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Abstract

We consider a system of dynamically-modulated photonic resonator lattice undergoing pho-

tonic transition, and show that in the ultra-strong coupling regime such a lattice can exhibit

non-trivial topological properties, including topologically non-trivial band gaps, and the associ-

ated topologically-robust one-way edge states. Compared with the same system operating in the

regime where the rotating wave approximation is valid, operating the system in the ultra-strong

coupling regime results in one-way edge modes that has a larger bandwidth, and is less susceptible

to loss. Also, in the ultra-strong coupling regime, the system undergoes a topological insulator-to-

metal phase transition as one varies the modulation strength. This phase transition has no counter

part in systems satisfying the rotating wave approximation, and its nature is directly related to

the non-trivial topology of the quasi-energy space.

PACS numbers: 42.82.Et, 42.70.Qs, 73.43.-f
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Creating topological effects [1] for both electrons [2] and photons [3–17] are of significant

current interests. A powerful mechanism for achieving non-trivial topology in a system is to

dynamically modulate the system in time. For electrons, such modulation can be achieved

by coupling with an external electromagnetic field, and has been used to create an electronic

Floquet topological insulator [18–23]. For photons, optical analogue of Floquet topological

insulators has been demonstrated [24]. Also, time-dependent refractive-index modulations

can be used to create an effective magnetic field [25], which can break time-reversal symmetry

and create a one-way edge state that is topologically protected against arbitrary disorders.

All previous works on the topological behaviors of dynamically modulated systems have

considered only the weak-coupling regime where the modulation strength is far less than the

modulation frequency, and applied the rotating wave approximation (RWA). On the other

hand, in recent years, the study of light-matter interactions in the ultra-strong coupling

regime, where the rotating wave approximation is no longer valid, is becoming important

[26–33]. It is therefore of fundamental importance to understand topological effects beyond

the rotating wave approximation.

In this paper, we analyze a time-dependent Hamiltonian first proposed in Ref. [25] for

achieving an effective magnetic field for photons. Unlike Ref. [25], however, here we focus

the ultra-strong coupling regime where the rotating wave approximation is no longer valid.

Experimentally, reaching such ultra-strong coupling regime is in fact relatively straightfor-

ward with current photonic technology [34]. For this system in the ultra-strong coupling

regime, we show that the topologically protected one-way photonic edge states can persist

over a broad parameter range. Compared with the weak-coupling regime, the topologically

protected one-way edge state is less susceptible to intrinsic losses. We also show that, as

one varies the modulation strength, there is a topological phase transition that is uniquely

associated with the ultra-strong coupling regime, and has no counter part in weak-coupling

systems.

We start with the Hamiltonian [25]

H = ωA

∑

m

a†mam + ωB

∑

n

b†nbn +
∑

〈mn〉

V cos(Ωt+ φmn)(a
†
mbn + b†nam), (1)

which describes a lattice of photonic resonators as shown in Figure 1. The lattice con-

sists of two sub-lattices, each consisting of resonators of resonant frequencies ωA and ωB,

respectively. a† (a) and b† (b) are the creation (annihilation) operators associated with
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the resonators in the two sub-lattices. The coupling between the resonators are modulated

dynamically, where V is the maximum coupling strength, Ω = ωA − ωB is the modulation

frequency, and φmn is the modulation phase. Such a modulation drives a photonic transition

[35] between nearest neighbor resonators.

FIG. 1: (Color online) Lattice composed of two types of resonators A (red) and B (blue). The lines

represent coupling (or bonds) between nearest neighbors. All coupling strengths are modulated in

time harmonically. For all bonds along the horizontal direction the modulation phase is zero. The

bonds along the vertical direction have a spatial distribution of modulation phases as specified in

the figure. The specified phases are for the hopping matrix elements of the Hamiltonian in Eq. (1)

along the positive y direction.

Eq. (1) can be transformed to the rotating frame with

ãm(b̃n) = am(bn)e
iωA(B)t. (2)

The Hamiltonian then becomes

H̃ =
V

2

∑

〈mn〉

(ã†mb̃ne
−iφmn + b̃†nãme

iφmn + ã†mb̃ne
i2Ωt+iφmn + b̃†nãme

−i2Ωt−iφmn), (3)

where the first two terms define the Hamiltonian H̃RWA in the rotating wave approximation,

and the last two terms are commonly referred as the counter-rotating terms.

