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Abstract

We derive analytic expressions for the on-resonant cavity scale factor enhancement dependence

on temperature, S0(T ), for an intracavity medium with a Gaussian absorption resonance. Results

are expressed as functions of the cavity parameters and the two resonance parameters: α0(T ), the

peak absorption coefficient, and ΓR
α (T ), the resonance width. A semi-empirical model is developed

for the temperature-dependent absorption coefficient, αF (∆, T ), in an alkali atom vapor cell, and

is used to compare the predicted behavior of α0(T ) and ΓR
α (T ) with the measured values for the

D2 F = 2 → F ′ resonance in 87Rb, over the temperature range 298–325 K. Measurements of S0(T )

in a low-finesse ring cavity, using the same vapor cell as the intracavity dispersive medium, were

performed and found to be in agreement with the temperature-dependent behavior predicted by

our theory, with quantitative agreement to 2 K for the critical temperature. The practical range

of S0 is found to be limited by the achievable temperature stability of the resonance parameters of

the dispersive medium.
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I. INTRODUCTION

The change in the optical mode frequency of a cavity due to a change in cavity length

may be increased by a large factor through the anomalous dispersion associated with the

absorption resonance of an intracavity medium. Enhancement of the scale factor relating the

mode frequency of the optical cavity to its optical path length may be useful for a number

of precision measurement applications, such as higher sensitivity passive and active ring

resonator gyroscopes (see [1] and references, therein; [2–4]). The scale factor enhancement,

S, depends on the absorption profile and is greatest when the cavity mode is resonant with

the absorption medium. In an earlier paper [1] we demonstrated tuning the on-resonant

scale factor enhancement, S0, of an optical cavity by modifying the absorption coefficient

of an intracavity atomic vapor cell through optical hyperfine pumping. It was shown that

S0 could be tuned across a wide range, from near unity to above the pole in S0, with a

rubidium vapor cell at room temperature. However, a large value of S0 alone is not useful

without simultaneously achieving high scale factor stability, if sensitivity is to be increased.

In this paper, we derive the general temperature dependence of S0 for any intracav-

ity medium with a Gaussian absorption resonance, in which the resonance parameters, α0

and ΓR
α , the peak absorption coefficient and the full width at half maximum (FWHM) of

the absorption coefficient profile, vary with temperature. Knowledge of the temperature-

dependence of S0 is useful when temperature is used as the tuning parameter, and is critical

for estimating the scale factor stability in a dispersion-enhanced optical cavity, e.g. in a

dispersion-enhanced ring gyro, since the stability of S0 will be limited by the achievable

temperature stability of the intracavity dispersive medium. We demonstrate an accurate

semi-empirical model for the temperature-dependence of the Gaussian resonance parame-

ters, applicable to our medium of interest, an atomic vapor cell containing isotopically se-

lected rubidium (87Rb), derive the temperature dependence of the scale-factor enhancement,

S0(T ), examine its stability, δS0/S0, and the usable range of S0 for the case of temperature

tuning, with the cavity and atomic vapor cell used in our work. We show that the temper-

ature sensitivity of our resonance parameters limit the scale factor stability to about one

part per thousand at room temperature, for any value of S0.
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II. SEMI-EMPIRICAL TEMPERATURE-DEPENDENT RESONANCE PARAM-

ETERS

In this section, we derive the semi-empirical temperature-dependence of the absorption

resonance for the atomic medium used in our previous work, a low density thermal atomic

vapor of alkali atoms confined to a glass vapor cell with a limited supply of atoms. The

expressions will be useful for vapor cells of other species of atoms as well. First, we begin

with a treatment of the absorption coefficient by a vapor of non-interacting two-level atoms.

Then, the results are combined with an empirical model of the equilibrium density versus

temperature for a metallic vapor to describe the temperature-dependent absorption coeffi-

cient profile of the optical resonances of alkali atoms, each consisting of multiple hyperfine

transitions. The hyperfine splitting of the upper levels leads to resonances which are approx-

imately Gaussian at our temperatures of interest, and may be characterized by Gaussian

parameters, α0(T ) and ΓR
α (T ), in order to provide useful estimates of S0(T ).

A. Two-Level Atomic Vapor

For an ideal two-level atomic system at a density low enough where collisions may be

ignored, the absorption resonance shape, α(ω − ω0, T ), is a Voigt function. Near room

temperature, however, the inhomogeneous width is typically orders of magnitude larger

than the homogeneous width for an optical resonance, and the resonance shape may be

approximated as a Gaussian, given by,

α(∆, T ) = α0(T ) exp

(

−4 ln 2
∆2

Γ2
α(T )

)

, (1)

where ∆ ≡ ω − ω0 is the optical frequency detuning from the resonance frequency, ω0, and

α0 is the on-resonance absorption coefficient, Γα is the FWHM of the absorption coefficient

profile, and T is the temperature.

