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Extreme events in the form of pulses of extraordinary intensity (sometimes also called optical rogue
waves) are easily observed in the chaotic regime of an all-solid state laser with saturable absorber if
the Fresnel number of the cavity is high. This result suggests that the nonlinear interaction among
transverse modes is an essential ingredient in the formation of extreme events in this type of lasers,
but there is no theoretical description of the phenomenon yet. We report here a set of experimental
results on the regularities of these extreme events, to provide a basis for the development of such
a description. Among these results, we point out here: i) the decay of the correlation across
the transversal section of the laser beam, and ii) the appearance of extreme events even if the time
elapsed since the previous pulse is relatively short (in terms of the average inter-pulse time interval),
what indicates the existence of some unknown mechanism of energy storage. We hypothesize that
this mechanism is related with the imperfect depletion of the gain by some of the transversal modes.
We also present evidence in support of this hypothesis.

PACS numbers: 42.60.Mi, 42.65.Sf, 05.45.Tp

I. INTRODUCTION

In recent years there has been a growing interest in
extreme events (EEs) in various disciplines [1]. The first
reliable measurements of freak or rogue waves (i.e. unex-
pectedly large oceanic waves, as high as 30 m from crest
to trough) in the beginning of the 90s, were followed by
intensive research on what had previously been consid-
ered a near-mythological phenomenon. In 2007 Solli et
al. introduced the concept of optical rogue waves to de-
scribe large fluctuations in the edge of the spectrum of
the light generated by the propagation of seed pulses in a
microstructured optical fibre, thus posing an analogy be-
tween the optical pulses and their oceanic counterparts
[2]. The authors did so based on, firstly, the L-shaped
statistics of the optical events (long tailed distributions
imply the existence of EEs, that, although rare, are ob-
served with non-negligible probability), and, secondly,
the theoretical approach they employed to describe the
results of the experiment. This description is based on
the Nonlinear Schrödinger Equation (used in this case to
describe the propagation of pulses in the optical fiber).
Since then, similar phenomena have been found and stud-
ied in a wide variety of optical systems, under the broad
denomination of optical rogue waves or EEs, meaning,
roughly speaking, extreme fluctuations in the value of
an optical field [3]. However, we must warn the Reader
that this does not imply, a priori, a common genera-
tion mechanism of these phenomena, or even a common
single definition. In fact, even in Oceanography, where
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the term rogue wave was originally coined, a unified def-
inition does not yet exist [4]. The task becomes more
difficult when considering diverse physical systems be-
yond the oceans and analogies between these phenomena
must be dealt with carefully (a thorough discussion on
this topic can be found in [3]). Regardless of their con-
nection with their oceanic counterparts, optical EEs are
intrinsically interesting. EEs had been observed in op-
tical systems, but not recognized as such, earlier in the
history of laser [5–7]. They have been studied in extended
optical systems (including a linear and a nonlinear exper-
iment -a laser beam focused into a perturbed multimode
glass fiber, and an optical cavity that uses a liquid crystal
light-valve as nonlinear medium, respectively-) [8], in op-
tically injected semiconductor lasers [9–11], and in lasers
with saturable absorbers, both fast (in a Kerr-lens mode
locked laser) [12] and slow (in a passively Q-switched all-
solid-state Nd:YAG+Cr:YAG laser) [13]. For a compre-
hensive review, we refer the Reader to [14]. In particular,
we reported the existence of EEs in a system similar to
the latter: a Nd:YVO4+Cr:YAG laser [15], a device of a
wide practical interest. We showed that EEs are observed
in chaotic regimes with high dimension of embedding,
high Fresnel number for the cavity and complex spatial
transverse patterns of the spot. The standard theoreti-
cal approach based on rate equations for a single mode
[16], is able to describe many of the dynamical features
of this system, but it does not predict the existence of
EEs. This result suggests that interaction of transverse
modes is a necessary condition for the formation of EEs
in this system. One of the aims of this contribution is to
provide further proof for this claim. Another goal is to
perform a thorough exploration of the regimes in which
EEs appear, and of the EEs themselves, to guide the
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theoretical modelling of the problem, as well as to out-
line key points that should be predicted by such model.
With these objectives in mind, we analyse some of the
spatiotemporal features of the dynamics of these events.
The understanding of the mechanism of formation of EEs
in this system may conceivably lead to its control and,
eventually, to useful applications.

