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Abstract

We study the effect of delayed coherent optical feedback on the pulse timing jitter in passively

mode-locked semiconductor lasers with the help of a semi-analytical method which we develop

to calculate the timing fluctuations in these lasers. Through the proposed method new physical

insights into the feedback dependence of the timing jitter are gained and the greatly reduced

computation times allow for the investigation of the dependence of timing fluctuations over greater

parameter domains. We show that resonant feedback leads to a reduction in the timing jitter

and that a frequency-pulling region forms about the main resonances, within which a timing jitter

reduction is observed. The width of these frequency-pulling regions increases linearly with short

feedback delay times. We derive an analytic expression for the timing jitter, which predicts a

monotonic decrease in the timing jitter for resonant feedback of increasing delay lengths, when

timing jitter effects are fully separated from amplitude jitter effects. For long feedback cavities the

decrease in timing jitter scales approximately as 1/τ with increasing feedback delay time τ . This

behaviour is not related to the stability of the system but is instead due to the influence of the

noise, on the timing jitter, being reduced since the solution space is larger for increasing τ .
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I.

A.

1.

II. INTRODUCTION

Many current and future applications require ultra-high repetition frequency light pulse

sources [36]. Among these applications most also require highly regular pulse arrival times.

Mode-locked (ML) solid state lasers can fulfill these requirements. However, such devices

are too expensive for large scale use. Due to this limitation extensive research has gone into

semiconductor ML lasers. The most attractive mode-locking technique, due to its simplicity

of production and handling, is passive mode-locking, which does not require any external

RF modulation source. However, due to the absence of an external reference clock passively

ML lasers exhibit relatively large fluctuations in the temporal positions of pulses compared

with a perfectly periodic pulse train [37]. This phenomenon is referred to as pulse timing

jitter. Recently, it was proposed to use optical feedback to significantly reduce the timing

jitter of passively ML lasers [38–41]. Other methods of pulse stream stabilisation which

have been investigated include hybrid mode-locking [42, 43] and optical injection [44, 45]. To

characterize the performance of such devices, with respect to the timing regularity, the timing

jitter is calculated. Experimentally this is done using the von Linde method [46], which

involves integrating over the sidebands of the power spectrum of the laser output. However,

for the numerical investigation of ML lasers the von Linde method can be impractical as

it is computationally very expensive. In this paper we therefore propose a semi-analytical

method of calculating the pulse timing jitter for a set of delay differential equations (DDEs)

proposed earlier to describe passive mode-locking in semiconductor lasers [47–49]. The

method is of general nature and can be used to estimate the variance of timing fluctuations

in a wide range of time periodic dynamical systems described by autonomous systems of

DDEs subject to weak additive noise.

Theoretical analysis of the influence of noise on ML pulses propagating in a laser cavity

was first performed by H. Haus using a master equation [50]. In this and other works the

spectral properties attributed to timing jitter were extensively studied, in particular the
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differences arising from stationary and non-stationary noise sources (active versus passive

ML) [50–52]. Later the master equation technique of H. Haus was extended by taking into

account the finite carrier density relaxation rate in semiconductor lasers [53]. The master

equation has secant-shaped ML pulses as a solution, and a small perturbation of this state

can be studied using the linearized equation of motion. The perturbed pulse is described

by four parameters: the perturbations of the pulse amplitude, phase, frequency, and timing.

Using the orthogonality of the solutions of the linearized equation to the solutions of the

adjoint homogeneous linear system, coupled first order differential equations of motion,

driven by noise, can be written out. However, due to multiple simplifying assumptions

underlying the Haus master equation, this approach is not directly applicable to the analysis

of semiconductor laser devices, nor can it be used to describe coupled cavities. This is why

the theoretical estimation of timing jitter in ML semiconductor lasers has been previously

performed using the direct numerical simulations of travelling wave [54, 55] and delay-

differential equation (DDE) [40, 41, 56, 57] models. As purely computational approaches are

time-consuming, the influence of noise on the dynamics of ML pulses has been studied only in

limited parameter regions. In a recent paper [58] a new semi-analytical method to estimate

timing jitter in the DDE-model [47–49] of a passively ML semiconductor laser was proposed.

This method was used to study the effect of nonlinear phenomena such as bifurcations and

bistability on timing jitter, and the numerical results were found to be in good qualitative

agreement with experimental data. In this paper we consider a generalisation of the semi-

analytical method to study passively ML lasers with multiple delayed feedback. We then use

this semi-analytical method to derive a formula for the timing jitter for resonant feedback

delay lengths.

In Section II IV we introduce an autonomous DDE model of a laser operating in a passive

ML regime and describe the parameters used in our calculations. In Sec. III, by linearizing

the model equations near the ML periodic solution and projecting the perturbation term

on the neutral eigenfunctions corresponding to the time and phase shift symmetries of the

unperturbed equations, we derive a semi-analytical expression for the variance of the pulse

timing fluctuations [59, 60]. Section IV is devoted to the comparison of the results obtained

using this expression with those of direct numerical calculations of pulse timing jitter, and a

derivation of the dependence of the timing jitter on the feedback delay time in the particular

case of resonant feedback. Finally, in Sec. V we conclude with a brief discussion of our results.
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FIG. 1. (Color online) Schematic diagram of a two section ring cavity laser subject to optical

feedback from two external cavities (EC). The yellow region represents the gain section, the blue

region corresponds to the saturable absorber (SA) section and the green bar indicates the spectral

filtering element.