The functional dependence of Γα on temperature is given by the Doppler width formula,

Γα(T ) =
(ω0

c

)

(

8kBT ln(2)

m

)1/2

, (2)

where c is the speed of light, and m is the mass of the atom. In the low optical intensity

limit, the on-resonance absorption coefficient has a temperature dependence given by,

α0(T ) = Nℓ(T )Fℓ(T )σ0, (3)
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where σ0 is the resonant absorption cross-section, Nℓ(T ) is the number density of atoms

in the vapor occupying the lower-level of the two-level atomic resonance, and Fℓ(T ) is the

fraction of lower-level atoms in the vapor which can absorb the beam on resonance, given

by

Fℓ(T ) =

+∞
∫

−∞

L(υz)P (υz;T ) dυz. (4)

where L(υz) is a velocity-dependent line-shape function, which, at low-intensity, is given by,

L(υz) =
(γ/2)2

(kυz)2 + (γ/2)2
(5)

and P (υz;T ) is the probability density of an atom having velocity υz at temperature T ,

P (υz;T ) =
1√

πυp(T )
exp

(

−υ2
z/υ

2
p(T )

)

(6)

with υp(T ) =
√

2kBT/m. In eq. 5, γ is the natural linewidth of the resonance, assuming

conditions of negligible broadening by collisions and external fields, and k is the wavenumber

of the optical field. Defining x(T ) = υγ/υp(T ), with υγ = γ/2k, and carrying out the

integration in eq. 4, the fraction of absorbing atoms with an on-resonant beam is given by,

Fℓ(T ) =
√
π erfc (x) x exp

(

x2
)

. (7)

Note that in the limit T → 0, Fℓ → 1, as expected.

B. Alkali Atom Vapor Cell

For atoms completely in the vapor phase within a closed cell, Nℓ is constant with temper-

ature; however, Fℓ(T ) will decrease with increasing temperature, since a smaller fraction of

the atoms in vapor will have near-zero velocity. As a result, α0 will correspondingly decrease

with temperature. However, if the atomic system is partially in vapor phase and partially

in liquid phase, at the high vacuum of typical vapor cells, Nℓ(T ) increases with temperature

as more atoms are added to the vapor. Henceforth, we restrict our discussion to the latter

case of a very low pressure vapor of atoms in a cell containing a liquid phase reservoir at

ambient temperature. This case corresponds approximately to commercially available vapor

cells of several alkali atoms, including rubidium (Rb) cells containing no buffer gases. For
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metallic elements the vapor pressure versus temperature may be represented by a two-term

equation given in [5],

log(p) ≈ A + BT−1, (8)

where p is in units of atm, and T is in Kelvin. For rubidium in liquid phase, vapor pressure

measurements give the constants A = 4.312, and B = -4040 [5]. This form has an accuracy

of 5% over the range 298–550K. In S.I. units, the atom density is given by[6],

N(T ) =
133.3

kBT
× 10{2.881+A+B/T}, (9)

where T is specified in Kelvin. The vapor pressure parameters A and B are obtained by

measurement under conditions which often do not closely correspond with vapor pressures

in commercial atomic vapor cells, due to wall effects [7]. Typical alkali vapor cells also

contain a very limited amount of the condensed phase element, and, for temperatures well

above room temperature, the vapor pressure may be limited by the available quantity of

the element. For example, in some commercial rubidium vapor cells, liquid phase rubidium

is not even visible on the cell wall at room temperature. For an overfilled cell at room

temperature, i.e. one in which the liquid is visibly condensed on the wall of the cell, we

model the vapor pressure (atom density) in the cell by determining the parameters A and

B by optical measurements of the absorption coefficient for atomic transitions with known

absorption cross sections.

Alkali atoms exhibit a splitting of the ground state into two hyperfine levels, separated

by more than kBT at room temperature, but not so great that the Boltzmann factor is

significantly different between the two levels. The number density of atoms in thermal

equilibrium, in the lower level, is given by,

Nℓ(T ) =

(

2F + 1
∑

Fg
2Fg + 1

)

N(T ), (10)

where F is the total angular momentum quantum number of the lower level, and the sum-

mation extends over the two hyperfine levels of the ground state. It is also noted that σ0,

the resonant absorption cross section, in a real atom depends on the polarization of the

incident beam, and on the distribution of the lower level atoms within their degenerate

magnetic sublevels. Also, optical pumping effects within the lower sublevels, even at low

incident intensities, may significantly alter the sublevel populations for sufficient atom-beam

5



interaction time[8], and thereby modify σ0. For a specific hyperfine transition, F → F ′,

σ0(F, F
′) =

2ω |µFF ′,e|2
cǫ0~γ

, (11)

where µFF ′,e is the effective dipole moment for the transition between the two hyperfine

levels. For linear polarization, µFF ′,e is given by,

|µFF ′,e|2 =
+F
∑

m=−F

wm |〈F,m |erq=0|F ′, m〉|2 (12)

and wm specifies the weights for the distribution of atoms within the lower magnetic sub-

levels. Assuming the incident beam intensity and interaction time are sufficiently low such

that the ground state atom does not depart significantly from thermal equilibrium, we may

take wm = 1/(2F + 1) and calculate the effective resonant linear polarization absorption

cross sections through application of the Wigner-Eckart theorem[6], to give

σπ
0 (F, F

′) = s(F, F ′)σπ
0 (F ), (13)

where s(F, F ′) are the relative strengths for the individual F → F ′ hyperfine transitions,

and σπ
0 (F ) is given by,

σπ
0 (F ) =

2

3

ωF

cǫ0~γ
|〈J ‖ er ‖ J ′〉|2 (14)

and ωF is the center frequency of all transitions from the lower common level F to the

multiple upper levels, F ′, of the excited state. For the F = 2 → F ′ D2 resonance of 87Rb,

considered in this work, σπ
0 (2) = 19.378× 10−14m2, and s(2, 1) = 0.05, s(2, 2) = 0.25, and

s(2, 3) = 0.70[6]. Combining equations 1, 3, and 14, and summing over all of the excited

state hyperfine levels F ′, we obtain the temperature and frequency detuning dependent

absorption coefficient profile for the composite resonance, F → F ′, with common lower level