In order to quantitatively define EEs, we adopt the
criterion that the pulses with a peak intensity exceeding
the mean by more than 4 times the standard deviation
of the peak intensity distribution (4σ threshold) qualify
as EEs. This criterion is somewhat arbitrary; however,
we will show later that it is appropriate not only be-
cause the events that fulfill it are among the highest in
a particular regime of laser operation, but also because
they exhibit peculiar dynamical features. Besides, we are
specifically interested in those EEs appearing in regimes
with long tailed histograms, where EEs appear more fre-
quently than in Gaussian distributions. In other words,
we are interested in distributions with a kurtosis higher
than 3.

This paper is organized as follows. Section II is devoted
to experimental considerations: we describe the laser and
the methods to record and analyse the time series (II A),
as well as the setup to observe transversal coherence do-
mains (II B), and the spatial correlation among different
sections of the spot (II C). In section III, we discuss the
main experimental results, namely: i) the plots of inten-
sities in partial sections of the spot show that the EEs
are not linked to a unique transverse pattern (III A 1); ii)
in the dynamical regimes with EEs, the two-point time
correlation decays to zero at a distance nearly half the
size of the spot, while in periodic regimes such decay is
not observed (III A 2); iii) the study of the time intervals
between successive pulses suggests that the EEs occur in
a relatively well defined manifold in the phase space and,
in consequence, that there is some hope to predict them
(III B); this claim is supported by the behavior of the
peak intensity return maps (III C); iv) heterodyne inter-
ferograms indicate the existence of domains of transver-
sal coherence, confirming the results of (i) (III D). Only
a few time series out of many recorded and studied are
shown in this paper as illustration. A diagram summa-
rizing the main results for all the series where embedding
dimension is able to be measured shows that the regimes
with EEs are chaotic (i.e. with one positive Lyapunov
exponent) or hyperchaotic (more than one positive Lya-
punov exponent) with embedding dimension larger than
6, and that they have relatively complex transverse pat-
terns (III E). In what follows, we assume the Reader to
be familiar with the essentials of self Q-switching theory
[17–19].

II. EXPERIMENTAL SETUP

A. The laser

The setup is shown in Fig. 1. The output of a 2W
(@808 nm) CW laser diode is collimated by a gradient-
index (GRIN) lens and focused down to a spot ' 0.8
mm in diameter into a Nd:YVO4 crystal, 1% doped and
mounted on a water-cooled copper heatsink. The “exter-
nal” face of the Nd:YVO4 crystal is coated HR@1064 nm
in order to close the laser cavity and AR@808 nm in or-
der to allow the pump radiation to enter the cavity. This
is the standard coating for this type of crystals. The V-
shaped laser cavity has a folding HR@1064 nm concave
mirror (R=100 mm) and a plane output coupler (reflec-
tivity = 98% @1064 nm). The operating wavelength of
the laser is 1064 nm, linearly polarized. This radiation is
separated from the pump radiation, when it is necessary,
by the insertion of interferential filters (centered at 1064
nm, bandwidth 20 nm) before the detectors or camera.
The mode size varies strongly between the mirrors, with
the waist near the output coupler. The geometry of the
cavity defines a Fresnel number #F ≈ 10. The aver-
age output power is measured with the power meter PM
placed after the output coupler. A solid-state saturable
absorber (Cr:YAG crystal, 90% transmission when un-
bleached) is placed between the folding mirror and the
output coupler at a variable distance X. By varying this
distance, the mode size at the saturable absorber changes
and hence the condition of saturation. In this way, as the
absorber is displaced along the arm of the cavity, differ-
ent dynamical regimes, such as periodic behavior (peri-
ods 2, 4 and 6), a period-three stable window [20] and
chaotic regimes with and without EEs [15] are observed.
It must be noted that changes in the position X of the
saturable absorber do not affect the Fresnel number of
the cavity, which remains constant for all the measure-
ments reported in this contribution. Be aware that the
series of dynamical regimes that appear as X is varied is
repetitive, but that the dynamical regime observed for a
precise value of X is not. That is: due to hysteresis cy-
cles and sensitivity to small changes in alignment, pump
focusing, etc. one should not expect to find an exact
and stable correlation between the value of X and the
dynamical regime observed.