III. DDE MODEL

We use a DDE model for a passively ML ring cavity laser subject to optical feedback

from M external cavities, based on the model introduced in [40], a schematic diagram of the

model is shown in Fig. 1 for the case of two feedback cavities. This model is an extension of

the DDE model proposed in [47, 49]. A detailed description and derivation of the feedback

terms for a laser with a single feedback cavity can be found in [40]. The final set of three

coupled delay differential equations is

Ė (t) = − (γ + iω) E (t) + γR (t− T ) e−i(∆Ω+ω)TE (t− T )

+ γ
∑M

m=1

∑∞
l=1 Km,le

−ilCmR (t− T − lτm) e−i(∆Ω+ω)(T+lτm)E (t− T − lτm) +Dξ (t) , (1)

Ġ (t) = Jg − γgG (t)− e−Q(t)
(
eG(t) − 1

)
|E (t) |2, (2)

Q̇ (t) = Jq − γqQ (t)− rse−Q(t)
(
eQ(t) − 1

)
|E (t) |2, (3)

with

R (t) ≡ √κe 1
2

((1−iαg)G(t)−(1−iαq)Q(t)). (4)

The dynamical variables are the slowly varying electric field amplitude E , the saturable gain

G and the saturable loss Q. The saturable gain G and saturable loss Q are related to the
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carrier inversion in the gain and absorber sections, respectively. In Eq. (2) Jg is related

to the current pumped into the gain section and Jq in Eq. (3) describes the unsaturated

absorption. The carrier lifetimes in the gain and absorber sections are given by 1/γg and

1/γq, respectively. The factor rs is the ratio of the saturation intensities in the gain and

absorber sections. The M + 1 delay times in this system are the cold cavity round-trip time

T and the external cavity round-trip times (delay times) τm of the M feedback cavities. The

cold cavity round trip time is defined as T ≡ v/L, where L is the length of the ring cavity.

The bandwidth of the laser is limited by the finite width of the gain spectrum, which is taken

into account by a Lorentzian-shaped filter function of width γ. ω describes the shift between

the reference frequency and the central frequency of the spectral filter. The possibility of

detuning between this latter frequency and the frequency of the nearest cavity mode is

allowed for by the inclusion of ∆Ω. The optical feedback is described by the sum in Eq. (1).

Here l is the number of round-trips in the external cavity, Km,l is the round-trip dependent

feedback strength of the mth feedback cavity and Cm is the phase shift that accumulates

over one round-trip in the external cavity. Below we consider feedback contributions only

from light that has made one round-trip in the external cavities (Km,1 = Km). The last

term in Eq. (1) models spontaneous emission noise using a complex Gaussian white noise

term ξ(t) = ξ1(t) + iξ2(t) with strength D,

〈ξi(t)〉 = 0 and 〈ξi(t)ξj(t′)〉 = δi,jδ(t− t′).

Equation (4) describes the amplification and losses of the electric field during one round-trip

in the laser cavity. Internal and out-coupling losses are taken into account in the attenuation

factor κ and the linewidth enhancement factors (α-factor) in the gain and absorber sections

are denoted αg and αq, respectively.

IV. PERTURBATION ANALYSIS

Various methods of calculating the timing jitter are discussed in [41, 46, 55, 58, 61].

In this section, we consider an extension of the semi-analytical method of timing jitter

estimation proposed in [58], for the DDE model of passively ML laser, to the system (1)-(3)

with external feedback and, hence, multiple delay times. The advantage of the proposed

method, compared with the von Linde technique or the so called long term jitter calculation
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symbol value symbol value

T 25 ps γ 2.66 ps−1

γg 1 ns−1 γq 75 ns−1

Jg 0.12 ps−1 Jq 0.3 ps−1

rs 25.0 Cm 0

κ 0.1 ∆Ω 0

TABLE I. Parameter values used in numerical simulations, unless stated otherwise.

[41], is that it is based on the numerical solution of deterministic equations and therefore

requires much shorter computation times. Furthermore, when the spontaneous emission

noise is modeled by a Gaussian white noise term, the fluctuations of the pulse arrival times

behave like a random walk [41], making the timing jitter calculated from the semi-analytical

method proportional to the rms timing jitter given by the von Linde method. This is useful

for comparison with experiments. Details of the derivation of the semi-analytical expression

for the estimation of pulse timing jitter are presented in the Appendix. As we do not use

the specific form of equations (1)-(3) in the derivation, the same approach can be applied to

the analysis of the effect of small additive noise on stable periodic solutions in other physical

systems described by autonomous DDEs with multiple delays.

We consider a periodic ML solution, ψ0 = (Re E0, Im E0, G0, Q0)T of the system (1)-(3)

for D = 0, with period T0. One should note that due to the rotational symmetry, there is

a family of such solutions Γϕ · ψ0 = (Re(eiϕE0), Im(eiϕE0), G0, Q0)T, where Γϕ denotes the

corresponding matrix of rotation of the E0 plane. The noise perturbation is assumed to be

reasonably small, D � 1, and we restrict our analysis to the situation when solutions remain

at a distance of order D from the torus of stable periodic solutions Γϕ ·ψ0(t+ θ) at all times

(that is, the probability of a large fluctuation of the solution is assumed to be negligible

during the typical time interval of system observation). Under this assumption, the noise

results in a slow diffusion of the time-shift θ of the solution, as well as a slow diffusion

of the angular variable ϕ. Furthermore, one expects that the variance of the time-shift θ

and of the variable ϕ increases linearly with time, that is 〈θ − θ̄〉2 ∝ t, which expresses a

simple diffusion process [62]. We use the coefficient of proportionality in this relationship as

a measure of the timing jitter. Details are explained in the appendix.
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The time-shift θ of a solution can be defined in several ways [63], which, in practice,

lead to equivalent or close results when applied for the evaluation of the time-shift diffusion

rate. In particular, the definition of the asymptotic time-shift is based on the fact that every

solution ψ(t) of the unperturbed system (1)-(3) with D = 0 converges to a periodic solution

Γϕ ·ψ0(t+ θ) in the limit t→∞ where the constant θ, called the asymptotic time-shift, and

the angle ϕ are specific to the initial state of the solution ψ(t). Recall that states of system

(1)-(3) are functions defined on the interval [−τ ′M , 0] (τ ′0 = T , τ ′m = T + τm for m ≥ 1).

The asymptotic time-shift θ and the angle ϕ remain constant along the trajectories of the

unperturbed system. However, in the perturbed system, the asymptotic time-shift θ and

the angular variable ϕ evolve as functions of the evolving state ψ(t+ r) (r ∈ [−τ ′M , 0]).