F ,

αF (∆, T ) = αD(T )
∑

F ′

s(F, F ′) exp

(

−4 ln 2

(

∆+ δF,F ′

Γα(T )

)2
)

, (15)

where the detuning, ∆ = ω − ωF,F ′

r
, is with respect to the F → F

′

r transition, F
′

r is the

reference hyperfine level in the excited state, δF,F ′ = ωF,F ′

r
− ωF,F ′, Γα(T ) is given by eq. 2,

and αD(T ) is given by,

αD(T ) = Nℓ(T )Fℓ(T )σ
π
0 (F ). (16)

It is worthwhile to review all of the assumptions used to obtain equation 15: 1) the

natural linewidth is assumed to be much smaller than the Doppler width, γ ≪ Γα(T ), 2)
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there are no other significant line broadening mechanisms, 3) linear optical polarization

is used, 4) the intensity is low enough that all levels and sublevel populations are always

near thermal equilibrium, i.e. saturation and pumping effects are negligible, 5) external

magnetic fields are negligible, i.e. Zeeman sublevel splitting is much less than the natural

linewidth, and 6) the variation in ωF,F ′ is negligible over the range of the upper levels,

F ′, so that ωF,F ′ may be replaced simply by ωF (see eq. 14). For the rubidium vapor cell,

near or above room temperature, and for the transitions, laser intensity, beam diameter,

and polarization used in our experiments, these assumptions are well justified. However, in

comparing our measurement results with theory, we will also include the contribution of the

natural linewidth in an empirical way, since it is an inseparable contribution to the data, at

the level of 0.5% in the resonance FWHM.

We have obtained a semi-empirical model of the absorption coefficient profile, eq. 15,

for a composite resonance in a low-density alkali vapor cell near room temperature, and

at very low incident intensity. Although the resonance is an unresolved blend of multiple

displaced hyperfine components at room temperature, for the 5P3/2 excited state of 87Rb

the close spacing of the upper F ′ levels results in a nearly Gaussian absorption profile, with

an asymmetry. To a reasonable approximation, we may treat the single F → multiple F ′

composite resonance as an ideal Gaussian resonance and characterize αF (∆, T ) using just

two parameters, α0(T ) and ΓR
α (T ). Although it is not possible to obtain simple analytic

expressions for α0(T ) and ΓR
α (T ) for the composite resonance, we may obtain these two

characteristic parameters by numerically computing the absorption cross section profile from

our semi-empirical model (eq. 15) and finding its peak value and FWHM. We now proceed

to determine the theoretical temperature dependence of the on-resonance cavity scale factor

enhancement, S0(T ), as a function of Gaussian resonance parameters, α0(T ) and ΓR
α (T ).

III. TEMPERATURE DEPENDENCE OF SCALE FACTOR ENHANCEMENT

For an optical cavity, either in the linear configuration or a ring configuration, the Gaus-

sian resonant medium may not fill the entire physical path-length through the cavity. In

this case, we use an effective absorption coefficient,

α̂(∆, T ) = α(∆, T )ℓ/L. (17)
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The parameters ℓ and L are the length of the medium and length of the empty cavity,

respectively, defined for one round-trip traversal of the cavity by the optical beam[9]. Thus,

if ℓm is defined to be the physical length of the dispersive medium, ℓ = 2ℓm for the Fabry-

Perót cavity, and ℓ = ℓm for a ring cavity, since the dispersive medium is traversed twice in

one round-trip through the Fabry-Perót cavity, while it is traversed only once in a round-

trip of the ring cavity. Similarly, L is twice the mirror separation for a Fabry-Perót cavity,

while, for a ring cavity, L is its perimeter. This convention for ℓ and L allows us to write

expressions for S which are valid for both cavity cases.

We generalize our earlier expression for the scale factor enhancement of an optical cavity

with an intracavity absorber[1] to describe its temperature dependence,

S(δp, T ) = (n̂g(∆p, T ) + (1/tc) (dF (∆p, T )/d∆p))
−1 , (18)

where δp ≡ ωp,ec − ωo is the empty cavity mode detuning for mode p, ∆p ≡ ωp − ω0 is

the corresponding dispersive cavity mode tuning, n̂g(∆p, T ) is the effective group index at

a detuning of ∆p, tc is the empty cavity round-trip time (L/c), and F (∆p, T ) is a function

which depends on the temperature-dependent absorption resonance shape and on the cavity

mode profile[1].

First, we obtain an approximate expression for S0(T ), valid in the limit of narrow cavity

mode-width. The simple expression obtained for this case is useful for obtaining insight into

the behavior of S0(T ) and for its rate of change with temperature, dS0/dT. We also present

the general expression for S0(T ), valid when the cavity mode width is not small compared

to the absorption resonance width. The latter is needed for a quantitative comparison of

the theory with our present experiment.

A. High-Finesse Approximation

In the limit that the cavity mode width is much narrower than the absorption resonance

width, we may ignore the group velocity dispersion arising from F (∆p, g)[1] to obtain the

high-finesse approximation,

S(δp, T ) ≈ 1

n̂g(∆p, T )
, (19)

where

n̂g(∆p, T ) = n̂(∆p, T ) + ωp

(

∂n̂(∆, T )

∂∆

)
∣

∣

∣

∣

∆=∆p

. (20)
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Through the Kramers-Krönig relations, the effective medium index of refraction, n̂(∆, T ),

is related to the effective absorption coefficient, α̂(∆, T ), and resonance width, ΓR
α (T ), via,

n̂(∆, T ) = 1 +Re

{

ic

2

α̂(∆, T )

(∆ + ω0)
erf

(

i2 ln 2
∆

ΓR
α (T )

)}

. (21)

Below, we derive the on-resonance (∆ = 0) scale factor enhancement temperature depen-

dence, S0(T ).