One of the output beams at the folding mirror is
focused into a pin fast photodiode (100 ps risetime),
connected to a PC oscilloscope (PicoScope R©6403B: 500
MHz bandwidth, 5 GS/s, memory of 1 GS). Time series
of the self-Q-switching peak pulse intensities with sev-
eral thousand pulses are recorded. These series are later
analysed with the TISEAN software package [21, 22], in
order to calculate the dimension of embedding and the
Lyapunov exponents. A VGA CCD camera with 60 fps
time resolution connected to a PC allows to record the
image of the intensity distribution. The whole setup is
mounted on an optical table with interferometric stabil-
ity.
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FIG. 1: Laser setup. LD: pump laser diode, 2 W CW @808
nm; GL: GRIN lens; ND: Nd:YVO4 slab (active medium);
M1: folding mirror (R = 100 mm); M2: output mirror (plane);
SA: Cr:YAG crystal, transmission (unbleached) 90%; L: fo-
cusing lens; FP: fast photodiode; CCD: camera for recording
spot images; PM: power meter, α = 20◦; L1 = 130 mm; L2
= 70 mm. The position X of the SA is variable, to obtain
different dynamical regimes. The operating laser wavelength
is 1064 nm.

FIG. 2: (Color online) Modified Mach-Zehnder interferom-
eter used to study transversal coherence of the spot. BS1:
beam splitter, transmission 96%; MPM1 and MPM2: metal-
lic plane mirrors; BE1 and BE2: 5× beam expanders; BS2:
50/50 beam splitter; D: diafragm; S: screen; CCD: CCD cam-
era; B: block.

B. Interferograms

In order to study the transversal coherence of the spot
in different dynamical regimes we use a modified Mach-
Zehnder interferometer. The laser beam is collimated
with a convergent lens (F=100 mm) placed at 90 mm
from the output coupler, and then directed into the in-
terferometer shown in Fig. 2. The configuration of the
Mach-Zehnder is such that it allows us to obtain, by
means of a 5× beam expander, a superposition of the
spot with a magnified partial section of itself. This out-
put is in turn magnified (so as to make easier the task
of discerning interference fringes), projected on a screen,
and registered with the CCD camera.

C. Measurement of intensities in partial sections of
the spot

The comparison of intensities in different partial sec-
tions of the spot (by means of plots of the intensity in
one section vs. the intensity in the other) is a useful way
to study its transverse dynamics in a pulse to pulse evo-
lution. It allows us to determine, for example, whether
EEs are linked to specific transverse patterns. A comple-
mentary approach to characterize the transverse dynam-
ics is the two point spatial correlation. Unlike the plots
of intensities in different sections, it provides a magni-
tude averaged over a whole time series, and it is useful to
identify the presence of spatial domains and eventually
detecting spatiotemporal chaos.