As the dynamics are restricted to a small neighborhood of the limit cycle ψ0 (and its

rotations Γϕ ·ψ0), the evolution of the time-shift can be deduced from the linearization (A1)

of system Eqs. (1)-(3) around this cycle. Details on the analysis of solutions of the linear

system (A1) and the resulting evolution of the time-shift can be found in the appendix. Noise

results in a slow diffusion of the variables θ and ϕ along the neutral periodic eigenmodes of

the linearized unperturbed system (A4) with the variance proportional to time. There are

two such neutral modes,

δψ1(t) = (Re Ė0(t), Im Ė0(t), Ġ0(t), Q̇0(t))T, δψ2(t) = (− Im E0(t),Re E0(t), 0, 0)T, (5)

which correspond to the time-shift and rotational symmetries of the unperturbed (D =

0) nonlinear system (1)-(3), respectively; all the other Floquet modes are exponentially

decaying. Two properly normalized (see, (A10)) neutral modes δψ†1(t) and δψ†2(t) of the

adjoint linear system (see, (A5)) can be used for calculating the projections of noise onto

the eigendirections δψ1 and δψ2. Using the perturbation expansion with respect to the

small parameter D, and adapting the asymptotic analysis from [45], we obtain the following

equations for the noise-driven slow evolution of the time-shift θ and the angular variable ϕ

of solutions to Eqs. (1)-(3):

θ̇ = D δψ†1(t+ θ)Γ−ϕw(t), ϕ̇ = D δψ†2(t+ θ)Γ−ϕw(t) (6)

with the Langevin term Γ−ϕw(t) = (ξ1(t) cosϕ + ξ2(t) sinϕ,−ξ1(t) sinϕ + ξ2(t) cosϕ, 0, 0)T

and the T0-periodic coefficients δψ†1 and δψ†2.

The coefficients of the Fokker-Planck equation for the joint probability density p(t, θ, ϕ)

of the stochastic process (6) are also periodic with respect to time. Since, for D � 1, the
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probability density function p(t, θ, ϕ) changes slowly, Eqs. (6) and the corresponding Fokker-

Planck equation can be averaged over the period T0 of the functions δψ†i (t+ θ), resulting in

the diffusion equation with constant coefficients [64]. The diffusion coefficient

d̄11 =
D2

T0

∫ T0

0

(
δψ†1,1(s)

)2
+
(
δψ†1,2(s)

)2
ds (7)

of the time averaged Fokker-Planck equation approximates the rate of diffusion of the time-

shift θ (see Appendix). Finally, since the pulse timing jitter is usually calculated over a

long time interval nT̃0 with n � 1 and the average period T̃0 ≈ T0, and is normalized by

the number of round-trips n, we make the estimate of timing jitter as the product of the

diffusion rate by the period,

σ2
var = d̄11T0 = D2

∫ T0

0

(
δψ†1,1(s)

)2
+
(
δψ†1,2(s)

)2
ds. (8)

This value is approximately equal to the variance of θ(nT̃0) divided by n� 1. We note that

for the number of roundtrips n ≥ 1 that is not sufficiently large, the numerically calculated

timing jitter is not approximated by (8) since the numerically calculated value is affected

by amplitude noise, or, in other words, stable eigendirections play a role as well (see Fig. 2

(a)).

For the case of resonant optical feedback, expression (8) for the timing jitter can be

further simplified, to ascertain the dependence on the feedback delay length. This will be

shown in the next section where we compare the analytic result with a numerical estimate

of the timing jitter.

In this work we have only included noise contributions to the electric field to model

spontaneous emission, however this semi-analytic approach can also be used to describe

other noise sources. Terms corresponding to other sources of noise, such as current noise,

could be added to any of the equations in the system (1)-(3), and the resulting equations of

motions will have a similar form to (6). However, if the noise source is colored the formula

for the diffusion coefficient, as well as the timing jitter, will be different.
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V. RESULTS

A. Comparison of semi-analytical and numerical methods of timing jitter calcu-

lation.

In this section we compare the timing jitter calculated using Eq. (8) with that obtained

from the variance of the pulse timing fluctuations (long-term timing jitter) through numerical

integration of the stochastic system (Eqs. (1)-(3) with D 6= 0). The latter (numerical)

method is described in detail in [41]. We will focus mainly on the case of one feedback

cavity, M = 1, and compare the two approaches to the timing jitter calculation at different

feedback delay times (τ1 ≡ τ) and the feedback strengths (K1 ≡ K).

First, we apply the semi-analytical method of the timing jitter calculation to the case of

a passively ML semiconductor laser without feedback, i.e. Km ≡ 0 in Eqs. (1)-(3). In [41] it

was shown that after a sufficiently large number of roundtrips n within the laser cavity the

variance of the pulse timing fluctuations grows linearly with the round-trip number. In the

numerical method the timing fluctuations are therefore calculated over many thousands of

cavity roundtrips. In Fig. 2 (a) the timing jitter is plotted as a function of the round trip

number n. The initial decrease of the numerically calculated timing fluctuation variance

(green line) with n (for small n) can be attributed to the impact of the eigenfunctions with

Reλ < 0 (see Appendix). Using DDE-BIFTOOL [65], for γT � 1 (or γτm � 1), one can

typically observe that many characteristic exponents λ of the ML solution have real parts

close to 0, and, therefore, the equation of motion (A9) suggests that such exponents will have

a non-negligible impact on the numerically calculated timing jitter even after many cavity

round-trips. Since the eigenfunctions with Reλ < 0 are neglected in the semi-analytical

approach, the value of the timing jitter estimated using this approach does not depend on n

(dashed red line in Fig. 2 (a)). In the limit of large n this value is in agreement with the data

obtained by direct numerical integration of Eqs. (1)-(3), as shown in Fig. 2 (a). Figure 2 (b)

shows the timing jitter, obtained using both methods, in dependence of the noise strength

D. It is seen that good quantitative agreement is obtained for small to moderate levels of

noise.

Next, let us consider a system with feedback from one external cavity. Figure 3 (a)

shows a comparison of the timing jitter calculated from the two methods in dependence
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FIG. 2. (Color online) (a) Comparison of the results of numerical calculation of pulse timing jitter

(green solid line), obtained for different numbers of round-trips n, with the timing jitter value

from formula (8) (red dashed line). (b) Estimation of timing jitter, calculated using formula (8)

(red solid line) and the numerical method (green dots), vs noise strength D in units of T−3/2.