The temperature-dependence of the on-resonant group index, n̂g(0,T), is expressed only

in terms of the two Gaussian absorption resonance parameters, α̂0(T ) and ΓR
α (T ). From

eq. 20,

n̂g(0, T ) = n̂(0, T ) + ω0
∂n̂(∆, T )

∂∆

∣

∣

∣

∣

∆=0

. (22)

From equation 21,

∂n̂(∆, T )

∂∆

∣

∣

∣

∣

∆=0

= −2c

ω0

√

ln 2

π

α̂0(T )

ΓR
α (T )

. (23)

Finally, noting n̂(0, T ) = 1 for all temperatures, we obtain for n̂g(0, T ),

n̂g(0, T ) = 1− f
α̂0(T )

ΓR
α (T )

, (24)

where f = 2c
√

ln(2)/π, and c is the speed of light in vacuum. Substituting eq. 24 into

eq. 19, the on-resonant scale factor enhancement, S(δp = 0, T ), is

S0(T ) =
1

1− f α̂0(T )
ΓR
α (T )

. (25)

The critical temperature, Tc, at which the pole in S0(T ) occurs is given by the condition,

ΓR
α (Tc) = fα̂0(Tc), which can be solved numerically, using equations 2, and 3.

From eq. 19, the rate of change of S0(T ) with temperature is given by,

dS0(T )

dT
= −S2

0(T )
dn̂g(0, T )

dT
(26)

and, assuming no variation in the length ratio ℓ/L with temperature, we arrive at

dS0(T )

dT
= S2

0(T ) · f
α̂0(T )

ΓR
α (T )

[

1

α0(T )

dα0(T )

dT
− 1

ΓR
α (T )

dΓR
α (T )

dT

]

. (27)

In the above expression, the only parameters are the two parameters characterizing the

Gaussian absorption resonance, α̂0(T ) and ΓR
α (T ). This is not surprising because the ef-

fective group index, n̂g(0, T ), is completely determined by these two parameters, for the

Gaussian absorption resonance. From equation 27, we see that in order for S0 to increase
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with temperature, the fractional change in the on-resonance absorption coefficient, α0, must

be greater than the fractional change in the width of the resonance, ΓR
α , for a small change

in temperature. It is also possible, in principle, for S0 to be independent of temperature if

the term in brackets in eq. 27 becomes zero, i.e. when the fractional change in α0 is exactly

the same as the fractional change in ΓR
α ; however, for our atomic vapor cell, the fractional

change in α0 is considerably greater than that of ΓR
α over the temperature range of our

measurements.

B. General Expression

When the cavity mode width is not small compared to the absorption resonance width,

higher-order dispersion across the cavity mode may significantly increase the value of S0[1, 9].

Thus, in the general case, we cannot ignore the contribution from the term, dF (∆p, g)/d∆p,

in eq. 18. Although the expression for F (∆p, g) is complicated, it is straightforward to

evaluate dF (∆p, g)/d∆p on resonance, i.e. for ∆p = 0, and therefore to find the contribution

to S0 from this term. The expression for F (∆p, g) given in [1] is valid only for transmittance

of the optical field incident on the cavity. However, the cavity modes may also be observed

in reflectance, and, for an empty cavity, the mode pattern will simply be inverted, with

the transmittance maxima coinciding exactly in frequency with the minima in reflectance.

This is also true in the high finesse approximation. However, with a resonant intracavity

medium and a cavity with arbitrary finesse, the minimum of a reflectance mode may no

longer coincide, in general, with the maximum of the corresponding transmittance mode.

The expressions for F (∆p, g) for both transmittance and reflectance are given in [10].

We denote the on-resonant scale factor enhancements, determined from the mode behavior

observed in transmittance and in reflectance by Sℑ
0 and Sℜ

0 , respectively. Consider a four

mirror ring cavity, as shown in figure 1. The input coupler has a reflection coefficient r1 and

the output coupler a reflection coefficient of r2. For modes observed in transmittance,

Sℑ
0 (T ) =

(

n̂g(0, T ) − 1

t2c

4L ln 2

n̂g(0, T )

α̂0(T )

(ΓR
α (T ))

2

(

1− g20(T )

2g0(T )

))−1

, (28)

where g0(T ) = r1r2aτ0(T ), and τ0(T ) = exp (−α̂0(T )L/2). The cavity parameter, a, is the

frequency-independent round-trip field attenuation in the cavity, which can include trans-

mission losses from the cavity mirrors not designated as the input/output couplers. Note
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that the second term on the right hand side of eq. 28 always lowers the value of n̂g(0, T ),

for 0 6 n̂g(0, T ) 6 1, and therefore increases the value of Sℑ
0 at a given temperature. The

connection between the general expression, eq. 28, and the high-finesse result, eq. 25, is seen

by taking the limit g0 → 1.

