using highly confined surface plasmon polaritons (SPPs) with large wavevectors.  
Recent experimental observation of large dispersive optomechanical coupling in a nano-
plasmonic structure [25] suggests a potential for achieving similarly large dissipative coupling. 
This could be achieved for instance by introducing a plasmonic resonator with mechanical 
degrees of freedom that would mediate power out-coupling from a dielectric optical resonator. 
Moreover, the sub-wavelength nature of SPPs can be exploited to design plasmonic structures 
with smaller dimensions. The benefits are twofold: First, the fundamental resonance frequency of 
the mechanical oscillation can be increased significantly, since it is inversely proportional to the 

square of the dimension ( 21/mf L∝  ). Second, the zero point fluctuation amplitude 

/ (2 )zpt eff mx m ω= h   is enhanced due to the reduction of the effective mass ( 3
effm L∝ ).  

Despite the above benefits, there are two main challenges associated with the use of 
plasmonic structures: (1) plasmonic materials introduce loss and increase the damping rate of the 
cavity, which opposes the enhancement of optγ . Although the increase in loss might be desirable 

for applications where a more broadband cavity and less sensitivity to laser line-width and 
detuning are required, the large magnitude of the loss prevents the use of purely SPP backaction 
mechanism in plasmonic cavities due to very short SPP lifetime. In this case, heating the 
mechanical oscillator caused by the metal loss is negligible due to the large thermal conductivity 
of the metal  as shown by previous experimental and theoretical studies[27, 28] (2) Small 
structures with large mechanical oscillation frequencies containing highly confined plasmonic 
modes suffer from weak coupling to the far-field. To illustrate the latter issue, consider a sub-
wavelength structure within an arbitrary cavity as depicted in Fig. 1(a). In this case, we assume 
that the decay rate of the cavity optical energy is dominated by the power flow though a fictional 
aperture in the far field of the plasmonic structure which mediates the power out-coupling. The 
mechanical movement of the plasmonic components would result in the change of its scattering 
properties and hence the optical power exiting the cavity and the photon damping rate. Since the 
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dimensions of the plasmonic structures of interest are going to be smaller than the free-space 
wavelength, an “optically small” dipole will be a good representative. The re-radiated power 

from this structure is equal to 
2

0( )
3

I LZπ
λ

[29, 30],  where I0  is the induced current within, and 

L is the length of the subwavelength dipole and Z is the vacuum impedance. The induced current 
is equal to the displacement current with the magnitude equal to m mEωε , where mε is the 
electric permittivity and Em is the magnitude of the electric field in the metal[31].  The fraction 
of the reradiated (scattered) power which reaches the aperture is equal to 

0 2 2(1/ ) sin( )
2total p

cnP E r d dε θ θ φ∫∫    where Ptotal is the total power emitted by the dipole, n is 

refractive index of the cavity medium, 0ε is the dielectric permittivity of vacuum, Ep is the 
magnitude of the electric field of the wave emitted by the dipole at far-field and the integration is 
carried out within the polar and azimuthal angle of the aperture as shown in Fig. 1(a). Using the 
farfield distribution of a sub-wavelength dipole, the total power reaching the aperture through 
scattering is found to be: 

     
2
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0
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where n is the index of the refraction of the cavity, 0θ  is polar angle of the center of the aperture 

and NA is defined as sin( / 2)n θΔ  where θΔ  is the polar angle range of the rays reaching the 
aperture [see Fig. 1(a)]. It is evident from the above equation that the reradiated power (and the 
coupling to the far field) is proportional to the square of the structure dimension (L2). A similar 
conclusion is reached when dealing with a sub-wavelength plasmonic aperture, which has a 
radiation intensity proportional to the square of its dimensions[32].  