Parameters: K = 0, τ = 0, T = 25 ps, κ = 0.3, γ−1 = 125 fs, γ−1
g = 500 ps, γ−1

q = 5 ps, s = 10,

q−1
0 = 10 ps, g−1

0 = 250 ps, αg = 2, αq = 1.

of the noise strength. For the numerical timing jitter calculation method (green dots) the

timing fluctuations that arise over 40000 round-trips in the laser cavity are calculated, and

the variance of these timing fluctuations is then calculated for 300 noise realisations. For

the semi-analytical method (red line) the solutions to the adjoint linearized homogeneous

system (A5) are numerically calculated. In both cases we simulate for a sufficiently long time

(approximately 5000 roundtrips) before starting the calculation of the timing jitter to avoid

transient effects. We find very good agreement between the results obtained using the two

methods. For the simulations presented in Fig. 3 (a) the feedback delay time was chosen

to be resonant with the ML pulse repetition period (inter-spike interval time) TISI,0 of a

solitary laser (ML laser without feedback), meaning that the condition τ = qTISI,0 is fulfilled,

where q is an integer. Resonant feedback applied in the fundamental ML regime does not

significantly affect the dynamical behaviour of the system, hence the laser output remains

periodic and the semi-analytic method is applicable. When the feedback delay time is tuned

from one resonance to the next, bifurcations can occur and the dynamical behaviour can

change. This is described in detail in [66] and [40]. In Fig. 3 (b) the numerically calculated

dependence of the timing jitter on the delay time τ is compared to that estimated semi-

analytically, spanning from the 67th to the 68th resonance (q = 67 and q = 68, respectively).
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FIG. 3. (Color online) (a) Timing jitter in dependence of the noise strength, calculated using

the semi-analytic method (red line) and the numerical method described in [41] (green dots) for

τ = 70TISI,0. (b) Timing jitter in dependence of the feedback delay time, calculated using the

semi-analytic method (red dashed line) and the numerical method (green line) for D = 0.2T−3/2.

Parameters: αg = 0, αq = 0, K = 0.1. Other parameters are as in Table I.

Within the frequency-pulling regions of the main resonances there is very good agreement

between the results obtained using the two methods. The frequency pulling regions are the

τ ranges about the main resonances within which there is one pulse in the laser cavity and

the repetition rate tunes with τ [40]. In Fig. 3 (b) these regions can be identified by the

low timing jitter about the main resonances. At the edges of the frequency-pulling regions

there is a sharp increase in the timing jitter. This very large timing jitter coincides with

saddle-node bifurcation points of the deterministic system (Eqs. (1)-(3) with D = 0) [41].

At the edge of the 67th resonance there is a large discrepancy between the semi-analytical

and numerical methods. This is because in the stochastic system noise induced switching

between bistable solutions, which arise due to the saddle-node bifurcations, occurs. Away

from the bifurcation points there is good agreement between the two methods, also between

the main resonances, because although the dynamical behaviour changes between the main

resonances, i.e. multiple feedback induced pulses, the solutions remain periodic and therefore

the semi-analytical method is applicable.

For the parameters used in Fig. 3 (b) the system is well behaved and the solutions are

periodic, however for other parameters, particularly for larger feedback strengths and non-

zero amplitude-phase coupling, this is not the case; quasi-periodic or chaotic dynamics can
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FIG. 4. (Color online) Timing jitter in dependence of the feedback cavity delay time and feedback

strength, calculated numerically (a) and using the semi-analytical method (b). The timing jitter

is indicated by the colour code and σlt,0 is the timing jitter of the solitary laser. Regions in

white indicate a timing jitter greater then 20fs. In subplot (b) black marks the regions where

the deterministic system has a non-periodic solution and the semi-analytical method cannot be

applied. Parameters: D = 0.2T−3/2, αg = 2, αq = 1.5, others are as in table I.

be observed. In such regions the semi-analytic approach is invalid, however the timing jitter

calculated by numerical methods is not meaningful in these non-periodic region either. In

Fig. 4 the timing jitter, calculated from the numerical (a) and semi-analytical (b) methods,

is plotted in dependence of K and τ for αg = 2 and αq = 1.5. The timing jitter is given by

the colour code, where blue regions indicate a reduction in the timing jitter with respect to

the solitary laser, red tones indicate an increase and white regions indicate a timing jitter

greater than 20fs, indicative of a non-periodic pulse stream. In the black regions in Fig. 4

(b) the solutions of the DDE system are non-periodic and the semi-analytic method is not

applied. Good agreement is observed between these two methods over most of the parameter

range depicted. The non-periodic regions indicated in subplot (b) coincide with the very

high timing jitter estimations obtained using the numerical method.

A key difference between the two methods is that the semi-analytic method is based on

the numerical simulation of deterministic equations, while the purely numerical method re-

quires integration of a system of stochastic DDEs. Using the latter method one can run into

problems that arise due to the multiplicity of stable solutions found in this system. Since
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timing jitter estimation requires averaging over many noise realisations, depending on the

particular realisation, due to transient effects, the system can land on different solutions. As

different ML solutions can have slightly different inter-spike interval times, the fully numeri-

cal estimation of the timing jitter can lead to erroneously large values in such case [57]. This

makes it difficult to perform timing jitter calculations over a large parameter domain, as it

is not easy to distinguish between the above mentioned effect and a destabilisation of the

pulse stream due to the feedback conditions. Note that this is a different effect to switching

between solutions within one time series. Such difficulties are eliminated when using the

semi-analytic method, as in this case the estimation of the variance is based on the inte-

gration of deterministic equations. Therefore, there are two main advantages to using the

semi-analytic method to calculate the timing jitter, compared with brute force methods in-

volving numerical integration of stochastic differential equations. Firstly, the aforementioned

difficulties can be avoided, and secondly, the computation times can be greatly reduced (by

over a factor of 100) as averaging over many noise realisation is not needed. This means

that it can become feasible to calculate the timing jitter for longer feedback delay times,

which is of interest due to the improved timing jitter reduction predicted for increased delay

times [66] and for better comparison with experiments, where typically very long feedback

cavities are used [39, 67].

