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Weak single-photon nonlinearities have many potential applications in quantum computing and quantum information.  
Here we demonstrate a relatively simple system for producing low-power cross-phase modulation using metastable 
xenon inside a high finesse cavity.  The use of a noble gas such as xenon eliminates the contamination of the high-
finesse mirrors that can occur when using alkali metal vapors such as rubidium.  Cross-phase shifts of 5 mrad with 4.5 
fJ control pulses were demonstrated.  Numerical solutions of the master equation are in good agreement with the 
experimental results, and they predict that cross-phase shifts greater than 1 mrad per control photon should be 
achievable by reducing the size of the cavity. 
 

I. INTRODUCTION 
 
Single-photon cross-phase shifts could be used to 

implement many operations that are needed for optical quantum 
communication and quantum computation [1-6].  Cross-phase 
shifts on the order of π  can be achieved using trapped atoms 
cooled to low temperatures.  [7-10].  Although experiments of 
that kind have been very successful, they are relatively 
complex.  Simpler and more robust ways to produce single-
photon cross-phase shifts would be desirable for many practical 
applications outside of a controlled laboratory environment, 
such as quantum repeaters.  Here we describe an approach that 
uses hot metastable Xe atoms in a high-finesse cavity to 
produce a cross-phase shift of 5 mrad with a 4.5 fJ control 
pulse.  Weak cross-phase shifts of this magnitude can also be 
used for many quantum information applications [5-6, 11]. 

Weak cross-phase shifts have recently been generated 
using room-temperature rubidium vapor inside a hollow-core 
photonic bandgap fiber [12].  The use of a high-finesse cavity 
would be desirable, however, both to take advantage of the 
potential for further enhancement of the interaction strength 
and to avoid difficulties associated with the use of freely 
propagating beams [13].  A number of previous studies have 
investigated gas-filled Fabry-Perot cavities for low-power 
nonlinear optics, but deposition of the atomic medium onto the 
mirror surfaces has limited the attainable finesse [14-15].  The 
use of a noble gas such as xenon eliminates this difficulty. 

We previously demonstrated nonlinear saturated absorption 
at low power levels using metastable Xe in a resonant cavity 
[16].  The 4.5 fJ control pulses used in this experiment 
correspond to approximately 18,000 photons inside the cavity.  
With several relatively simple improvements described in 
Section VI, this approach should be able to produce single-
photon cross-phase shifts greater than 1 mrad, which would be 
large enough to be useful for applications in quantum 
communication and quantum computation [5-6]. 

The format of the remainder of this paper is as follows: In 
Section II we discuss the relevant properties of our high-finesse 
cavity and the transitions of interest in metastable Xe.  Section 
III describes the experimental approach while Section IV 
presents a theoretical model that was used to calculate the 
expected cross-phase modulation.  The experimental and 
theoretical results are compared in Section V and found to be in 

good agreement.  Potential improvements to the approach are 
discussed in Section VI and a summary and conclusions are 
given in Section VII. 

 
II. METASTABLE XENON AND HIGH-FINESSE 

CAVITY 
 
The lowest energy transition from the ground state of 

xenon is in the far ultraviolet and is not suitable for our cross-
phase modulation experiments.  Instead, we used a radio-
frequency (RF) discharge to populate the 6s[3/2]2 Xe 
metastable state, which has an intrinsic lifetime of 
approximately 43 seconds and functioned as an effective 
ground state in our experiment [17].  As illustrated in Fig. 1, a 
pair of transitions are available from the metastable state in a 
ladder-type configuration.  We chose to use the 6p[3/2]2 
transition at 823 nm followed by the 8s[3/2]1 at 853 nm.  For 
convenience we will designate these three states as | 0 >, | 1 >, 
and | 2 >, respectively. 