Consider that a resonant cavity mode interacts with the plasmonic structure within the 
dielectric cavity as shown in Fig.1 (a). The resonant cavity mode can be regarded as a Gaussian 
beam close to the subwavelength plasmonic structure. Furthermore, as we stated before, a dipole 
antenna as a basic optical element can be considered to represent the subwavelength plasmonic 
structure.  To have maximum coupling, we assume that the dipole antenna is placed at the high 
field intensity point of the Gaussian cavity mode. In this case, according to Eq .2, the overlap of 
the dipole radiation pattern and the optical mode in the far-field, increases by increasing the NA 
of the optical mode. Although for high NA cavity modes this implies a high coupling, the photon 
lifetime does not change considerably with small mechanical reconfigurations of the dipole 
antenna. This is because the change in the overlap integral of the far-field pattern of the dipole 
antenna and the cavity mode profile (that covers a large solid angle) is essentially small.  
Consequently, another fundamental limitation is that the increase in the far-field coupling (by 
increasing the NA of the incident beam) results in the decrease of the change in the photon 



6 
 

lifetime and the dissipative optomechanical interaction. To summarize, in order to achieve the 
benefits of the subwavelength plasmonic structures to the fullest extent, the following conditions 
should be met: (1)- The photon damping rate should be determined by scattering from the 
plasmonic structure within the cavity. (2)- By integrating the plasmonic structures to high Q 
optical cavities, sufficiently low damping rates should be maintained. (3)- Good couplings to 
subwavelength plasmonic structures(with large acceptance cones) without sacrificing the 
dissipative coupling is required. As we shall see in the following “near-field coupling” can be 
employed for this purpose. 

By using coupled mode theory (CMT), Karalis et al[33] has theoretically shown that the 
near-field coupling leads to very efficient energy transfer between two media which are only a 
few wavelengths apart. This efficient near-field coupling might provide an excellent alternative 
approach.  However, to improve the coupling using this method, most of the cavity energy 
should be localized at the near field of the plasmonic structure. Two good examples are the 
coupling between the microspheres in a chain[34] and the coupling to a plasmonic waveguide 
structure using a taper coupler[35]. In both examples, not only is the light focused at the interface 
(enhanced localization) but also the coupling can be significantly enhanced through the 
nonradiative near field channel[34]. These examples show the many possibilities in enhancing 
the coupling through near field. We consider a mediating antenna that can increase the optical 
cross section (as seen by the aperture) of the sub-wavelength plasmonic structure through near 
field coupling as shown in Fig. 1(b). The “near-field coupling” here is basically the same as what 
has been generally defined as the rate of energy transfer between the two optical modes of two 
objects located in the near-field of each other [35]. The transferred power can be scattered by the 
plasmonic structure leading to the change of the photon lifetime within the whole system.  The 
near-field coupling as described by the coupled mode theory (CMT) can be expressed by 

23 * 3
1 2 2 1 1( / 2) ( ) ( ) ( ) ( ) ( )d r r E r E r d r r E rω ε ε∫ ∫   where iω  , iε  , Ei  are the resonance frequency , the 

electric permittivity and the electric field eigen-mode of the ith structure ( i=1,2) respectively, r is 
the position and ε  is the electric permittivity of the medium with the presence of both structures. 
It should be noted that based on the above formula the amount of near field coupling depends on 
the structures’ geometrical properties as well as the distance between them and the refractive 
indices. Therefore, no analytical formula exists that can be applied in a general manner as in the 
case of far-field coupling [see Eq.(2)].  We mention that,  as opposed to far-field coupling which 
decreases by the square of the plasmonic structure dimensions [see Eq.(2)], the near field 
coupling can be quite large as long as the electric field overlap integral of both structure remains 
large. In fact, as suggested in Ref [35], the subwavelength structures with long evanescent field 
tails, can have large near field couplings over longer separation distances. Now suppose that the 
second medium is the optical cavity that can sustain photons with a long lifetime. By optimizing 
the structural parameters (as we demonstrate in our example) a good near field coupling between 
the cavity mode and the subwavelength plasmonic structure can be obtained. Furthermore since 
it is a near-field coupling, it can be quite sensitive to the mechanical reconfiguration of the 
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plasmonic structure which in turn changes the photon lifetime of the optical cavity.  As a result, a 
significantly enhanced dissipative optomechanical interaction by the virtue of both high quality 
factor of the optical cavity and the large optomechanical transduction properties of 
subwavelength plasmonic structure could be achieved.  

Here, we present our simulations for near-field to far-field coupling through a microsphere 
optical cavity. While taking advantage of plasmonic properties, such a hybrid opto-plasmonic 
cavity would also alleviate the adverse effect of plasmonic loss on the photon lifetime by 
providing a long photon roundtrip inside the microsphere optical cavity.  As our simulations 
predict in the following, with a good trade-off between all of the aforementioned parameters, the 
proposed plasmonic structure can outperform the best structures reported so far for the purpose 
of dissipative optomechanical interaction. 