B. Delay length dependence of timing jitter

We now use the semi-analytic method to investigate how the timing jitter decreases with

increased resonant feedback delay times and how the width of the frequency-pulling regions

is affected by this increase. In Fig. 5 the timing jitter is plotted as a function of τ in subplots

(a) and (b) for a short and a long τ range, respectively. The black dashed line indicates

the timing jitter of the solitary laser. The delay times are plotted in units of TISI,τ=0, the

inter-spike interval time for zero delay feedback (instantaneous feedback, τ = 0 and K 6= 0),

meaning that the resonant feedback occurs at the integer delay values. (TISI,τ=0 and TISI,0

only differ slightly. Here we choose TISI,τ=0 as our reference because the period is the

same for all τ = qTISI,τ=0, where q is an integer, and we will use this property in subsequent

calculations.) In both (a) and (b) a timing jitter reduction is observed for resonant feedback.

For the longer delay times depicted in subplot (b) the timing jitter reduction is greater and
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FIG. 5. (Color online) (a) and (b) Timing jitter σlt in dependence of the feedback cavity delay

time. The colour code indicates the timing jitter according to the colour bar given in subplot

(c). The black dashed line indicates the timing jitter of the solitary laser. (c) Timing jitter σlt in

dependence of the feedback cavity delay time, where τ = τ0 +τ1 for any given point. The horizontal

axis spans one TISI,τ=0 and is centered on an exact main resonance. The vertical axis indicates

the number of the main resonance. The timing jitter is indicated by the colour code and σlt,0 is

the timing jitter of the solitary laser. Parameters: K = 0.1, D = 0.2T−3/2, αg = 0, αq = 0, others

as in table I.

the frequency-pulling region about the main resonances is wider. Changes in the frequency-

pulling regions are not discernible over small τ ranges. To show the change in dependence of

τ more clearly a map of the timing jitter is shown in a τ − τ plot in subplot (c). In this plot

both axes are related to the delay time, the τ1 axis shows changes over one TISI,τ=0-interval

, whereas the τ0 axis shows changes from one resonance to the next. For each point on this

map the feedback delay time is given by τ = τ0 + τ1. The τ1 axis is centered on the exact

main resonances τ = qTISI,τ=0 and the τ0 axis gives the number q of the main resonances.

The timing jitter is given by the colour code. Regions in blue and green indicate a reduction

in the timing jitter with respect to the solitary laser (K = 0) and regions in red indicate

an increase in the timing jitter. In the green regions the timing jitter is reduced by a factor

of 10 or greater. For all q values a reduction in the timing jitter is achieved at the exact

main resonances and for increasing q the decrease in the timing jitter can clearly be seen.

It is seen from Fig. 5(c) that for short delays the width of the frequency-pulling regions,
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with reduced timing jitter, increases approximately linearly with the number q. The edges

of the frequency pulling region are marked by the dashed black lines. At about q = 50

the frequency-pulling region is intersected by the solutions that correspond to higher order

resonances (pτ = qTISI,τ=0, where p = 2, 3, 4, ...). This is due to a bistability between the

main and higher order resonant solutions [40]. For the results presented in subplot (c) of

Fig. 5, the same initial conditions were used in the numerical simulations for all delay values.

By performing a sweep in τ (using the previous τ solution as the initial conditions for the

next τ) one can stay on the main resonant solution in the bistable regions.
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FIG. 6. (Color online) Timing jitter σlt at the exact main resonances (red solid line) and the

minimum timing jitter in each resonance region (blue solid line) as a function of the number q of

the main resonance, calculated using the semi-analytic method. The dashed line shows the timing

jitter at the exact main resonances given by the analytic expression Eq. (13). The dot-dashed line

shows the fit of Eq. (14) to the minimum timing jitter in each resonance regions. Parameters:

K = 0.1, D = 0.2T−3/2, αg = 0, αq = 0, others as in table I.

In order to quantify the decrease in the timing jitter with increasing number q, we have

plotted the timing jitter at the main resonances in Fig. 6. The red line shows the results of the

semi-analytic method for the exact main resonances τ = qTISI,τ=0 (τ values corresponding

to the white dashed line in Fig. 5 (c)) and the blue line shows the results of the semi-

analytic method for the minimum timing jitter in each main resonance frequency-pulling
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region (τ values corresponding to the white dot-dashed line in Fig. 5 (c)). The expression

for the timing jitter at the main resonances, τ = qTISI,τ=0, can be derived analytically using

Eq. (8) and the bilinear form (A6). At the exact main resonances the solutions to Eqs. (1)-

(3) are identical for all q, and the periodicity is the same as that of the laser with zero

delay (instantaneous) feedback T0 (TISI,τ=0). Therefore, for τ = qTISI,τ=0, Eq. (A6) can be

expressed as[
δψ†, δψ

]
(t) = δψ†(t)δψ(t) +

∫ 0

−T
δψ† (t+ r + T )B0 (t+ r) δψ (t+ r) dr

+K

∫ 0

−T
δψ† (t+ r + T )B1 (t+ r) δψ (t+ r) dr

+K

∫ −T
−T−qTISI,τ=0

δψ† (t+ r + T )B1 (t+ r) δψ (t+ r) dr. (9)

The last term on the right-hand side can be further simplified due to the time shift invariance

and periodicity of the integrand, giving[
δψ†, δψ

]
=
[
δψ†, δψ

]τ=0
+Kq

∫ 0

−TISI,τ=0

(
δψ† (t+ r + T )

)T
B1 (t+ r) δψ (t+ r) dr, (10)

where the first three terms on the rhs of Eq. (9) are now expressed as
[
δψ†, δψ

]τ=0
, which

is the bilinear form for τ = 0 (q = 0). Equation (8) can thus be expressed as

σvar =

√√√√√√D2

∫ T0

0

 δψ†∗1,1 (t)[
δψ†∗1 , δψ

∗
1

]τ=0

+KqF ′ (K)


2

+

 δψ†∗1,2 (t)[
δψ†∗1 , δψ

∗
1

]τ=0

+KqF ′ (K)