 A control light field tuned to the | 0 > to | 1 > transition can 
be used to produce a cross-phase shift on a probe (signal) tuned 
near the transition from | 1 > to | 2 >.  Using the upper transition 
for the signal has the advantage of producing very low loss in 
the absence of any control power.  The transition dipole 
moments 10μ  and 21μ  were calculated using the lifetimes and 
branching ratios of the corresponding transitions [18].  For the 
hyperfine components used here this results in 3

10
07.6 10μ −≈ ×  

C·m and 30
21 1.2 10μ −≈ ×  C·m [19-21].  The available 

branching ratios for the upper transition were relatively 
uncertain and the estimated dipole moments are based in part 
on two-photon absorption measurements performed in our 
laboratory.  These dipole moments are roughly comparable to 
those of the commonly used transitions in Rb, with 21μ  being 
somewhat smaller.   
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Fig. 1.  Xenon energy level diagram showing the levels and transitions used in 
our experiment.  The dipole matrix elements for the first and second transitions 
are 3

10
07.6 10μ −≈ ×  C·m and 30

21 1.2 10μ −≈ ×  C·m, respectively.  The 

parameters Δ  and δ  represent the frequency detunings from states 1  and 

2 , respectively. 

 
A pair of super-polished dielectric mirrors was mounted 

inside a vacuum chamber filled with 1 Torr of Xe gas.  The 
mirrors formed a confocal cavity with a finesse of 
approximately 3,000, a length of 25 mm, and a beam waist 
radius of 60 μm.  The measured quality factor was 8103Q = × .  
The resonant frequency of the cavity was tuned by varying the 
temperature of the mounting fixture as described in more detail 
in Ref. [16].  The RF discharge used to excite the Xe atoms into 
the metastable state produced no noticeable degradation of the 
cavity finesse.   

 
III. EXPERIMENTAL DESIGN 

 
Fig. 2 shows an overview of the experiment design.  Two 

tunable diode lasers (Toptica DL pro) were tuned to 823 nm and 
853 nm to produce the control and probe beams, respectively.  
Each laser passed through a set of amplitude modulators 
capable of producing pulses of 30 to 60 ns duration.  A pair of 
photodetectors labeled D1 and D2 monitored the two beams to 
ensure proper biasing of the amplitude modulators.  The 
frequencies of both beams were continuously monitored using a 
high-precision wavelength meter (HighFinesse WSU30) with a 
calibrated accuracy of 30 MHz.   

To facilitate high speed locking of the two laser beams to 
the desired detunings, two high bandwidth photodetectors 
measured the transmission of the beams through the cavity (for 
reasons of clarity these detectors are not shown in Fig. 2).  
Relatively high intensities of the two beams were required in 
order to produce a sufficiently large signal at the detectors.  To 
accomplish this, the control beam was divided into two separate 
paths using a set of fiber-coupled optical switches (Thorlabs 
OSW12-830E) that controlled which path the beam would take.  
A variable attenuator was added to one of the paths for the low-
intensity measurements, while the higher intensity in the other 
path was used to periodically lock the laser frequency to the 
desired detuning.   

The cross-phase shift in the signal beam was measured 
using the homodyne detection technique shown in the right-

hand side of Fig. 2, where the signal interferes with a much 
stronger local oscillator beam in order to reduce the effects of 
detector noise.  The weak signal and the strong local oscillator 
beam propagated in opposite directions through a Sagnac loop 
interferometer and interference between them was measured in 
the two output ports using balanced photodetectors D3(a) and 
D3(b).  A Sagnac interferometer was used due to its high 
intrinsic phase stability.  The control pulses were timed to reach 
the cavity at the same time as the clockwise-propagating 853 
nm probe pulses to produce a cross-phase shift, while the 
counterclockwise-propagating local oscillator pulses passed 
through the cavity several hundred nanoseconds later without 
being phase-shifted.  The Sagnac loop was implemented using 
150 m of polarization-preserving optical fiber. 

An isolator inside the Sagnac loop attenuated the 
clockwise-propagating 853 nm probe pulses to an intensity that 
was sufficiently weak for them to interact with the control 
pulses in the cavity.  The counter-clockwise propagating 853 
pulses were not attenuated by the isolator, which allowed them 
to function as a strong local oscillator.  A time-dependent phase 
modulator was included in the loop and used to impart a 90° 
shift on one but not both of the counter-propagating pulses, 
which maximized the sensitivity of the output interference 
pattern to any additional small relative phase shifts. 