The schematic of the hybrid plasmonic microsphere cavity is shown in Fig. 2. The 
microsphere cavity sits on top of a perfect Distributed Bragg Reflector (DBR). Top of the 
microsphere is covered by aluminum to form the hybrid cavity. Among all of the metals,  

 

FIG. 2 (a) The schematics of the simulated microsphere cavity with the asymmetric metal insulator metal 
structures fabricated on top and center of the sphere. A magnified cross section view of the asymmetric 
plasmonic structure is also provided. The lateral motion of the suspended beam (with mechanical 
frequency fM= 2.5 GHz) results in the change of transmission (ΔT) through the plasmonic cavities and the 
photon lifetime within the whole structure. (b) The mechanical mode profile of the lateral flexural 
vibrations. The edges of the nano-beam at its equilibrium position are also shown by the dotted lines. The 
asymmetry is necessary to achieve a significant change of transmission and dissipative interaction with 
very small lateral vibrations of the nano-beam.  The beam width (w), length (L) and the gap widths (g1 and 
g2) are given in the text. 
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aluminum has the best properties due to it lower mass density (and consequently lower effective 
mass of the suspended beam), high Young’s modulus and relatively low-loss. A suspended 
plasmonic beam with the length (L) of 500 nm is carved out of aluminum at the very top of the 
microsphere (see the magnified view of the plasmonic structure in Fig. 2). There are two 
apertures on the sides of the plasmonic beam with different widths (g1=50 and g2=80 nm) to have 
nonzero dissipative coupling with the first lateral flexural motion of the beam. The mechanical 
modes of the structures were solved for using a commercial finite difference solver and the 
profile of the mechanical motion is shown in Fig. 2. A comparison to the schematics of Fig. 1 
helps to have a better understanding of the introduced mechanisms. The microsphere cavity is 
the optical cavity of Fig.2 that contains the nano-beam plasmonic structure. However unlike 
Fig.2 which shows that the plasmonic structure is located in the far field of the exit-aperture, here 
it is in the near field of the aperture. On the other hand, the microsphere acts as a dielectric 
antenna[36, 37] placed at the near-field of the plasmonic structure[38] to increase the optical 
cross section of the plasmonic structure. As illustrated in Fig. 1(b), this helps to increase the 
coupling to subwavelength structures.  Consequently, both the coupling to the plasmonic 
structure and the coupling to the exit-aperture through the plasmonic structure are provided by 
the near-field interaction. The sphere optical cavity has a good quality factor even with the 
presence of the aperture and the damping rate of the system is critically dependent on the 
mechanical state of the plasmonic nano-beam. As a result, all of the three introduced issues for 
the use of subwavelength plasmonic structures can be addressed in the introduced structure. 

In order to find the optomechanical cooling and amplification rates for the lateral 
vibrations, we simulated the structure using commercial finite difference time domain software  

 

 

 

FIG. 3 The dissipative damping rate per trapped photon versus the suspended beam width and the beam 
thickness (in this case, it is equal to the aluminum thickness). 
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and the results have been shown in Fig. 3. We performed a series of static simulations with 
varying nano-beam positions to find  /d dxκ  . We then used /d dxκ  to find the dissipative 
optomechanical coefficient (B) and the dissipative damping rate ( optγ  ) as expressed by Eq.(1). 

As the suspended beam becomes wider than the width of the focused light, the coupling through 
the slots decreases. On the other hand for very small beams, the effect of the beam movement on 
the optical properties of the asymmetric slot structure diminishes. Consequently, there is an 
optimum beam-width for the optomechanical damping rate as can be seen in Fig. 3.  The 
thickness of the metal determines the effective plasmonic cavity length that is formed between 
the two metal-air interfaces at the bottom and on top of the slots. Therefore, at a particular value 
it results in the maximum change of damping rate with the lateral motion for the narrowband 
light. According to Fig. 3, we found the optimized values for the beam width (w=225 nm) and 
the beam thickness (t=30 nm) and used those values for the results presented in Table I.  We 
have assumed that the microsphere is placed on top of a single moded fiber (at 1550 nm) to form 
a fiber-integrated plasmonic device. It should be noted that we have been recently made a similar 
structure with a plasmonic antenna on the top and center of a microsphere that was placed on an 
optical fiber facet[39] . Our results show that the photon reflection from the two slots at the top is 
the dominant factor that limits the quality factor of the microsphere cavity (Q) and the loss due to  