2

dt,

(11)

where
δψ

(†)∗
1

[δψ†∗1 ,δψ∗1]
= δψ

(†)
1 and

F ′ (K) =

∫ 0

−TISI,τ=0

δψ†∗1 (t+ r + T )B1 (t+ r) δψ∗1 (t+ r) dr,

which is a function of K but not of τ . Finally, Eq. (11) can be simplified to

σvar =
1

1 +KqF ′ (K)

√
D2

∫ T0

0

(
δψ†τ=0

1,1 (t)
)2

+
(
δψ†τ=0

1,2 (t)
)2

dt, (12)

where δψ†τ=0
1 =

(
δψ†τ=0

1,1 , δψ†τ=0
1,2 , δψ†τ=0

1,3 , δψ†τ=0
1,4

)T

is the solution fulfilling the biorthogonal-

ity condition for τ = 0 and F (K) = F ′(K)

[δψ†∗1 ,δψ∗1]
τ=0 . The timing jitter for resonant feedback,

τ = qTISI,τ=0, is therefore given by

σ
τ=qTISI,τ=0

lt =
στ=0
lt (K)

1 +KqF (K)
, (13)
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where στ=0
lt (K) is the timing jitter for τ = 0. The curve obtained using this analytic

expression is shown by dashed black line in Fig. 6. A formula for the minimum jitter can

not be derived in the same way as the inter-spike interval time changes with q. However,

fitting the minimum jitter curve for various feedback strengths we find that the relation

σmin
lt ≈

στ=0
lt (K)

1 +Kq
, (14)

holds well for low feedback strengths. The fit is plotted in the black dot-dashed line in Fig. 6.

Several physical insights can be gained from Eqs. (13) and (14). Firstly, the decrease in the

timing jitter, with increasing delay length, is directly related to the increase in the length of

the history of the solution. The influence on the dynamics of the system, of a perturbation,

at one time point is smaller if the solution space is larger. This can be understood by

considering the definition of the asymptotic time-shift. If the solution to the homogeneous

system is perturbed at one point in time, then as t→∞ the solution will once again converge

to the solution of the homogeneous system, but with some time shift with respect to the

solution before the perturbation. If the solution space is larger then the resulting time shift

will be smaller. Another way to think of this is to consider that the pulse positions are

correlated over the history of the solution. If the pulse positions are correlated over longer

time spans, via increased feedback delay lengths, then the timing jitter is decreased. The

timing jitter reduction therefore has nothing to do with the stability of the system, as one

might have expected based on studies on feedback stabilisation [68]. Secondly, in contrast to

previous works on timing jitter reduction these results highlight the importance of the pulse

shape, and hence the gain and absorber dynamics. The pulse shape enters in the integral

for F (K), as this influences the overlap of δψ†0t (t+ T ) and B1 (t) δψ1 (t). This overlap is

greatest when TISI = T , and the deviation of the period from the cold cavity roundtrip time

is intrinsically linked to the asymmetry of the pulses. Increasing the width of the Lorentzian

filter reduces the interspike interval time, as TISI ≈ T + γ−1 [49], this results in an increase

in F (K), and hence improved timing jitter reduction at the exact main resonance. The

fact that the minimum timing jitter does not coincide with the exact main resonances shows

that pulse reshaping also leads to a timing jitter reduction.

In the derivation of Eq. (13) contributions to the timing jitter from eigenfunctions with

negative eigenvalues, λ < 0, are neglected. However, for increased feedback delay lengths,

the number of weakly stable Floquet multipliers close to one increases. This leads to long
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transients in numerical simulations of the deterministic system (Eqs. (1)-(3) D = 0). These

transient effects are accompanied by fluctuations in the pulse heights, which have the pe-

riodicity of the feedback delay time. Including noise in the system excites these transient

amplitude fluctuations, which results in an increased timing jitter, as, via the interaction

with the gain and absorber media, changes in the pulse height also lead to slight changes in

the pulse positions. Such noise induced effects were observed experimentally as side peaks in

the phase noise spectra [67, 69, 70]. Equation (13) is therefore only valid in the limit in which

such effects can be neglected. For the parameter values used in our simulations Eq. (13)

holds for up to q ≈ 300. However, Eq. (13) still gives a lower limit for the timing jitter

reduction that is achieved, if the noise induced fluctuations can be suppressed. Similarly, we

note that our approach might not produce quantitatively accurate results near the points

of bifurcations, where weakly damped modes are also present in the system, and, hence

additional degrees of freedom must be taken into account. The extension of the method to

the describe this situation will be the subject of the future work.

VI. CONCLUSIONS

We have investigated the influence of optical feedback on the timing jitter of a passively

ML semiconductor laser. For resonant feedback we have derived an expression, Eq. (13), for

the analytical dependence of the timing jitter on the feedback delay length, showing that the

timing jitter drops off as approximately 1/τ for τ � T , as long as amplitude jitter effects can

be neglected. This trend is directly related to the increase in the history of the solutions,

which results in the influence of the noise being reduced and the pulse positions being

correlated over longer times. Around the main resonant feedback delay lengths, frequency-

pulling regions form, in which the timing jitter is reduced with respect to the solitary laser.

The minimum timing jitter in these regions is achieved by pulse reshaping, in addition to

the correlation effects. For small feedback strengths K the widths of these frequency-pulling

regions increase linearly with the number q of the main resonance.