The scale factor enhancement of the cavity observed in reflectance, Sℜ
0 , is given by

Sℜ
0 (T ) =

(

n̂g(0, T ) − 1

t2c

4L ln 2

n̂g(0, T )

α̂0(T )

(ΓR
α (T ))

2

(

r21 − g0(T )

r21 − g20(T )

)

2g0(T )

1 + g0(T )

)−1

. (29)

When g0(T ) < r21, the effect of dF (∆p, g)/d∆p on Sℜ
0 is to lower the value of n̂g(0, T ), as

in eq. 28. However, the scale factor pole will occur at different temperatures for modes

observed in reflectance rather than in transmittance. For ring cavity experiments, it may

be more convenient to observe the cavity modes in reflectance than in transmittance, since

r2 can be set to near unity. In our experiments, described below, we measure Sℜ
0 (T ) from a

low-finesse ring cavity. We will use eq. 29 to evaluate the theoretical critical temperature,

Tc, for comparison with our experiment. We will continue to use the notation S0 for the

cavity scale factor enhancement when the measurement type, transmittance or reflectance,

is not germane to the discussion.

IV. TEMPERATURE-DEPENDENT MEASUREMENTS

A low pressure vapor cell of 87Rb, of physical length, ℓm = 2.50 ± 0.05 cm, and hav-

ing non-angled anti-reflection coated windows, was enclosed in a compact, temperature-

stabilized aluminum oven, with a temperature tunable from room temperature, 298 K, to

over 325 K. The atomic vapor cell is overfilled, so that condensed liquid rubidium droplets

are visible on the cell wall at room temperature. The oven design was based on one pre-

viously published [11], and is heated by four cartridge heaters. A resistance temperature

detector (RTD) sensor mounted on the outer surface of the oven provided an indirect mea-

sure of the vapor temperature, which is used by a temperature controller (Omega CN743) to

stabilize the oven temperature to within 0.15 K. The systematic error between the average

temperature of the atomic vapor and the measured oven temperature is not known precisely,

but separate measurements of the temperature at various points inside the cell holder area

of the oven indicate that the cell wall temperature was within 2 K of the oven measurement.

Measurements of both the temperature-dependent low-intensity absorption resonance
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Figure 1. Ring cavity geometry for the general treatment of Sℑ
0 (T ) and Sℜ

0 (T ). In the layout, the

laser enters the input coupler (BS) from only one direction, restricting the ring cavity to unidirec-

tional operation. The intracavity, temperature-stabilized rubidium vapor cell provides anomalous

dispersion at its D-line resonances. The liquid crystal variable retarder (VR) permits tuning the

cavity mode across the atomic resonance, by changing the optical path length in the cavity. We

measure for each temperature the ∆p versus δp curve for the cavity mode p closest to the atomic

resonance frequency. In our experiment, the output coupler for the cavity is a high-reflectance

mirror, r2 = 1. Therefore, the input coupler also serves as an output coupler and allows only the

cavity reflectance (ℜ) modes to be observed by the photodetector (PD). The remaining two mirrors

(M) of the ring cavity are high-reflectance mirrors.

parameters, α0(T ) and ΓR
α (T ), from the D2 line and the on-resonance cavity scale factor

enhancement, Sℜ
0 (T ), were made using different optical configurations, as described be-

low. Both sets of measurements used a tunable external-cavity diode laser operating near

780.2 nm. Absolute frequency scale calibration of spectra was provided by a Michelson

interferometer and a saturated absorption (SA) spectrometer[1]. The frequency scale accu-
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racy for the spectra in both sets of measurements was better than 0.4% across the entire

resonance profile, as determined by the measured intervals between saturated-absorption

resonances from the SA spectrometer.

A. Absorption Resonance Parameters

For a low pressure vapor cell of 87Rb, measurements of the absorption resonance param-

eter, α0, at low intensity and near room temperature are given in [1]. In the present work,

the dependence of α0 and Γα on temperature was measured over a wide temperature range.

Single-pass transmittance spectra through the vapor cell were taken across the absorption

profile of the D2 F = 2 → F ′ resonance over a tuning range of ±2.7 GHz, and for tempera-

tures ranging from 300–323 K. The input laser had a beam power of 44 nW and a 1/e beam

radius of 310 µm, giving an average beam intensity of 15 µW/cm2 incident on the vapor cell.

A photomultiplier (ThorLabs PMM02-1) was used to detect the weak transmitted light. For

the intensity and beam diameter used, both saturation and pumping effects are negligible

(Ω/γ ≈ 0.05, and π/Ω ≈ 2µs, where Ω is the effective Rabi rate of the 2 → 3 transition,

and γ is the spontaneous emission decay rate).

For each temperature, the parameters αD(T ) and Γα(T ) were obtained by a least-squares

fit to the measured transmittance spectrum. The fitting function is obtained by substituting

eq. 15 into the expression, T (∆, T ) = exp (−αF (∆, T )ℓm). We emphasize that the least-

squares fit should be performed to the measured transmittance spectra, T (∆, T ), instead of

computing αF (∆, T ) from the transmittance data and then performing a least-squares fit to

αF (∆, T ). In the latter case, the measurements will be weighted incorrectly and give poor

results for αD(T ) and Γα(T ), particularly at higher temperatures. The parameter values,

αD(T ), obtained from the transmittance measurements, were then fitted to the theoretical

model, eq. 16 to obtain the density model parameters, A and B. For our atomic vapor

cell, we obtained A = 3.485 ± 0.133 and B = −3805 ± 42. Figure 2 shows transmittance

spectra for three different vapor cell temperatures, fits to these curves, and the corresponding

absorption coefficient curves.