The presence of a large number of fiber-coupled optical 
components in the beam path and the use of short pulses to 
excite the high-finesse cavity resulted in large optical losses.  
To counteract these losses, a pair of tapered amplifiers 
(Thorlabs TPA850P10) was used to increase the power of the 
853 nm beam as required for the local oscillator.  A Pockels cell 
was placed after the amplifiers to prevent amplified 
spontaneous emission from interfering with the measurement. 

A balanced photodetector (Thorlabs PDB420A) was used 
to measure the interference between the probe and local 
oscillator.  This signal was proportional to the nonlinear cross-
phase shift of interest.  Because the pulses used to excite the 
cavity were shorter than the cavity lifetime of 80 ns, the 
fraction of incident light coupled into the cavity was relatively 
small and the majority of each incoming pulse was reflected 
from the cavity surface.  To minimize the effect of these 
reflections on the signal, the geometry of the Sagnac loop was 
designed in such a way that the back-reflected pulses arrived at 
the balanced detector D3 at a different time than the signal and 
local oscillator pulses.  This allowed a fast balanced 
photoreceiver (75 MHz bandwidth) to be used in combination 
with a nanosecond analog-to-digital converter (FAST ComTec 
7072) to sample the cross-phase shift signal while ignoring the 
reflected pulses. 

The data collection system operated at a repetition rate of 
200 kHz using high-speed NIM-bin electronics.  In order to 
further reduce the effects of low-frequency amplifier noise and 
back-reflections, each signal pulse was followed immediately 
(within a few microseconds) by a second signal pulse but with 
the control pulse turned off.  The results from these two 
measurements were subtracted to reduce any spurious effects.  
An average over approximately 510  such measurements was 
used to estimate the cross-phase shift due to the presence of the 
control beam.
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Fig. 2.  Overview of the experimental design of the cross-phase shift measurements.  The measured phase shift from the homodyne detector was proportional to the 
interference between counter-propagating signal and local oscillator pulses inside a Sagnac interferometer containing the high-finesse cavity.  Control pulses at 823 
nm were timed to produce a cross-phase shift on only one of the two counter-propagating 853 nm pulses inside the Sagnac loop.  The other 853 nm pulse served as 
the local oscillator and the relative phase shift was measured using balanced detectors (D3) at the output ports of the Sagnac interferometer.  

The relative timing of the pulses and analog-to-digital 
acquisition windows had to be carefully adjusted.  Fig. 3 shows 
an oscilloscope trace of the output of the balanced detector D3 
during a calibration run.  For this test, the phase modulator 
within the Sagnac loop was used to simulate the effects of a 
cross-phase shift by applying an extra 90° phase shift to the 
clockwise-propagating probe pulse, with the control beam 
turned off.  After each cycle the measurement test was repeated 
with no extra shift applied, thus simulating the effects of an 
actual cross-phase shift measurement.  The results of this 
procedure were used to calibrate the sensitivity of the phase 
shifts as measured by the difference between the D3 output 
voltages for the two cases.  Fig. 3 also illustrates the relative 
timing of the cross-phase modulation signal and the analog-to-
digital acquisition time. 

 
IV. THEORETICAL MODEL 

 
The expected cross-phase shift was calculated using a 

semi-classical density matrix calculation in which the optical 
pulses were treated as classical light fields while the Xe atoms 
were described by a 3-level open quantum system.  This 
approach is valid for the photon numbers used in this 
experiment, while similar results should be expected in the 
single-photon regime with the cross-phase shift proportional to 
the control beam intensity. 

 

 
 
Fig. 3.  Typical oscilloscope trace showing the relative timing of the measured 
phase shift and the analog-to-digital acquisition time during a calibration run.  
The topmost trace shows the signal as seen by the balanced photodetector (D3 
in Fig. 2), while the bottom trace shows the gating pulse used to set the time at 
which the high-speed analog-to-digital converter acquired the measured 
voltage.  In this test an additional 90° phase shift was alternately applied and 
then not applied to the 853 nm pulses.  The difference between the two 
resulting traces produced a visible phase shift measurement signal. 