Ref. [25] considered the weak-coupling regime where V ≪ Ω and applied the rotating

wave approximation by ignoring the counter-rotating terms in Eq. (3). In this case, H̃ ≃
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H̃RWA becomes time-independent, and is identical to the Hamiltonian of a quantum particle

on a lattice subject to a magnetic field described by a vector potential A, with φmn =
∫ n

m
A · dl [36]. Such an effective magnetic field provides a new mechanism for controling

the propagation of light [37–40]. In particular, it can be used to achieve a topologically

protected one-way edge state [25].

However, from an experimental point of view, it is important to explore the topological

behavior of the Hamiltonian of Eq. (1) beyond the weak-coupling regime. The required

modulation in Eq. (1) can be achieved electro-optically [34], in which case V ∼ δn/n · ω0,

where n is the refractive index, δn is the strength of the index modulation, and ω0 is the

operating frequency. For electro-optic modulation of silicon, to minimize free-carrier loss,

δn/n ≈ 10−5 − 10−4 [41]. Optical communication typically uses an ω0 corresponding to

a free-space wavelength near 1.5 micron. Thus V is typically between 10-100 GHz. On

the other hand, the modulation frequency Ω in electro-optic modulation is also on the

order of 10-100 GHz [34]. Thus, experimentally one can readily operate in the regime with

V ∼ Ω. Similar conclusion can be reached for the acoustic-optical modulation scheme

implemented in Ref. [16] for achieving a photonic gauge potential. Unlike the electronic

transition, where reaching the ultra-strong coupling regime is a significant challenge [42–45],

for photonic transition [35] it is in fact rather natural that the system operates in the ultra-

strong coupling regime. Thus, systems exhibiting photonic transition can be readily used to

explore the physics of ultra-strong coupling.

To explore the topological properties of Eq. (1) in the ultra-strong coupling regime,

we perform a Floquet analysis of the Hamiltonian of Eq. (3). Here we choose a spatial

distribution of the modulation phase as shown in Figure 1. All bonds along the horizontal

direction have a zero modulation phase. The bonds along the vertical direction have a

spatial distribution of modulation phases. In the weak-coupling regime, such a distribution

corresponds to an effective magnetic flux of π/2, or 1/4 of the magnetic flux quanta per

unit cell. The system is therefore topologically non-trivial in the weak-coupling regime. The

aim of the Floquet analysis is then to see to what extent such non-trivial topological feature

persist as one goes beyond the rotating wave approximation.

Our Floquet band structure analysis follows that of Refs. [46, 47]. The system in Figure

1 is periodic spatially. Therefore the Hamiltonian can be written in the wavevector space

(k-space). For each k point, H̃ in Eq. (3) has a period in time T = π/Ω. Therefore, the
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solution of the equation id/dt|Ψ〉 − H̃|Ψ〉 = 0 in general takes the form |Ψ〉 = e−iεt|Φ〉,

where |Φ(t + T )〉 = |Φ(t)〉 has a periodicity T in time, and is commonly referred to as the

Floquet eigenstate. ε is the quasi-energy and is defined in the temporal first Brillouin zone

ε ∈ [−π/T, π/T ] = [−Ω,Ω]. The quasi-energies and the Floquet eigenstates can be obtained

by solving numerically the eigenvalue equation: (H̃ − i∂/∂t)|Φ〉 = ε|Φ〉 [46, 47]. The quasi

energy thus obtained as a function of k defines the Floquet band structure. In the following

analysis, we treat both ε and V as a function of Ω.

As an important subtlety, when performing numerical calculation of the Floquet band

structures, it is essential to perform a gauge transformation such that the resulting Hamil-

tonian has the smallest possible temporal period. For our case here, the transformation of

Eq. (2), which is a gauge transformation, serves this purpose. While the Hamiltonians H

(in Eq. (1)) and H̃ (in Eq. (3)) are equivalent to each other since they are related by the

gauge transformation of Eq. (2), the temporal periods of H and H̃ are 2π/Ω and π/Ω,

respectively. A key aspect of topological band structure analysis is to identify band gaps

that are topologically non-trivial. On the other hand, if one analyze H directly, since the

corresponding temporal first Brillouin zone is smaller, there is additional band folding along

the quasi-energy axis, which obscures the band gap. The use of H̃ in Eq. (3) is in fact quite

important for the analysis of the topological aspects of the Floquet band structure.

We now examine the Floquet band structure of the system. H̃ has a spatial periodicity

of 4a by 2a along the x and y directions, respectively. Thus, its Floquet band structure has

8 bands, as we can see in Figure 2.