As noted previously, αD(T ) and Γα(T ) are not the direct parameters of interest for

use with our model of S0(T ) for a Gaussian resonance. The desired Gaussian parameters,

α0(T ) and ΓR
α (T ), are obtained by finding the peak and FWHM of the composite resonance,
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Figure 2. (a) Single-pass transmittance spectra, T (∆, T ), through the rubidium vapor cell for

three different temperatures: (i) 300 K, (ii) 311 K, and (iii) 323 K. The corresponding fits to

exp(−αF=2(∆, T )ℓm) are superimposed. The dip in transmittance at a detuning of +1100 MHz

is due to absorption from 85Rb, and this region has been excluded from the fit. (b) Absorption

coefficient spectra, αF=2(∆, T ), corresponding to the fitted curves in (a). Note the asymmetry in

the absorption curves, arising from the multiple hyperfine transitions contributing to the resonance.

αF (∆, T ), computed with the fitted parameters, {αD(T ), Γα(T ), A, B}, from our transmit-

tance measurements. Figure 3 plots the measured and predicted α0(T ) and ΓR
α (T ) over the

temperature range of the measurements. For this range, we find the following convenient

empirical relation between αD(T ) and the peak absorption coefficient,

α0(T ) = 0.8656× αD(T ) − 0.763m−1. (30)

We also find that within a limited temperature regime, 300–325 K, ΓR
α (T ), is well-described

by a linear relation to the fitted two-level Doppler width, Γα(T ),

ΓR
α (T ) = 0.8705× Γα(T ) + 2π × 161.1× 106 s−1. (31)

It should be noted that the two relations above do not connect experimental values to theo-

retical values, but provide simple means of calculating the experimental composite resonance

parameters from the two fitted parameters to the experimental spectra. Comparison of the

experimental α0(T ) and ΓR
α (T ) to the theory is shown in fig. 3, and discussed in section V.
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Figure 3. (a) Peak absorption coefficient, α0(T ), and (b) resonance FWHM, ΓR
α (T ), for the D2

F = 2 → F ′ resonance. Points are experimental values while the lines are computed from the semi-

empirical model (eq. 15). In (a), the solid line uses the vapor pressure parameters, A = 3.485 and

B = −3805, determined from measurements for our atomic vapor cell, while the dashed line uses

the parameters from ref. [5] (A = 4.312 and B = −4040) for the vapor pressure of liquid rubidium.

In (b), the solid line shows the width computed from theory, with no adjustable parameters. The

average error between the measurements and theory is 2.8%.

B. Ring Cavity Scale Factor Enhancement

The tunable laser was used to scan over the modes of a rectangular ring cavity, of length

L = 42.64 ± 0.01 cm, derived from the measured free spectral range of the empty cavity,

703.0 ± 0.1 MHz. The temperature-stabilized Rb vapor cell, mounted within its oven, was

placed within the optical path inside of the ring cavity. Figure 1 shows the optical layout for

the unidirectional ring cavity measurements. The cavity consisted of three high reflectance

mirrors and a 90:10 cube beamsplitter as the input coupler which also served as the output

coupler in reflectance. Thus, for our cavity, r2 = 1. The cavity modes were observed

in reflectance. The combined cavity/vapor cell had a measured finesse of 7.6 ± 1.3, when

detuned far from the absorption resonance. This value of finesse, and its uncertainty, are

the mean and standard deviation of ten measured finesse values at the temperatures for

which the scale factor enhancement was measured. The center frequency of the laser was

adjusted to coincide with the peak of the composite F = 2 → F ′ resonance. The detuning

between the cavity and atomic resonance was varied by an intracavity liquid-crystal variable

retarder. The values of the two cavity parameters, r1 and a, were found at each temperature
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by a non-linear least squares fit of the theory to the reflection spectra for modes away from

the resonance. The average values over all temperatures gave r1 = 0.946 ± 0.006 and

a = 0.674± 0.044, showing that these values were temperature-independent over the range

of measured temperatures, 309–316 K.

For each temperature, spectra were recorded at a variety of detunings as a selected cavity

mode was tuned across the atomic resonance via the liquid crystal. An automated peak

finding program was used to obtain the frequencies of the mode peaks as well as their

FWHM mode widths and modulation depths. For each temperature, the on-resonance scale

factor enhancement, Sℜ
0 , was determined by a model-independent fit of mode detunings vs.

the empty-cavity mode detunings. Figure 4 (a) shows a typical fit of the △p vs δp curve,

for one temperature, using a linear fit to the central region near the resonance. We take

the slope in this region to be the approximate value of Sℜ
0 for the given temperature, even

though, strictly, Sℜ
0 is the slope exactly on resonance. Although the averaging involved in

using a finite range of δp near zero for obtaining the slope will lower the value of Sℜ
0 slightly

below what would be expected using an exact theoretical model of ∆p, the resulting error

in Tc is small compared to the expected temperature error. Figure 4(b) shows the measured

dependence of Sℜ
0 on temperature, as well as the curve predicted from our theory, given by

eq. 29. The scale factor pole from the measured Sℜ
0 data is obtained by fitting the data to

a function which describes the behavior of S0(T ) in a phenomenological manner,

S0(T ) = 1 − G

(T − Tc)
, (32)

where G and Tc are parameters to be determined from the fit. A fit to the Sℜ
0 (T ) data

shown in Fig. 4 yields G = 6.93 ± 0.67 and Tc = 315.23 ± 0.18 K. Our theoretical model

for a Gaussian resonance, using the semi-empirical α̂0(T ) and theoretical ΓR
α (T ) gives Tc =

317.35 K. The phenomenological expression in eq. 32 is also found to match very closely the

theoretical expression from eq. 29 with proper selection of G, as shown in figure 4 (c).