 
Because the two-photon interaction took place in a 

standing-wave cavity, it consisted of both a counter-
propagating Doppler-free part and a co-propagating Doppler-
broadened part.  The Doppler-free contribution dominates for 
small detunings near a two-photon resonance and our analysis 
neglected the much-smaller Doppler-broadened contribution.  
For simplicity the left- and right-travelling probe beams were 
also assumed to interact with independent atomic ensembles.  
Using basis states that rotate along with the driving fields, the 
resulting master equation for a Xe atom inside the cavity mode 
can be written as [22]: 
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Here the jiσ  are the density matrix elements in the rotating 
basis, iγ  is the inverse of the state | i > lifetime, and 

( ) / 2ji j iγ γ γ+=  are the dephasing rates for the off-diagonal 

elements of σ̂ .  The broadening due to atomic collisions and 
to the presence of the RF discharge field was small compared 
with the natural linewidths of the transitions and was 
neglected.  jiΓ  is the | i > to | j > spontaneous transition rate 

while ( )10 10 /cR E tμ= h  and ( )21 21 /pR E tμ= h  are the 
electromagnetic coupling strengths for the two transitions in 
the presence of the laser fields.  Here cE  and pE  designate the 
complex electric field amplitude of the control and probe 
beams, respectively [22].   

The parameters Δ  and δ  are the detunings in rad/s from 
states | 1 > and | 2 >.  The field amplitude was approximated by 
a constant value across an effective cavity mode volume, as 
described in Ref. [23].  The decay and transition rates were 
calculated using two-photon absorption measurements 
performed in our lab, combined with published data for the 
state lifetimes and branching ratios [19-21].  The resulting 
values were 1 32γ =  MHz, 2 14γ =  MHz, 10 29Γ =  MHz, 

21 65Γ =  kHz, 30
10 7.6 10μ −= ×  C·m and 30

21 1.2 10μ −= × . 
The electric fields and electromagnetic coupling strengths 

in Eq. (1) were time-dependent due to the use of pulsed signal 
and control beams.  In the limit of a small cavity with high 
finesse, the time dependence of the field amplitudes is given by  
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Here ( )0

iE t  represents the electric field amplitudes of the 
control and probe input pulses that are incident on the cavity 
while it  and ir  are the mirror reflection and transmission 
coefficients, respectively, which are assumed to be the same 
for both mirrors.  From the observed value of the quality factor 
Q, 0.9995it =  and 0.0316ir =  for both wavelengths.  The 
parameter iτ  is the time required for one round trip of field i 
within the cavity. 

Equation (2) can be derived by considering the changes in 
the field during a single round trip through the cavity.  The 
constants iβ  and iφ  designate the field decay rates and phase 
shifts due to the interaction with the Xe atoms and are given by 

 
{ }
{ }

Re / 2

Im / 2
i i i

i i i

φ ω χ
β ω χ⋅=

⋅=
  (3) 

where iω  is the angular frequency of beam i and iχ  is its 
susceptibility.  Rather than calculating iχ  for each atom 
separately, we first considered the case of a single atom and 
then multiplied the results by the effective number of 
interacting atoms.  This approach is valid provided that the 
density of atoms is sufficiently small, which was the case in 
our experiment. 

Eq. (1) is then coupled to Eq. (2) through the values of iβ  
and iφ , where [22] 

 

*
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*
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p
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N
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  (4) 

Here N is the density of metastable Xe atoms.  Cross-phase 
modulation of the control pulses due to the presence of the 
probe was negligible and was ignored.  This corresponds to 
using 0cφ =  in the theoretical model. 
 

 
 
Fig. 4.  Results of the density matrix calculation for a typical set of parameters.  
(a) The occupation probabilities of the excited atomic states 1  and 2  
plotted along with the fraction of the incident power transmitted through the 
cavity for the control and pump pulses.  (b) The cross-phase shift acquired by 
the probe pulse (solid line) and the product of the cross-phase shift multiplied 
by the intensity of the probe pulse as it leaves the cavity (dashed line), which is 
proportional to the output of the balanced detector.  The scaling for the y-axis 
of the dashed curve in (b) is arbitrary. 
 