In order to study these features, a loss beam (see
Fig. 1) is magnified with a 5× beam expander and then
directed to a 50/50 beam-splitter. Both reflected and
transmitted beams are then measured with two photodi-
odes, which are covered by masks with 1 mm diameter
pinholes to limit the measured section, and connected to
the PC oscilloscope. One of these photodiodes (which
we call photodiode A) is fixed, and is kept measuring
the center of the spot, while the other (photodiode B) is
mounted on a micro-metric translation stage, so that it
can measure the intensity in different regions of the spot.
Photodiode B is displaced in every case in the horizontal
direction. (We will refer to the time series measured with
photodiodes A and B as partial peak intensity time se-
ries.) The intensity of the whole spot is at the same time
recorded with the photodiode FP, and defines whether a
pulse is an EE or not. This scheme allows us to measure,
simultaneously, the total intensity of the spot and the
intensity in two specific regions.

III. RESULTS

A. Correlation among different regions of the spot

1. Intensity plots in different sections of the spot

We study the evolution of the transverse pattern from
pulse to pulse, by analysing pairs of simultaneous par-
tial peak intensity time series in different sections of the
spot. We call IAi (IBi) the peak intensity measured by
photodiode A (B) for the ith pulse of the series, and IA
(IB) the resulting time series. Fig. 3 (a-d) shows IBi vs.
IAi for different distances d (i.e., horizontal separations)
between regions A and B for a regime with EEs. Thick
(red online) dots indicate the events that are extreme in
the corresponding total peak intensity time series mea-
sured with photodiode FP (see II C); Fig. 3 (e) shows
a histogram of the peak intensities for a total intensity
time series registered in the same dynamical regime as
Fig. (a-d). In every case, we express the peak intensities
in arbitrary units such that the average peak intensity
for each time series is 100. We consider this criterion the
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most appropriate since it simplifies making comparisons
between different dynamical regimes. It is important to
note that the three time series (total, IA, IB) are differ-
ent. Hence, an EE in the total intensity may have, for
example, vanishing intensity in IA and/or IB.

As it is expected, for d = 0 mm (i.e., when both photo-
diodes register the same region of the spot), the relation
between intensities is linear (see Fig. 3 (a)); for d = 1
mm (Fig. 3 (b)), the plot spreads, showing an irregu-
lar distribution; for d = 3 mm (Fig. 3 (c)) it becomes
practically linear again; and finally, for d = 8 mm (Fig.
3 (d)) it spreads even more than in the previous case.
Four main features arise from these plots: i) the trans-
verse pattern changes from pulse to pulse in an irregular
fashion (a behavior like this has been reported for peri-
odic regimes of similar systems in [23] and [24]; ii) some
regions of the spot are correlated (e.g. Fig. 3 (c)), while
others are almost uncorrelated (e.g. figures 3 (b) and
(d)); iii) EEs appear in different zones of the plots: this
implies that the spatial configuration of the spot changes
from one EE to another, i.e. the EEs are not associated
to a single transverse pattern. Moreover, they occur in a
wide range of values both for IA and IB, i.e.: some EEs
correspond to a high intensity value in section A and low
in section B, others to viceversa, and others to a low or
high intensity in both sections at the same time. This
means that EEs do not occur for a uniformly illuminated
pattern and that the more brilliant regions change posi-
tion from one EE to the other and can not be associated
to a specific location in the transverse pattern; iv) despite
the seemingly random distribution in figures (b) and (d),
some regularities arise from the plot. E.g., most of the
events are contained within two approximately straight
lines: this can be interpreted as an indication of the pre-
dominance of two different transverse configurations that
appear with a higher frequency than others, but with dif-
ferent total intensities each time.

2. Spatial correlation

We calculate the two-point spatial correlation for pairs
of peak intensity time series (corresponding to different
pairs of sections of the spot). It is defined as:

C(IA, IB) =

N∑
i=1

(IAi − IA)(IBi − IB)√√√√ N∑
i=1

(IAi − IA)2
N∑
i=1

(IBi − IB)2

(1)

where IA (IB) is the average intensity over the whole
time series IA (IB).