As a comparison, we first consider the band structure of the Hamiltonian H̃RWA as defined

by ignoring the counter-rotating terms in Eq. (3). H̃RWA has a spatial periodicity of 4a by

1a along the x and y directions, respectively. However, to facilitate the comparison with the

band structure of H̃, here we plot the bandstructure of H̃RWA with the spatial periodicity of

4a by 2a as well. The resulting RWA band structure, as shown in Figure 2a, thus contains

8 bands. The bands are two fold degenerate. The bandstructure has the same shape for

different values of V . (Figure 2a).

In the RWA band structure, there are two gaps separating the middle group of four

bands from the upper and the lower groups, each of two bands, respectively. These gaps are
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FIG. 2: (Color online) Floquet band structure for the Hamiltonian H̃ of Eq. (3), (a) with RWA

from H̃RWA (red solid line) and V = 0.02Ω (blue dashed line), (b) V = 0.5Ω, (c) V = 1.1Ω, and

(d) V = 1.5Ω.

topologically non-trivial, as can be checked by calculating the Chern number [22]:

C = −
1

2π

∑

α

∫

dkxdky(∇~k
×Aα), (4)

where the summation is over the group of bands, each band indiced by a different α.

Aα = 〈Φα(~k, t)|i∇~k
|Φα(~k, t)〉, (5)

The Chern numbers for the upper, middle and lower groups of bands are +1, -2, +1, re-

spectively. (As a side note, the middle group of four bands can actually be separated into

two subgroups each consisting of two bands, separated by Dirac points at ε = 0. Each of

the subgroup has a Chern number -1.) The topological analysis here is consistent with the

association of an effective magnetic field in this system. The gaps remain open for all non-

zero values of V . Thus with the rotating wave approximation there is no phase transition

as one varies V .
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Having reviewed the band structure of H̃RWA, we now consider the Floquet band structure

of the full Hamiltonian H̃ . Figure 2a shows the cases of V = 0.02Ω, the Floquet band

structure H̃ agrees very well with that of the H̃RWA.

As one increases V to approximately V > 0.1Ω, the RWA is no longer adequate to describe

the band structure of H̃ . Hence, it is no longer possible to interpret the bandstructure using

the concept of an effective magnetic field. Nevertheless, the two gaps remain open for V

ranging from near zero to 1.1Ω (see Figures 2). Therefore, in this range of V , the Chern

numbers for the upper, middle and lower groups of bands must remain unchanged at +1, -2,

+1, respectively, and hence the topological aspects of the band structure remains the same

as one goes into the ultra-strong coupling regime.

As V increases from 0, the bands gradually move away from ε = 0, and start to occupies

more of the temporal first Brillouin zone (See Figure 2b). At V ∼ Ω, some of these bands

reach the edge of the temporal first Brillouin zone. Further increase of V then results in the

folding back of these bands back into the temporal first Brillouin zone and the closing of

the gaps as we see in Figure 2c with V = 1.1Ω. No gap is found for larger values of V . We

see that the increase of V induces a topological phase transition: the system behaves as a

Floquet topological insulator at small V , and a gapless and topologically trivial “metal” at

large V .
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FIG. 3: (Color online) The projected RWA band structure folded into the temporal first Brillouin

zone as a function of V . The blue regions correspond to the bands. The white regions are the band

gap regions.
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The values of V required for achieving such a topological phase transition can be estimated

by folding the RWA band structure into the temporal first Brillouin zone of [−Ω, Ω] (Figure

3), which predicts that the gap closes at V = 1.1Ω. In comparsion, for the full Hamilontian

of Eq. (3), the gap actually closes at V = 1.11Ω. Therefore, we see that one can use the RWA

to approximately estimate the strength of V at which point the topological phase transition

occur, and that this topological phase transition is directly related to the non-trivial topology

of the quasi-energy space [48]. On the other hand, this calculation again points to significant

difference between the RWA band structure and the actual band structure. For example,

while a band gap exists at V > 1.1Ω for the RWA case, there is no band gap for the actual

system at V > 1.1Ω.
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FIG. 4: (Color online) (a) The bandwidth of the topologically non-trivial gap as a function of V .

(b) The projected bandstructure at V = 0.5Ω.