These results were obtained using a semi-analytical method, presented in this paper, of

calculating timing fluctuations in a DDE system describing the dynamics of a passively

ML semiconductor laser subject to optical feedback from an arbitrary number of feedback

cavities. The semi-analytical method shows good agreement with methods based on direct
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numerical integration of the stochastic model. This method has the advantage of greatly

reduced computation times and allows for achieving greater physical insights than from

direct numerical computations.
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Appendix A: Appendix: Derivation of the expression for the rate of the time-shift

diffusion

Here we derive formula (7) for the time-shift diffusion rate. Recall that ψ0(t) is a T0-

periodic ML solution of system (1)–(3). Substituting the expression ψ(t) = ψ0(t) + δψ(t)

into this system, we obtain the linearized equations

d

dt
δψ (t) = A (t) δψ (t) +

M∑
m=0

Bm (t− τ ′m) δψ (t− τ ′m) +Dw(t), (A1)

where A and Bm are T0-periodic Jacobi matrices of the linearization; τ ′0 = T , τ ′m = T + τm

for m ≥ 1; and, Dw(t) = D(ξ1(t), ξ2(t), 0, 0)T is the small noise term. The matrices A(t)

and Bm(θ) are

A (t) =


−γ −ω 0 0

ω −γ 0 0

e−Q0(t)G (t) 2ER0 (t) e−Q0(t)G (t) 2EI0 (t) −γg − e−Q0(t)eG0(t)|E0 (t) |2 −e−Q0(t)G (t) |E0 (t) |2

−rsQ (t) 2ER0 (t) −rsQ (t) 2EI0 (t) 0 −γq − rse−Q0(t)|E0 (t) |2


(A2)

20



with G (t) = 1− eG0(t) and Q (t) = 1− eQ0(t), and

Bm (θ) = Kmγ


RR

0 (θ) −RI
0 (θ) RR

0 (θ) EgRI (θ)−RI
0 (θ) EgIR (θ) −RR

0 (θ) EqRI (θ) +RI
0 (θ) EqIR (θ)

RI
0 (θ) RR

0 (θ) RI
0 (θ) EgRI (θ) +RR

0 (θ) EgIR (θ) −RI
0 (θ) EqRI (θ)−RR

0 (θ) EqIR (θ)

0 0 0 0

0 0 0 0


(A3)

for θ = t− τ ′m andK0 = 1, with ER0 = Re E0, EI0 = Im E0, R0 (θ) =
√
κe

1
2

(1−iαg)G0(θ)− 1
2

(1−iαq)Q0(θ)−iω(θ−t),

RR
0 = ReR0, RI

0 = ImR0 EgRI (θ) = 1
2

(
ER0 (θ) + αgEI0 (θ)

)
, EgIR (θ) = 1

2

(
EI0 (θ)− αgER0 (θ)

)
,

EqRI (θ) = 1
2

(
ER0 (θ) + αqEI0 (θ)

)
and EqIR (θ) = 1

2

(
EI0 (θ)− αqER0 (θ)

)
.

When there is no noise (D = 0), the homogeneous system

− d

dt
δψ(t) + A(t)δψ(t) +

M∑
m=0

Bm(t− τ ′m)δψ(t− τ ′m) = 0 (A4)

and its adjoint system, for a row vector δψ†(t) = (δψ†1, δψ
†
2, δψ

†
3, δψ

†
4),

d

dt
δψ†(t) + δψ†(t)A(t) +

M∑
m=0

δψ†(t+ τ ′m)Bm(t) = 0, (A5)

have characteristic solutions (eigenmodes) of the form δψ(t) = δψλ(t) = eλtpλ(t) and

δψ†(t) = δψ†λ(t) = e−λtp†λ(t), respectively, where functions pλ(t) and p†λ(t) are T0-periodic

and the complex value λ is a Floquet exponent of (A4). The bilinear form [59, 60]

[
δψ†, δψ

]
(t) = δψ†(t)δψ(t) +

M∑
m=1

∫ 0

−τ ′m
δψ†(t+ r + τ ′m)Bm(t+ r)δψ(t+ r)dr (A6)

is instrumental in quantifying the effect of noise along different eigendirections δψλ(t) for the

perturbed system (A1), because for every solution δψ(t) of (A1) and every solution δψ†(t)

of (A5) the following relation holds at all times:

d[δψ†, δψ](t)

dt
= Dδψ†(t)w(t). (A7)
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Indeed,

d

dt
[δψ†, δψ](t) =

d

dt

(
δψ†(t)δψ(t) +

∑
m

∫ 0

−τ ′m
δψ†(s+ t+ τ ′m)Bm(s+ t)δψ(s+ t)ds

)

=
dδψ†(t)

dt
δψ(t) + δψ†(t)

dδψ(t)

dt
+
d

dt

∑
m

∫ t

t−τ ′m
δψ†(s+ τ ′m)Bm(s)δψ(s)ds

= −
(
δψ†(t)A(t) +

∑
m

δψ†(t+ τ ′m)Bm(t)

)
δψ(t)

+δψ†(t)

(
A(t)δψ(t) +

∑
m

Bm(t− τ ′m)δψ(t− τ ′m) + w(t)

)
+
∑
m

(δψ†(t+ τ ′m)Bm(t)δψ(t)− δψ†(t)Bm(t− τ ′m)δψ(t− τ ′m))

= D δψ†(t)w(t).

In particular, for every pair of solutions of the homogeneous systems (A4) and (A5) (D = 0),

the form [δψ†, δψ](t) is independent of time. Eq. (A7) also ensures the biorthogonality

property

[δψ†λ, δψµ](t) ≡ 0 (A8)

for any pair of eigenfunctions of problems (A4) and (A5) with λ 6= µ. Furthermore, Eq. (A7)

implies that for any solution δψ(t) of the inhomogeneous problem (A1), the projection

yλ(t) = eλt[δψ†λ, δψ](t) satisfies the equation

dyλ(t)

dt
= λyλ(t) +Dp†λ(t)w(t) (A9)

with the Langevin term w(t). For Reλ < 0, this equation defines an Ornstein-Uhlenbeck

type process with a uniformly bounded variance of order D2. On the other hand, for λ = 0,

we obtain a process similar to the Brownian motion with the variance that grows linearly with

time as D2t. Hence, noise mostly affects the projections of a solution of (A1) onto the neutral

eigenmodes (5) that have λ = 0. The two corresponding adjoint neutral eigenfunctions (that

is, T0-periodic solutions of the adjoint system (A5)) can be normalized in such a way as to

satisfy the relations[
δψ†1, δψ1

]
(t) =

[
δψ†2, δψ2

]
(t) ≡ 1,

[
δψ†1, δψ2

]
(t) =

[
δψ†2, δψ1

]
(t) ≡ 0. (A10)