Fig. 4 (a) shows the values of C(IA, IB) (as a func-
tion of the horizontal separation d between the sections
observed by both photodiodes) for two different chaotic
regimes with EEs, which we call regime 1 (circles) and

FIG. 3: (Color online) All measurements in the figure are
performed for a chaotic regime with extreme events (with di-
mension of embedding = 6 and two positive Lyapunov expo-
nents). Position of the saturable absorber X= 1.7 cm. (a-d)
Peak intensity measured in the photodiode B (IBi) vs peak
intensity in photodiode A (IAi) in arbitrary units such that
the average peak intensity for each time series is 100 (the
same criterion is used in the rest of the paper), for different
values of horizontal separation d: (a) d = 0 mm, (b) d = 1
mm, (c) d = 3 mm, (d) d = 8 mm. Thick (red online) dots
indicate extreme events of the simultaneously recorded total
peak intensity time series; (e) histogram of peak intensities
for a total intensity time trace, the kurtosis of the distribu-
tion is 6.02. A zoom of the time trace corresponding to the
same data of this histogram is shown in Fig. 4 (b), together
with the recorded laser spot.

regime 2 (squares), and a periodic regime (diamonds).
Fig. 4 (b-d) exhibit both the spots and zooms of the
time traces corresponding to these regimes. The differ-
ent regimes are obtained by adjusting the position of the
saturable absorber inside the laser cavity, as explained in
section II A. Regime 1 (X = 1.7 cm) is the same that is
shown in fig. 3. Regime 2 (X = 0.5 cm) is, as regime
1, hyperchaotic with embedding dimension = 6 and two
positive Lyapunov exponents. The periodic regime (X
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= 0.65 cm) has embedding dimension = 5, no positive
Lyapunov exponents and period 6.

The line depicted with circles is typical of the regimes
with EEs. The coefficient C(IA, IB) remains close to 1
for nearly half of spot radius, and then drops to almost 0
near the edge of the spot. This behavior differs from that
observed in spatiotemporal chaotic systems with a large
number (of the order of several tens) of modes (which
can be roughly estimated in optical systems by the Fres-
nel number), which is characterized by a rapid exponen-
tial decay of the correlation [25, 26], and/or a narrow
peak with a short correlation length [27]. The behav-
ior observed in our laser is consistent, instead, with the
existence of a relatively few transverse modes defining
domains of correlation that spread through large areas of
the spot from pulse to pulse.

Some of the regimes with EEs show a non monotonous
behavior, as the one represented by squares in Fig. 4:
it has a local peak ≈ 4 mm away from the center, be-
fore decaying for larger d. This does not contradict our
previous statement. It implies instead that these regimes
are dominated by transverse patterns different from those
involved in the aforementioned ones, arguably occupying
areas with more complex shapes. This is confirmed by
the image of the whole spot registered by the CCD cam-
era.

For comparison, we also show in Fig. 4 the spatial
correlation for the case of a periodic regime with period
6 (diamonds). The correlation decays at first, but near
the edge of the spot it rises again to a value close to 1.
In other periodic regimes, the spatial correlation remains
near 1 for almost all of the span of d, except in a few
narrow valleys.

B. Time intervals between succesive pulses

Fig. 5 shows, for a typical chaotic regime with EEs,
plots of the intensity of each pulse in the time series
against the time interval between that pulse and the pre-
vious one (∆t−, upper graphic), and between that pulse
and the next one (∆t+, lower graphic). The intensity is
scaled so that its average value is 100 in arbitrary units.
Note that both plots exhibit a remarkable regularity: the
width of the range of values of ∆t− and ∆t+ associated
to extreme events is far narrower (roughly 2 and 5 µs re-
spectively) than that related to, e.g., average pulses (28
and 25 µs). This is most noticeable in the case of ∆t−.
This means that: i) if one knows that the next pulse is
going to be an EE, then one is able to predict with a
precision of ≈ 1 µs when it is going to occur; ii) once an
EE has happened, one can predict with precision ≈ 2 µs
the time that it takes for the build-up of the next pulse
(which is most probably not an EE). If an average pulse
is considered instead, none of these predictions can be
made.