A key signature of a topologically non-trivial band gap is the existence of a one-way edge

state in a strip geometry. We therefore calculate the projected Floquet band structure for

a strip that is infinite in the y-direction and has a width of 21a in the x-direction. The

projected band structure consists of the quasi energy of all the eigenstates of the system as

a function of ky. The projected band consists of three groups of bands separated by two

topologically non-trivial band gaps. We observe the existence of one-way edge mode that

spans these topologically non-trivial band gaps, as shown in Figure 4b with V = 0.5Ω. Thus

the one-way edge state persist in the ultra-strong coupling regime.
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For applications of one-way edge modes to carry information, optimizing the bandwidth

of such a one-wage edge mode is important. Since the one-way edge mode spans the topolog-

ically non-trivial band gap, the size of such a gap becomes a good measure of the bandwidth

of the one-way edge mode. In Figure 4a, we plot the size of the topologically non-trivial

band gap, as a function of modulation strength V . The bandwidth increases with V for

small V , peaks at V = 0.5Ω, and then decreases to zero signifying the topological phase

transition mentioned above. For a given modulation frequency Ω therefore, the bandwidth

of the one-way edge mode maximizes at the ultra-strong coupling regime.

FIG. 5: (Color online) The simulation results with the Hamiltonian (1) in a 20 × 20 resonator

lattice (ωA = 12πc/a, ωB = 0). A point source is placed at the location (1,10). The propagation

field profiles are plotted at time (a) t = 100a/c with V = 0.02Ω and the source frequency ωs = V ;

(b) t = 10a/c with V = 0.5Ω and ωs = V ; (c) same as (a) and (d) same as (b) with a loss coefficient

γ = 0.2c/a at steady state.

The one-way edge mode is topologically robust against disorder-induced back-scattering.

However, such a mode is still susceptible to intrinsic losses of the materials. For practical
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application then mitigation of the effect of intrinsic loss is important. For a given modulation

frequency Ω, operating in the ultra-strong coupling regime results in the one-way edge modes

that have larger group velocities, and hence are less susceptible to loss, as compared to

operating in the weak-coupling regime. As an illustration, we consider a finite structure

described by the Hamiltonian of Eq. (1) of a size of 20a by 20a (Figure 5). We consider two

systems in the weak-coupling and ultra-strong coupling regime, corresponding to V = 0.02Ω,

and V = 0.5Ω, respectively. To probe the systems, we place a point source at the location

(1a, 10a), and choose the frequencies of the point source to be inside one of the topologically

non-trivial band gaps (ωs = V ). Both systems indeed support one-way edge modes as shown

in Figures 5a and b. To study the effect of loss, we further include into Eq. (1) an extra

term −iγ/2
(
∑

m a†mam +
∑

n b
†
nbn

)

, where γ = 0.2c/a is the loss coefficient. The steady-

state field distributions for the same source are shown in Figures 5c and d respectively. We

see that the photons indeed have a much longer propagation distance in the ultra-strong

coupling regime with V = 0.5Ω (Figure 5d), as compared to the weak-coupling regime with

V = 0.02Ω (Figure 5c).

Our numerical treatment with a dissipative system is fully consistent with the standard

quantum theory that deals with system-reservoir interactions (see the Appendix A for de-

tails). The results of the our simulation provides the photon distribution function in real

space. For the photonic system one is primarily concerned with non-equilibrium transport

properties as determined by the edge state. The presented simulation is therefore directly

relevant for the experimental study of this system.

In summary, we consider a system of dynamically-modulated photonic resonator lattice

undergoing photonic transition, and show that such a lattice can exhibit non-trivial topo-

logical properties in the ultra-strong coupling regime. From an experimental and practical

point of view, for the same modulation frequency, operating the system in the ultra-strong

coupling regime results in one-way edge modes that has a larger bandwidth, and is less

susceptible to loss, as compared to operating the same system in the weak-coupling regime.

Our work therefore should provide useful guidance to the experimental quest in seeking to

demonstrate topological effects related to time-reversal symmetry breaking on-chip [34]. We

also show that in the ultra-strong coupling regime, the system undergoes a topological phase

transition as one varies the modulation strength. This phase transition has no counter part

in weak-coupling systems, and its nature is directly related to the non-trivial topology of the
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quasi-energy space. In the context of recent significant fundamental interests in exploring

the ultra-strong coupling physics [26–33, 42–45], our work points to the exciting prospect of

exploring non-trivial topological effects in ultra-strong coupling regime.
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Appendix A

In the simulation procedure that leads to the results in Figure 5, we introduce an addi-

tional non-Hermitian term (−iγ
2

(
∑

m a†mam +
∑

n b
†
nbn

)

), to the Hamiltonian of Eq. (1). We

also excite the system by placing a point source at one of the resonators. Here we show that

our procedure arises directly from a full quantum mechanical treatment. Specifically, the

form of the non-Hermitian term can be obtained by explicitly considered system-reservoir

interaction, following the standard procedure in Ref. [49]. Also, the use of point source is

consistent with an input of a coherent state. And as a result our calculation provide a direct

treatment of photon distribution function in the presence of a coherent state input.