V. DISCUSSION OF RESULTS

Our semi-empirical model of the temperature-dependent absorption coefficient profile

agrees with the data for the 87Rb D2 F = 2 → F ′ resonance, within the experimental

error. In particular, the peak absorption coefficient, α0(T ), from our model matches the
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Figure 4. (a) Measurement of dispersive-cavity mode detuning (∆p) vs empty cavity-mode detuning

(δp) from the 87Rb D2 F = 2 → F ′ resonance at a vapor temperature of 314 K. The on-resonance

scale factor enhancement, Sℜ
0 , at this temperature is found by a linear fit to the data near resonance.

(b) Comparison of the general analytical model prediction of Sℜ
0 vs T for a Gaussian resonance

(solid), computed using eq. 28 and eq. 15, with the measured values of Sℜ
0 (points), as in (a), at

different temperatures. The dot-dash line is a fit to the data using the phenomenological expression,

eq. 32, which gives the measured critcal temperature, Tc = 315.23±0.18K. Dotted line is the high-

finesse model prediction of S0(T ), from eq. 25. The general model predicts a critical temperature

of Tc = 317.35K, and the high-finesse approximation predicts Tc = 325.21K. (c) Comparison of

the phenomenological model of S0(T ), (dot-dash line) eq. 32, with the exact theoretical expression,

(solid line) eq. 29, using G = 6.823 and Tc = 317.35K.

experimental data over the entire temperature range of the measurement with an average

error of less than 0.3%. The accuracy of the model indicates that the vapor pressure for an

atomic vapor cell can be significantly different from the vapor pressure of liquid rubidium

quoted in the literature[5, 6], but still follows the two-term equation 8. Thus, the A and B

coefficients for the vapor pressure of the cell should be characterized in order to model the

peak absorption coefficient accurately.

The measured resonance width versus temperature, ΓR
α (T ) is also in good agreement

with the theory, with an average error across the measurement temperature range of 2.8%.

We note that there are no adjustable parameters involved in the theory for ΓR
α (T ). Our

theory neglected to include the natural linewidth contribution to the two-level transition

width, although this contribution is built-in to our experimental determination of Γα(T ).

However, adding the natural linewidth contribution to the theory with an empirical relation
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for the FWHM of a Voigt profile [12] only adds 2π(3.25 MHz) to Γα(T ), which reduces the

discrepancy between the measurement and theory to 2.3% for ΓR
α (T ). At present, we do

not believe our frequency scale for the measurements has such a large error. A rather large

error in the measured temperature of the vapor, ≈ 20 K, would be required to explain the

discrepancy in ΓR
α (T ). Although our measurement of the oven temperature may differ from

the vapor temperature, for example, near the end caps of the oven, such a large systematic

error in the vapor temperature is not expected, and, in any case, would not be consistent

with our results for α0(T ).

Additional checks were made to determine the source of the broadening of the experimen-

tal values of ΓR
α (T ). We considered Zeeman effects from the oven heater current and artificial

broadening of the transmittance profile from the detection bandwidth of the measurement

system. Both of these potential sources have been ruled out. A possible explanation for

the extra broadening of the resonance observed in the experiment is that the ground state

sublevel thermalization time in the vapor cell is longer than the mean time between wall

collisions. As a result, the individual contributions of the 2 → F ′ transitions to the reso-

nance profile would not be exactly in the ratios given by s(2, F ′), leading to a composite

resonance which could be slightly broader than that of the theory for αF (∆, T ) in eq. 15.

We note, however, that the additional resonance broadening of 2.3% in the measurements

has a small effect on the comparison between the predicted and observed scale factor en-

hancement, increasing the predicted critical temperature by only 0.21 K, well within the

vapor temperature uncertainty.

The uni-directional ring cavity experiment demonstrates that S0 can be tuned with tem-

perature, from nearly unity to past the pole in S0. For the low finesse cavity used in our

experiment, it is clear from Fig. 4 that the high finesse approximation result for S0(T ), given

by eq. 25, gives a large error of about 10 K in the critical temperature for S0. Using our

measured cavity parameters, L, r1, and a, within the general expression of eq. 29 gives a

critical temperature which is different from that estimated from the cavity measurements

by about 2 K. Although the atomic resonance used for this experiment is not a symmetric

Gaussian resonance, due to its composite nature, eq. 29 nevertheless provides an estimate

of the critical temperature which is approximately within the systematic uncertainity in our

atomic vapor temperature, indicating that the asymmetric resonance shape contributes only

a small correction to Tc.
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For atomic vapor cells as the intracavity dispersive media, the rapid change of S0(T )

with temperature near the scale factor pole limits the useful scale factor enhancement, given

the practical limitations of stabilizing the atomic vapor temperature. The relevant figure of

merit is the variation in S0(T ) for a given variation of temperature, δT . We compute

δS0

S0
(T ) =

δT

S0

(

dS0

dT

)

. (33)

Calculation of this quantity may be done directly by computing eq. 28 or eq. 29, and obtain-

ing its numerical derivative. However, it is easier to use the phenomenological expression

for S0(T ) from eq. 32. Then, for S0 ≫ 1, we find,
∣

∣

∣

∣

δS0

S0

∣

∣

∣

∣

(T ) =

∣

∣

∣

∣

δT

T − Tc

∣

∣

∣

∣

. (34)