 

 

FIG. 4. The simulated reflectivity of the photonic nanojet off the plasmonic beam (R), the corresponding 
damping rate (Γ) and dissipative coupling coefficient (B) versus the lateral position of the optimized 
suspended nano-beam. It is evident that when the nano-beam is fabricated exactly in the middle, with both 
slots having the same width, the change in the beam reflectivity versus the lateral displacement and the 
corresponding dissipative coupling coefficient vanishes due to the symmetry.  
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diffraction is insignificant compared to the reflection loss from the metallic structure. The 
dispersion relation for different slot widths has been calculated in Ref [25]. As the slot width 
decreases the dispersion curve bends and deviates from the light line. For narrower slots, the 
change in the wavevector per unit change in the slot width is higher [25]. As the nano-beam 
moves away from the center, one of the slots becomes wider allowing more photons to transmit 
while the other one gets narrower and blocks the light transmission. Based on the dispersion 
curves, the increase in the momentum mismatch for the narrower slot is higher compared to its 
reduction for the wider slot. On the other hand, the variation in the intensity of the photonic jet is 
negligible across the subwavelength plasmonic structure. Therefore, the overall coupling and 
transmission through the plasmonic structure decreases as the nano-beam is positioned away 
from the center leading to the increase in the reflectivity. This trend can be seen by the numerical 
results in FIG. 4 which also shows the damping rate and the calculated dissipative coefficient (B) 
of the optimized structure. The performance metrics can be compared to the microdisk resonator 
coupled to a  

TABLE I.  Parameters of different structures utilizing the dissipative optomechanical cooling. Qm is the mechanical 
quality factor. 

 
                Properties 
Structure 

 
QO 

 
QM 

 
fm 

 (Hz) 

 
fO  

(Hz) 

 
meff  
(Kg) 

 

    
/d dxκ       

(MHz/nm) 

 
κ   (Hz) 

 
/ noptγ  

(Hz) 

Our proposed 
plasmonic device 
(d=120 μm) 
with perfect DBR 

 
 

6×103 

 
 

102~103a 

 
 

2.5×109 

 
 

1.95×1014 

 
 

2.9×10-17 

 
 

35.24 

 
 

3.2×1010 

 
 

5×10-6 

 
Vibrating ridge 
waveguide coupled 
to a disk resonator b  

 

 
 

1.2×105 

 
 

5×103 

 
 

2.5×107 

 
 

2×1014 
 

9.18×10-16 c 

 

 
26 

 
 

1.67×109 
 

5×10-6 d 

 
Vibrating ridge 
waveguide coupled 
to a disk resonator e 

 

 
5.91×106 

 
5×104 

 
1×107 

 
3.55×1014 

 
5×10-16 

 ൑0.2 
 

6×107 
 

1.7×10-7f 

Fiber taper coupled 
to split-beam 
photonic crystal 
nano cavity f 

5.2×103 2.4×103g 1.05×107 1.97×1014 >3.48×10-16 ~2 3.8×1010 2.8×10-12h 

a The range of the mechanical quality factor is estimated based on the values found in literature[40, 41]. 
b Reference[22]. 
c,d ,f, h These values were calculated based on the data provided in the references. 
e Reference[26]. 
f Reference[23]. 
g extracted from Ref[24] which similar mechanical structure as in Ref[23]. 
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suspended waveguide as reported by the references included in Table I. The interacting optical 
mode inside the microsphere cavity is like a Fabry-Perot mode. It starts from the DBR side of the 
cavity with almost the same profile of the exiting beam of a single-moded fiber (a Gaussian 
beam with effective mode diameter of almost 9 μm) and is gradually focused to the other end of 
the microsphere where the plasmonic structure is located. Upon reflecting back from the 
structure, it travels the same path to reach the DBR mirror. To confirm that the mode is indeed 
like a Fabry Perot mode of an elaton, we calculated the cavity damping rate for different 
diameters of the microsphere and with different reflectivities of the plasmonic structure by using 
two different types of simulations. In the first method, the damping rates were obtained by our 
FDTD simulations using multiple point monitors within the microsphere cavity that give the 
decay of the resonant field components over time. Then, we performed another type of FDTD 
simulation in which the plasmonic devices where excited by the same cavity mode source but 
without the Bottom DBR mirror. The latter simulation gave us the effective reflectivity of the 
aluminum mirror comprising the plasmonic structure (R1). We could verify the following well-
established formula of a Fabry-Perot cavity: 