We consider the Hamiltonian:

Htot = H +HR +HS, (A-1)

where H is the Hamiltonian of our system which is shown as Eq. (1) in the main text. To

introduce loss, we assume that each resonator mode interacts with its own reservoir. The

reservoir itself and the system-reservoir interaction is described by:

HR =
∑

m

∑

k

ωkα
†
m,kαm,k +

∑

n

∑

k

ωkβ
†
m,kβm,k

+
∑

m

∑

k

g
(

α†
m,kam + a†mαm,k

)

+
∑

n

∑

k

g
(

β†
m,kbn + b†nβm,k

)

. (A-2)

Here, αm,k and βn,k represent a mode in the reservoir coupling to resonator operators am and

bn respectively. The label k forms a one-dimensional continuum, and we assume ωk = c|k|. g

is the resonator-reservoir coupling constant. Here we make the Markovian approximation by
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assuming that g is independent of k. To describe a coherent state injection at the resonator

located at site m0, we introduce

HS = ωSd
†d+ κ

∑

m

(d†am + a†md)δm,m0 , (A-3)

where without loss of generality we assume that the resonator at sitem0 is of the A-type. d is

the source field operator. ωS gives the frequency of the source field and κ is the corresponding

coupling constant.

We can write the Heisenberg equations of motion for the operators

ȧm = i[Htot, am] = −iωAam − i
∑

〈mn〉

V cos(Ωt + φmn)bn − iκdδm,m0 − i
∑

k

gαm,k, (A-4)

ḃn = i[Htot, bn] = −iωBbn − i
∑

〈mn〉

V cos(Ωt + φmn)am − i
∑

k

gβn,k, (A-5)

α̇m,k = i[Htot, αm,k] = −iωkαm,k − igam, (A-6)

β̇n,k = i[Htot, βn,k] = −iωkβn,k − igβn,k. (A-7)

Eq. (A-6) can be integrated as:

αm,k(t) = αm,k(0)e
−iωkt − ig

∫ t

0

dt′am(t
′)e−iωk(t−t′). (A-8)

Plugging (A-8) into Eq. (A-4) and we get

ȧm = −iωAam−i
∑

〈mn〉

V cos(Ωt+φmn)bn−iκdδm,m0−
∑

k

g2
∫ t

0

dt′am(t
′)e−iωk(t−t′)−i

∑

k

gαm,k(0)e
−iωkt.

(A-9)

We do the time integration in Eq. (A-9) by replacing
∑

k by 2 L
2π

∫∞

−∞
dk:

∑

k

g2
∫ t

0

dt′am(t
′)e−iωk(t−t′) = 2

L

2π
g2

∫ t

0

dt′am(t
′)

∫ ∞

−∞

dke−iωk(t−t′)

=
g2L

πc

∫ t

0

dt′am(t
′)2πδ(t− t′)

=
γ

2
am(t). (A-10)

Here γ ≡ 4g2L/c. Therefore, we obtain the equation of motion for am

ȧm = −
γ

2
am(t)− iωAam− i

∑

〈mn〉

V cos(Ωt+φmn)bn− iκdδm,m0 − i
∑

k

gαm,k(0)e
−iωkt. (A-11)
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Similarly, the equation of motion for bn is

ḃn = −
γ

2
bn(t)− iωBbn − i

∑

〈mn〉

V cos(Ωt+ φmn)am − i
∑

k

gβn,k(0)e
−iωkt. (A-12)

We take expectation values of Eqs. (A-11) and (A-12) to arrive at a set of ordinary differ-

ential equation. Since optical frequencies correspond to energies that are far higher that the

energy scale of room temperature, one can safely assume that, 〈αm,k(0)〉R = 〈βn,k(0)〉R = 0.

In addition, we assume that we inject a coherent state at the resonator located at m0, and

therefore, we can replace operator d by the amplitude s. We therefore arrive at the equation

that we used for our simulation

d

dt
〈am〉R = −

γ

2
〈am〉R − iωA〈am〉R − i

∑

〈mn〉

V cos(Ωt + φmn)〈bn〉R − iκsδm,m0 , (A-13)

d

dt
〈bn〉R = −

γ

2
〈bn〉R − iωB〈bn〉R − i

∑

〈mn〉

V cos(Ωt + φmn)〈am〉R, (A-14)

To summarize, as we have shown here, our treatment of the lossy system under coherent

state injection is fully consistent with the standard treatment of system-reservoir interaction.

The results of the our simulation provides the photon distribution function in real space.
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