The Doppler broadening of the atomic linewidths was 
included in the calculations using a Monte Carlo method in 
which a random set of atomic velocity groups was sampled 
from a Gaussian distribution.  The distribution width was 
determined from the measured Doppler width of the 823 nm 
transition, which was 440 MHz full-width-at-half-maximum 
(FWHM).  Eqs. (1) through (4) were solved numerically for 

(b) 

(a) 
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each velocity group and an average was taken over the 
Doppler-broadened ensemble. 

 
V. COMPARISON OF THEORETICAL AND 

EXPERIMENTAL RESULTS 
 
The results from the density matrix calculation for a 

typical set of parameters are shown in Fig. 4.  The detuning Δ  
of the control beam was chosen to be 800Δ = −  MHz while 
the two-photon detuning δ  was varied to maximize the 
induced cross-phase shift, as was done in the experimental 
measurements as well.  The durations of the probe and control 
pulses were chosen to be 30 ns and 60 ns, respectively, which 
were the values used in the experiment.  The atomic decay and 
transition rates, dipole moments, and measurement acquisition 
time used in the calculations were also the same as in the 
experiment.  The effective density of metastable Xe atoms and 
the delay time between the control and probe pulses were 
varied within the experimental uncertainties to give the best fit 
with the measured data. 

In addition to the output field amplitudes and atomic 
populations shown in Fig. (4a), the calculated cross-phase shift 
(solid line) is shown as a function of time in Fig. (4b).  The 
output signal from the homodyne detector corresponds to the 
product of the phase shift and the amplitude of the probe beam 
leaving the cavity, and is shown by the dashed line in Fig (4b).  
It can be seen that the magnitude of the calculated cross-phase 
shift gradually increases as a function of time, but that the 
dependence of the homodyne signal on the amplitude of the 
probe beam gives a maximum value of the homodyne signal at 
a measurement time of approximately t = 100 ns after the 
arrival of the incident pulses.  Subsequent measurements have 
a lower signal-to-noise ratio even though the phase shift is 
larger.  As a result, the signal acquisition times were chosen to 
be near 100 ns. 

 

 
 
Fig. 5.  Comparison of the measured cross-phase shift with the theoretical 
prediction from the density matrix calculation.  A constant background was 
subtracted from the experimental data to remove a small bias produced by 
back-reflections of the control beam.  The maximum phase shift observed was 
approximately 5 mrad. 
 

Fig. 5 shows the results of the cross-phase shift 
measurements obtained under the conditions described above.  
A maximum cross-phase shift of approximately 5 mrad was 

observed using 4.5 fJ control pulses.  The noise in the data is 
primarily due to electronic noise from the balanced detector.  
These results correspond to an average of approximately 
18,000 control photons per pulse, or 0.3 μrad of cross-phase 
modulation per photon.  It can be seen that the experimental 
and theoretical results are in reasonably good agreement. 

More systematic measurements of the cross-phase shift as 
a function of other experiment parameters would be desirable.  
This was not possible using the current apparatus because the 
temperature control of the cavity length had a long time 
constant and could not compensate for short-term variations in 
the resonant frequency.  In addition, the resonant frequency of 
the cavity was shifted by a small amount depending on the RF 
power level, which made it difficult to measure the effects of 
varying metastable xenon density.  Both of these problems 
could be addressed by using piezoelectric control of the cavity 
length. 
 

VI. DISCUSSION AND POSSIBLE 
IMPROVEMENTS 

 
Quantum computation and quantum communication 

protocols based on a weak Kerr nonlinearity typically require 
single-photon cross-phase shifts on the order of 1 mrad [5-6], 
which is several orders of magnitude larger than that 
demonstrated in this experiment.  Here we discuss several 
potential improvements to the apparatus that would enable the 
system to produce nonlinear phase shifts of the required 
magnitude.   

Single-photon nonlinearities in a high-finesse cavity are 
roughly proportional to /Q V , where V  is the effective mode 
volume.  It would be relatively straightforward, for example, to 
decrease the cavity length by a factor of 10 to 2.5 mm, which 
would also decrease the mode diameter by a factor of 10  to 
give a factor of 10 10 32=  decrease in the mode volume.  
Increasing the finesse of the mirrors by a factor of 10 to 30,000 
at the same time would maintain the same value of Q.  Thus it 
should be possible to substantially increase the single-photon 
cross-phase shift by reducing the mirror separation, with an 
expected enhancement of three orders of magnitude for a 
cavity length of 250 μm.   