Moreover, the plots provide some hints on the mech-
anism of generation of EEs. The first one, given by the
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FIG. 4: (Color online) Spatial correlation, spot, and zoom of
the time trace for three different dynamical regimes. Regimes
1 (X = 1.7) and 2 (X = 0.5) are hyperchaotic with extreme
events; the third one (X = 0.65) is periodic and it is shown
for comparison. The regime 1 is the same one of Fig. 3. (a)
Spatial correlation as function of the separation d between
photodiodes A and B; (b) spot and time trace for regime 1;
(c) the same for regime 2; (d) the same for the periodic (period
6) regime. The arrows drawn on the laser spots indicate the
initial position (d = 0) and direction in which the correlation
is measured. The horizontal (red online) lines in the time
traces in (b) and (c) indicate the extreme event threshold.
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FIG. 5: (Color online) Plots for total peak intensity as a func-
tion of interpulse time interval for a chaotic time series with
extreme events. The data belong to the time series shown in
Fig. 3 (e). Upper (lower) figure shows the total peak intensity
of as a function of ∆t− (∆t+), i.e. the time interval between
one pulse and the previous (next) one. The horizontal line
indicates the extreme event threshold. Peak intensities are
scaled so that an average event has an intensity of 100.

upper plot, is somewhat counterintuitive: in a simplistic
approach, one would expect that, the higher the peak
intensity, the higher the ∆t−, to allow a longer time to
accumulate energy from the pump. However, the ∆t−EE

(i.e. ∆t− intervals related to EEs) are not particularly
long; in fact, they are closer to the average interval than
to the maximum ∆t−, since ∆t−EE ' 36 µs, while the
longest intervals have a value of almost 48 µs. This sug-
gests that an average pulse does not totally deplete the
energy available in the gain volume, but instead, that
it leaves some energy stored in certain regions (possibly
due to spatial “hole burning”). This stored energy al-
lows a pulse to reach intensities over the EE threshold
in spite of the relatively short time elapsed since the last
one. Therefore, EEs can be thought of as pulses that are
more efficient in extracting the energy stored in the gain
medium.

The lower plot shows that the range of values of ∆t+
associated to EEs is among the highest of the set, i.e. the
time until the next pulse after an EE is always among the

longest times that can be expected for a particular time
series (typically ∆t+ > 40 µs, while the average ∆t+ is
33 µs). This means that EEs efficiently deplete the gain,
so that the time until the next pulse is necessarily long,
to allow a new accumulation of gain.

The plots in Fig. 5 show what happens in the imme-
diate vicinity of a given pulse (i.e. one pulse before or
one after). Fig. 6 exhibits what happens in a larger time
scale. It shows, for a time series with 112 EEs, a superpo-
sition of time traces centered at each of the EEs (upper
plot) and, for comparison, a superposition of the same
amount of average pulses (lower plot) [28]. Note that all
the pulses immediately preceding or following an EE (i.e.,
if the EE is indexed as the Nth event, these pulses are the
(N+1)th and (N-1)th events) occur within a fairly nar-
row temporal window, that slowly blurs for farther pulses
(the temporal window in which the (N+2)th and (N-2)th
pulses occur is wider than that of the (N+1)th and the
(N-1)th events, and so on). On the contrary, for average
pulses (lower plot) there is not a regular behavior even in
the immediate vicinity of the pulse. This suggests that
the trajectory in phase space corresponding to an EE is
confined to a relatively well defined manifold. This result
gives some hope that this type of EEs can be predicted
with time enough to control them.