For stable mode-locked solutions ψ0(t) all the non-zero Floquet exponents of the linearized

system have negative real parts.
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Using the linearization, we can approximate the asymptotic time-shift of a solution to

the nonlinear system (1)-(3) by the formulas[
δψ†1,Γ−ϕΠ−θψ − ψ0

]
(t+ θ) =

[
δψ†2,Γ−ϕΠ−θψ − ψ0

]
(t+ θ) = 0, (A11)

where Π−θψ(t) = ψ(t− θ) is the time shift operator. These equations define the time-shift θ

and the angular phase ϕ implicitly for any given state ψ(t+r) (r ∈ [−τ ′M , 0]) of the nonlinear

system. Geometrically, (A11) is a codimension 2 linear subspace which is tangent to the

codimension 2 surface of constant asymptotic time-shift θ and constant asymptotic angular

phase ϕ at the point where this surface intersects the torus of shifted periodic solutions

ΓϕΠθψ0 in the state space of the system (see Fig. 7). As we consider solutions that remain

within a small distance of order D from this torus, the error between the asymptotic time-

shift and its approximation (A11) is of next order D2. Also, note that Eqs. (A11) themselves

can be used as an alternative definition of the time-shift, because these equations define a

foliation of a small tubular neighborhood surrounding the torus of periodic solutions by

non-intersecting surfaces θ = const, ϕ = const.

In order to derive the equation for the evolution of the time-shift, we calculate the partial

derivatives of Eqs. (A11) with respect to t, θ, ϕ. Using symmetry, one obtains from Eqs. (A6)

and (A7) the relationship

∂

∂t

[
δψ†i ,Γ−ϕΠ−θψ − ψ0

]
(t+ θ) = D δψ†i (t+ θ)Γ−ϕw(t) (A12)

for i = 1, 2. When differentiating the bilinear form
[
δψ†i ,Γ−ϕΠ−θψ − ψ0

]
(t+θ) with respect

to θ and ϕ, we omit the terms that are proportional to ψ − ΓϕΠθ, because these terms are

of the order D in the small vicinity of the cycle that we consider. In this approximation, we

obtain
∂

∂θ

[
δψ†i ,Γ−ϕΠ−θψ − ψ0

]
(t+ θ) = −

[
δψ†i , δψ1

]
(t+ θ), (A13)

∂

∂ϕ

[
δψ†i ,Γ−ϕΠ−θψ − ψ0

]
(t+ θ) = −

[
δψ†i , δψ2

]
(t+ θ). (A14)

Combining relationships (A10) and (A12)–(A14) with the equation( ∂
∂t

+ θ̇
∂

∂θ
+ ϕ̇

∂

∂ϕ

) [
δψ†i ,Γ−ϕΠ−θψ − ψ0

]
(t+ θ) = 0

(obtained by differentiating Eqs. (A11) with respect to time), we arrive at the coupled system

of stochastic equations (6) that describe the slow evolution of the variables θ and ϕ.
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FIG. 7. (Color online) State space of the system. The bold line represent the 2-dimensional

toroidal surface (torus) that consists of the periodic trajectory of the ML solution ψ0 and its shifts

ΓϕΠθψ0. Trajectories of the unpurturbed system starting in a neighborhood of this torus spiral

towards periodic trajectories on the torus with time. Thin solid lines represent codimension 2

surfaces of constant limit time-shift and angular phase θ, ϕ = const that are transversal to the

torus. Trajectories of the unperturbed system starting at any one such surface simultaneously will

always return to this surface simultaneously in the future. Dashed line shows the codimension 2

surface defined by Eqs. (A11), which is tangent to a surface θ, ϕ = const at the intersection point

of this surface with the torus ΓϕΠθψ0. The red line shows a trajectory of the perturbed system.

Finally, using the Feynman-Kac formula, we obtain the Fokker-Planck equation for the

joint probability density p(t, θ, ϕ) of the stochastic process (6):

∂p

∂t
=

(
1

2

∂2

∂θ2
(d11 p) +

∂2

∂θ∂ϕ
(d12 p) +

1

2

∂2

∂ϕ2
(d22 p)

)
. (A15)

This equation has variable diffusion coefficients

d11 = D2
((
δψ†1,1

)2
+
(
δψ†1,2

)2)
(t+ θ),

d22 = D2
((
δψ†2,1

)2
+
(
δψ†2,2

)2)
(t+ θ),

d12 = D2
(
δψ†1,1δψ

†
2,1 + δψ†1,2δψ

†
2,2

)
(t+ θ),

where δψ†i,k are the coordinates of the 4-dimensional vector-functions δψ†i . Since, for D � 1,

the probability density changes slowly, Eq. (A15) can be averaged over the period T0 of the

functions dij(t+ θ), resulting in the diffusion equation with constant coefficients d̄ij (see, for
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example, [64]). The averaged coefficient d̄11 that approximates the rate of diffusion of the

time-shift θ is defined by formula (7).
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[42] G. Fiol, D. Arsenijević, D. Bimberg, A. G. Vladimirov, M. Wolfrum, E. A. Viktorov, and

P. Mandel. Hybrid mode-locking in a 40 GHz monolithic quantum dot laser. Appl. Phys.

Lett., 96(1):011104, 2010. doi:10.1063/1.3279136.

[43] Rostislav Arkhipov, A. S. Pimenov, M. Radziunas, D. Rachinskii, A. G. Vladimirov, D. Ar-
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[67] D. Arsenijević, M. Kleinert, and D. Bimberg. Phase noise and jitter reduction by optical

feedback on passively mode-locked quantum-dot lasers. Appl. Phys. Lett., 103(231101):231101,

2013.

[68] K. Pyragas. Continuous control of chaos by self-controlling feedback. Phys. Lett. A, 170:421,

1992.

[69] M. Haji, L. Hou, A. E. Kelly, Jehan Akbar, J. H. Marsh, J. M. Arnold, and C. N. Ironside.

High frequency optoelectronic oscillators based on the optical feedback of semiconductor mode-

locked laser diodes. Opt. Express, 20(3):3268–3274, 2012.

[70] L. Drzewietzki, Stefan Breuer, and W. Elsäßer. Timing jitter reduction of passively mode-
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