Using the predicted value of Tc = 317.35 K for our experimental parameters, and an esti-

mated temperature stability value of δT ≈ 10 mK, we obtain for the specific cavity/vapor-

cell system used in our work,
∣

∣

∣

∣

δS0

S0

∣

∣

∣

∣

(T ) =

∣

∣

∣

∣

0.01

T − 317.35

∣

∣

∣

∣

, (35)

showing the expected result that the fractional stability of S0 decreases rapidly as we ap-

proach the scale factor pole. For temperature tuning of the scale factor enhancement alone,

the above expression provides the operating temperature of the vapor cell for the desired

fractional scale factor stability. For example, to obtain a scale factor stability of 10−4, the

operating temperature for our system is computed to be 217.35 K, which limits S0 to unity,

even if such an operating temperature was practically realizable. Relaxing the scale fac-

tor stability by two orders of magnitude gives a more realistic operating temperature of

316.35 K, for which the theory predicts S0 = 7.76.

The primary limitation for operating simultaneously at high scale factor enhancement

and with high scale factor stability for our dispersive medium is the achievable tempera-

ture stability of the vapor, owing mainly to the strong dependence of the peak absorption

coefficient on temperature in typical atomic vapor cells. Indeed, whenever the anomalous

dispersion depends on the atom density[2, 13], the scale factor stability is likely to be limited

by the temperature stability of the vapor. However, the temperature-stability limitation will

be less severe with respect to achieving large S0 when another scale factor tuning parameter,

p, is accessible. For example, with the use of side optical pumping to increase α0, as in [1],
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p can represent the intensity of the optical pumping beam, so that S0 is now a function of

both p and T . Then,

δS0(p, T ) =

(

∂S0

∂p

)

δp +

(

∂S0

∂T

)

δT (36)

and the operating temperature can now be chosen at a much lower temperature where

∂S0/∂T is considerably smaller, and the contribution to δS0 from the (∂S0/∂p)δp term can

be made much smaller due to stabilization of p. As an example, in our earlier work [1],

we demonstrated using optical pumping to tune S0 from unity through the pole at room

temperature, ≈ 300 K. Thus, with perfect stabilization of the pump beam intensity, δp = 0,

and δT = 10 mK, the fractional scale factor stability, δS0/S0, can reach 6 × 10−4 at room

temperature, for any value of S0, according to eq. 35.

VI. SUMMARY

We obtained a theoretical expression for the on-resonance cavity scale factor enhance-

ment, S0(T ), for an ideal Gaussian absorption resonance. In order to quantify the corre-

spondence of the theory with the dispersion enhancement provided by an intracavity atomic

vapor cell, we measured the absorption coefficient profile versus temperature for the 87Rb

D2 F = 2 → F ′ resonance and obtained the Gaussian resonance parameters as a function of

temperature. A semi-theoretical model of the absorption coefficient profile for a composite

set of Doppler-broadened hyperfine transitions, applicable to alkali atom vapor cells, was

demonstrated to give good agreement with our experimental results for α0(T ) and ΓR
α (T ).

Although measurements of these resonance parameters alone would have sufficed to test

our model of S0(T ), establishing a detailed and careful connection to the theory of optical

transitions in thermal atomic vapors is useful generally, for cases where vapor cells of other

atomic species, e.g. cesium, are used as intracavity dispersive media. Our results indicate

that atom density as a function of temperature inside of an atomic vapor cell deviates from

ideal conditions of vapor pressure from a liquid reservoir at a given temperature. We find

that determination of the A and B parameters in the vapor pressure model for the atomic

vapor cell is necessary to match the experimental absorption coefficient profiles with the

theory. A direct comparison of measurements of S0(T ) with those computed by our theoret-

ical expression for a ring optical cavity with arbitrary finesse showed close correspondence

with the predicted critical temperature, within 2 K of that indicated by the measurements.
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In gyro applications for navigation, scale factor stabilities of better than 10−5 are required

to be competitive with currently available systems. Our experimental and theoretical re-

sults show that the Doppler-broadened resonance used in our 87Rb atomic vapor cell is

severely limited in its usefulness for dispersion-enhanced optical cavity-based sensors when

temperature tuning is used to achieve high scale factor enhancement values. We find, for

the cavity/vapor cell system used here, that a scale factor stability of 10−4 is not achiev-

able, while a scale factor stability of 10−2 can only be achieved for S0 < 8. However, our

results do not rule out the possibility of simultaneously achieving both high scale factor

stability and high values of S0 for other tuning methods, e.g. optical pumping tuning of

S0. For operation at room temperature and vapor temperature stability of 10 mK, the

temperature-dependence of our vapor cell resonance parameters imposes a limit on the scale

factor stability of about 6× 10−4 for any tuning method and value of S0.

The atomic vapor cell was selected as the dispersive medium for our initial experiments on

scale factor enhancement in an optical cavity [1, 9] due to the exceptional frequency stability

of its resonances. Our present work indicates the need to explore other resonant systems

with narrow, frequency-stable resonances, but with better dispersion stability than the type

of atomic vapor cell used here. Alternatively, a feedback control method for stabilizing the

resonant atom density in a vapor cell may provide higher stability than that achievable

with temperature stabilization alone[14]. Another interesting possibility is the use of laser

cooled and trapped atoms as the intracavity dispersion medium, for which the temperature

stability issue disappears. Such a system allows tuning of the atom density by non-thermal

control and provides absorption resonances at the natural linewidth, suitable for cavities

with a finesse greater by a factor of 100. We plan to explore this idea in a future paper on

the fundamental quantum sensitivity limit of the dispersion-enhanced passive ring cavity.
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