C. Return intensity maps

Return maps are plots of a magnitude of the (N+1)th
vs. that of the Nth event in the temporal evolution of a
given system. They usually provide useful insight on the
dynamics of that system. A return map is shown in Fig.
7 for a chaotic total peak intensities time series with EEs
whose histogram is shown in Fig. 3 (e). Once again, the
EEs exhibit a specific and regular behavior: they appear
as two relatively well localized “tongues” emerging from
a central bunch at a value of ' 80 (recall that the av-
erage peak pulse intensity is 100 in arbitrary units). In
this case, this means that EEs are preceded and followed
by relatively low intensity pulses (slightly below the av-
erage), and that the intensity of those pulses is restricted
to a narrow range of values. This is consistent to what
was shown for EEs in the peak intensity vs. interpulse
time interval plot of Fig. 5. In other words, the evolution
of the peak intensity of the pulses surrounding an EE is
quite repetitive. The fact that the pulse preceding the
EE is close to average supports the scenario outlined in
section III B, in which the pulse prior to an EE fails to
totally deplete the gain.

In summary, according to the results presented in sec-
tions III B and III C, the EEs are not merely high inten-
sity pulses appearing at random. They seem to follow a
more regular evolution than that of the average Q-switch
pulse. This enforces the idea that there is a deterministic
mechanism behind the formation of EEs.
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FIG. 6: (Color online) Upper plot: superposition of 112
time traces centered at each of the extreme events of a chaotic
regime of operation. The data belong to the same time series
whose histogram is shown in Fig. 3 (e). The horizontal line
shows the extreme event threshold. Lower plot: superposition
of time traces centered at 112 near-to-average events for the
same time series of the upper plot.

D. Interferograms

Fig. 8 shows the contour plots of the laser spots and
heterodyne interferograms, obtained as explained in sec-
tion II B for two different dynamical regimes: a chaotic
regime without EEs (upper row), and a chaotic regime
with EEs (lower row). In the former regime, fringe pat-
terns are observed all across the spot. In the latter
regime, instead, fringes are observed in the region that is
expanded on the reference beam and its immediate neigh-
borhood. Outside this region, fringes blur and disappear,
indicating that the coherence is lost. It is important to
remind that, because the transverse pattern varies from
pulse to pulse (as it was shown in section III A 1), and
due to the relatively long exposure time of the CCD, nei-
ther the spot nor the interferogram correspond to a single
pulse transverse pattern, but rather to a superposition of
many different ones. However, blurring is not observed
in absence of EEs, even if the regime is chaotic, while it
is in the regime with EEs. This result suggests the exis-
tence of coherence domains and provides further support

FIG. 7: (Color online) Return intensity map for a chaotic
regime of operation with extreme events; the data belong the
same time series whose histogram is shown Fig. 3 (e). The
vertical and horizontal line indicate the extreme event thresh-
old.

to the hypothesis that transverse mode interaction is key
in the appearance of EEs in this system. We foresee re-
peating this experience using an ultrafast camera in order
to distinguish pulse to pulse spots and interferograms.

E. Dynamical and spatial complexity

Fig. 9 summarizes the features of all the time series
recorded in this study having a measurable embedding
dimension. They are placed according to their spatial
complexity, which is quantified by the number of “lobes”
in the spot and their value of embedding dimension. Be
warned that some of the time series are given a non-
integer value of embedding dimension or number of lobes
to avoid the superposition of dots and for the sake of
clarity; in those cases the embedding dimension or num-
ber of lobes must be understood as the closest integer.
A shape (and color online) code indicates whether a par-
ticular series is non-chaotic, chaotic, hyperchaotic, and
whether it displays EEs or not. It can be seen, as a gen-
eral behavior, that chaotic and hyperchaotic regimes have
a large dimension of embedding. Here, “large” means
higher than the value of 4 predicted by the standard the-
oretical model based on rate equations for a single mode
[15, 16]. The time series with EEs tend to display a large
number of lobes, too. This implies that regimes with EEs
are associated with a dynamical behavior which is com-
plex both in space and time. On the other hand, chaotic
with no EEs and periodic regimes tend to concentrate
in the lower left quadrant of the graph, which implies
they have a lower degree of complexity (lower dimension
of embedding and spatially simpler spots). This figure
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FIG. 8: (Color online) Contour plots of laser spot and hetero-
dyne interferogram for two different regimes of operation. Up-
per row: chaotic regime without extreme events (dimension of
embedding = 6, one positive Lyapunov exponent; position of
the saturable absorber X= 0.8 cm); lower row: chaotic regime
with extreme events (dimension of embedding = 6, two pos-
itive Lyapunov exponents; position of the saturable absorber
X= 0.6 cm); left column: laser spot; right column: interfero-
gram. The region marked with a black line in the lower right
figure indicates where the interference fringes blur.