                                                       1 2/ ( ) ln( )effc nL R Rκ = −                                                          (3) 

Where κ  is the damping rate, n is the refractive index of the cavity (equal to 2 in our 
simulations), R2 is the reflectivity of the DBR mirror and Leff  is the effective length of the Fabry-
Perot cavity. The results of our second simulation of reflectivity were employed to calculate κ

using the above formula. These results are in excellent agreement with the direct calculations 
based on time monitors (first simulation) when Leff is 20 percent larger than the diameters of the 
simulated microspheres. The dielectric microsphere is a practical structure that can focus light 
into a beam known as photonic nanojet, which is an elongated beam that is about one wavelength 
long and has a width of about one third of the wavelength[42]. We have previously shown that 
formation of photonic nanojet helps increase the optical intensity and coupling to the near-field 
modes[43]. From Table I, it can be seen that the quality factor of the proposed structure is 
significantly smaller, however the enhancement of dissipative coupling coefficient, mechanical 
resonance frequency and the reduction of the effective mass is evident. Consequently, the 
proposed structure has a damping rate per phonon number ( /opt nγ ) that reaches those of the 

best reported structures. It is worth mentioning that in the absence of the enhanced mode 
coupling produced by the microsphere, the damping rate per phonon number for the bare 
plasmonic structure drops by more than three orders of magnitude. 

In conclusion, a new class of optomechanical devices based on surface plasmon 
polaritons is proposed. Unlike existing approaches, a high efficiency can be achieved over a 
broad optical bandwidth. A specific example with a simple plasmonic structure was provided to 
demonstrate that an induced damping rate per phonon number as high as the best reported 
structures is possible over ~20 times broader bandwidth. The increase in the cavity bandwidth (or 
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the cavity damping rate) reduces the variation of the corresponding cooling rate with respect to 
the detuning. We start by noting that the cooling rate can be expressed as[3]: 

                                                2[ ( ) ( )]opt zpt FF M FF Mx S Sγ ω ω= − −                                         (4) 

Where ( )FFS ω  is the backaction force noise spectrum and is given by[3]: 

                                               
2 2

2 2
[ 2 (2 / ) ]( )

2 ( ) / 4FF
zpt

B a A BS
x

ω κω κ
ω κ

⎛ ⎞ + Δ −= ⎜ ⎟⎜ ⎟ + Δ +⎝ ⎠
                                 (5) 

For the case of dominant dissipative coupling (B>>A), with laser detuning well within the cavity 
bandwidth ( κ >> Δ ) and for sideband-unresolved regime ( Mκ ω>> ) where the dissipative 
optomechanical coupling outperforms the dispersive interaction as stated earlier, the cooling rate 

per one photon becomes approximately equal to 28 ( / )MB ω κ Δ . Therefore, in this case, the 

relation between the cooling rate and the detuning is linear and the reduction in the damping rate 
of the cavity steepens the slope of cooling rate.  The described conditions necessary to arrive to 
this linear relation hold for all of the structures listed in Table.I. We found that the slope of the 
cooling rate versus detuning for the plasmonic structure is almost 20 times smaller than the 
microdisk structure[22] listed in the second row of Table.I.  This example shows that by using 
plasmonic structures not only the burden of fabricating ultra-high quality cavities can be 
alleviated but also comparatively large dissipative optomechanical interaction with less 
sensitivity to the laser detuning can be achieved.  

   This example is by no means demonstrating the performance limit of the proposed approach, 
and we believe that more sophisticated and optimized plasmonic structures can be designed with 
higher efficiency and broader bandwidth. 
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