The strength of the upper atomic transition was found to 
be significantly smaller than we had expected.  An 
inconsistency in the published transition rates and associated 
excited state lifetimes made it difficult to obtain accurate 
values for the dipole moments [20-21].  The square of the 
upper-transition dipole moment 2

21μ , which is proportional to 
the expected cross-phase modulation, appears to be a factor of 
approximately 7 larger for the transition to the 2 =8s[3/2]2 
level at 862 nm than it is for the transition to the 8s[3/2]1 level 
at 853 nm in our current experiment.  Thus an order of 
magnitude increase in the cross-phase shift should be 
achievable using a different set of transitions in metastable 
xenon.  Preliminary results using this set have already shown 
an increase in the cross phase shift by a factor of two. 

With the above-mentioned changes our system should be 
able to produce single-photon cross-phase shifts on the order of 
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milliradians.  If further improvement is desired then it may be 
necessary to modify our system to use a lambda-type 
transition.  For example, the counter-propagating beams in our 
cavity are only approximately Doppler-free due to the 3% 
difference in the wavelengths of the control and probe beams.  
The effects of this residual Doppler width are illustrated in Fig. 
6, which compares the calculated cross-phase shift with and 
without a residual Doppler shift of this magnitude.  It can be 
seen that a factor of approximately three enhancement in the 
cross-phase shift could be obtained if the wavelengths of the 
control and probe beams were more nearly the same.  Using a 
lambda-type transition between the hyperfine levels of 
metastable xenon-129 could accomplish this, as illustrated in 
Fig. 7.  This approach also has the advantage that it does not 
depend on the relatively small value of 21μ  for the 853 nm 
transition. 

 

 
 
Fig. 6.  Typical simulated phase shift measurements vs. detuning δ  when the 
two-photon transition is taken to be (a) fully Doppler-free and (b) influenced 
by a 3% (16 MHz FWHM) residual Doppler broadening, assuming counter-
propagating control and probe beams.  The cross-phase modulation is large and 
sharply peaked for the Doppler-free case, while the Doppler-broadened 
spectrum is shallower.  The phase shift values are much larger than those of 
Fig. 5 because the measurements here were taken 350 ns after the beginnings 
of the probe pulses, whereas the corresponding wait time used in Fig. 5 was 60 
ns. 
 

The use of a lambda transition has the disadvantage of 
relatively large loss for the probe beam unless the hyperfine 
levels can all be initially pumped into state 0 .  Simulations 
performed for this set of transitions using a cavity length of 2.5 
mm with a finesse of 30,000 predict an achievable single-
photon cross-phase shift of 0.6 mrad.   
 

VII. CONCLUSIONS 
 
In summary, we have demonstrated a relatively simple 

technique for producing ultra-low power nonlinear cross-phase 
shifts using metastable Xe inside a high-finesse cavity.  The 
use of a noble gas such as xenon eliminates the degradation of 
the high-finesse mirrors that often occurs when using alkali 
metals such as rubidium [24].  Phase shifts of 5 mrad were 
demonstrated using a control field with 4.5 fJ per pulse, which 
corresponds to approximately 18,000 photons inside the cavity.  
A numerical solution to the master equation for the xenon 
atoms inside the cavity was in good agreement with the 
experimental results. 
 

 
 

Fig. 7.  Lambda-type energy level diagram for the production of a cross-
phase shift using the hyperfine levels of metastable 129Xe.  This approach is 
essentially Doppler-free and it takes advantage of the relatively large dipole 
matrix element for the 6s[3/2]2 to 6p[3/2]2 transition in Xe of 292.4 10−×  C·m.  
The parameters Δ  and δ  again represent the detunings from states 1  and 

2 , respectively. 
 
Our calculations show that it should be possible to 

produce much larger single-photon phase shifts by reducing the 
length of the cavity and by using a different ladder transition in 
xenon.  Cross-phase shifts of that magnitude could be used to 
implement QKD and quantum logic operations.  This approach 
would allow a relatively simple and rugged implementation 
that may be required for practical applications outside of the 
laboratory, such as quantum repeaters. 
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