enlarges the preliminary results presented in [20].

IV. SUMMARY

In this paper, we report a series of observations aimed
to guide the way to a (still missing) theoretical expla-
nation of the formation of EEs in all-solid-state, self-Q-
switched lasers.

In the regimes with EEs, the spatial correlation de-
cays to zero in a distance comparable with the spot size.
This is not observed in periodic (therefore without EEs)
regimes. No decay associated with a narrow peak is ob-
served as it was, instead, in other extended spatiotempo-
ral systems. This is consistent with the idea that rela-
tively few transverse modes are involved in the formation
of the EEs. The plots of the intensities recorded in the
two detectors, or IB vs. IA, show that the transverse
patterns change in an irregular way from pulse to pulse,
and that the EEs are not linked to a specific transverse
pattern.

From the analysis of the interpulse time intervals we
see that: i) the values of ∆t−EE (∆t+EE) are typically
contained in a narrow temporal span; ii) ∆t−EE are next
to average, contrarily to what might be expected; iii)
∆t+EE , on the other hand, are among the longest in-
terpulse intervals. The result (ii) is consistent with a

FIG. 9: (Color online) Representation of all the recorded dy-
namical regimes in this study having a measurable embedding
dimension in terms of the number of lobes of their spot (hor-
izontal axis) and their embedding dimension (vertical axis).
The shape (and color online) code indicates whether the se-
ries are not chaotic, i.e. periodic (full -black online- squares),
chaotic without extreme events (hollow -blue online- circles),
hyperchaotic without extreme events (full -blue online- cir-
cles), chaotic with extreme events (hollow -red online- stars)
or hyperchaotic with extreme events (full -red online- stars).
Non-integer values of embedding dimension must be inter-
preted as the closest integer value.

scenario where typical pulses do not totally deplete the
accumulated gain in the active medium, but leave some
energy stored, so that the following pulse does not need
a build-up time proportional to its intensity. This energy
storage is presumably related with spatial hole burning
in the active volume. The result (iii) suggests that the
deep cause of the EEs is simply that they are particularly
efficient in depleting the gain, through a mechanism that
is yet to be elucidated. All these results, together with
the regular behavior exhibited in Fig. 6, suggest that
there exists a deterministic mechanism in the formation
of the EEs, and therefore that there is some possibility
of predicting and controlling them

The interferograms show the existence of domains of
coherence compatible with dynamics ruled by the inter-
action of a few modes.

Finally, the summarizing diagram in Fig. 9 shows that
the EEs are prone to arise in chaotic dynamic regimes
with large dimension of embedding and with a spot with
a complex transverse structure. This result also supports
the few-mode interaction hypothesis as the basis of the
mechanism of formation of EEs in this type of lasers.

We foresee using an ultrafast camera in order to record
series of individual pulse spots (as well as single spot
interferograms) and identify the ones corresponding to
EEs. Another planned course of action is to replace the
pump laser diode with a VCSEL, which provides a spa-
tially uniform pump mode, and study its effect on the
formation of EEs. Our ultimate goal is the construction
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of a theoretical model able to predict the dynamics of
EEs in this system.
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