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The semiconductor double quantum dot (DQD) micromaser generates photons through single
electron tunneling events. Charge noise couples to the DQD energy levels, resulting in a maser
linewidth that is 100 times larger than the Schawlow-Townes prediction. We demonstrate linewidth
narrowing by more than a factor 10 using injection locking. The injection locking range is measured
as a function of input power and shown to be in excellent agreement with the Adler equation. The
position and amplitude of distortion sidebands that appear outside of the injection locking range
are quantitatively examined. Our results show that this unconventional maser, which is impacted
by strong charge noise and electron-phonon coupling, is well described by standard laser models.

PACS numbers: 73.21.La, 73.23.Hk, 84.40.lk

I. INTRODUCTION

Masers were instrumental in the birth of the laser [1, 2]
and are now employed as frequency standards [3, 4] and
low-noise amplifiers [5]. The most widely used masers
operate in a vacuum environment with atoms [3] or elec-
trons [6, 7], but solid-state masers are also common [8–
11]. Due to charge fluctuations, solid-state masers and
lasers typically have much broader linewidths than their
vacuum counterparts; therefore, to harness the full po-
tential of these solid state devices, it is important to sta-
bilize the emission frequency.

Injection locking is a common method for narrowing
the linewidth of a laser. With injection locking, laser
emission is stabilized by the injection of an input tone
that results in stimulated emission at the frequency of the
injected tone. Frequency locking of oscillators has a rich
history, extending back to Huygens in 1666, who observed
that two initially unsynchronized clocks would eventually
synchronize due to mechanical vibrations transmitted via
a common beam [12]. Since then, frequency locking has
been observed in systems ranging from fireflies [13], to
spin transfer torque oscillators [14], and matter waves of
a Bose gas [15]. For optical lasers, injection locking was
first observed by Stover et al. [16], and is now commonly
used to improve the coherence of lasers [17].

In this paper we demonstrate injection locking of
the recently discovered semiconductor DQD micromaser.
The DQD micromaser is driven by single electron tunnel-
ing events between discrete zero-dimensional electronic
states [18]. A free-running emission linewidth of 34 kHz
was measured, nearly 100 times larger than the ST pre-
diction [19]. Time-series analysis of the emitted signal
indicates the maser output is fluctuating as a function
of time. These fluctuations are believed to be due to
charge noise, which electrostatically couples to the DQD
energy levels and results in significant broadening of the
emission peak.

Here we show that the emission linewidth can be nar-
rowed by more than a factor of 10 using injection locking.
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Figure 1. Schematic of the DQD micromaser. Two DQDs
are coupled to a high quality factor microwave cavity with
input (output) coupling rates κin (κout). A source-drain bias
voltage VSD results in single electron tunneling through the
DQDs and leads to photon emission into the cavity mode.

For the case when the input tone fin is detuned from the
free running maser frequency by several linewidths, the
maser emission frequency is “pulled” by, and eventually
locked to the input tone with increasing input power Pin.
The frequency range over which the maser can be injec-
tion locked ∆fin increases with Pin following the power
law relation ∆fin ∝

√
Pin predicted by Adler [20]. We

also investigate the dynamics of the maser just outside of
the injection locking regime, where the frequency pull is
appreciable and leads to distortion sidebands in the emis-
sion spectrum. The emission powers and positions of the
sidebands are in excellent agreement with theoretical pre-
dictions [12, 21]. These measurements indicate that the
DQD micromaser, which is driven by single electron tun-
neling events, follows predictions from conventional laser
theory and can be considerably improved using injection
locking effects.
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II. DOUBLE QUANTUM DOT MICROMASER

The DQD micromaser is fabricated in the circuit quan-
tum electrodynamics architecture (cQED) and consists of
a superconducting transmission line resonator, two semi-
conductor DQDs that serve as the gain medium, and a
voltage bias that generates population inversion [22]. The
half-wavelength (λ/2) Nb coplanar waveguide resonator
has a resonance frequency fc = 7880.6 MHz [23–25]. The
cQED architecture has been used to achieve strong cou-
pling between microwave frequency photons and a super-
conducting qubit [23]. A variety of quantum dot devices
have been integrated with microwave cavities [24–27].

The maser gain medium consists of two semiconductor
DQDs, as illustrated in Fig. 1. Each DQD is fabricated
by placing a single InAs nanowire across a predefined
array of bottom gates [28]. Negative voltages are applied
to the gates to selectively deplete the nanowire, forming a
DQD [28, 29]. Electronic confinement results in a discrete
energy level spectrum that can be electrically tuned [29,
30]. In semiconductor DQDs the electric dipole moment
d ∼ 1000ea0, which interacts with the oscillating cavity
voltage Vcavity and results in a charge-cavity interaction
rate gc/2π ≈ 30 MHz [18, 24–26, 31, 32]. Here e is the
electronic charge and a0 is the Bohr radius.

A source-drain bias, VSD= 2 mV = (µD−µS)/|e|, is ap-
plied to give a preferred direction for electron flow, where
µS(µD) is the chemical potential of the source(drain). As
shown in Fig. 1, single electron tunneling is only allowed
when the DQD energy levels are arranged such that an
electron can tunnel downhill in energy, otherwise current
flow is blocked due to Coulomb blockade [29]. Starting
with an empty DQD (see left DQD in Fig. 1), a single
electron first tunnels from the drain to the right dot. This
tunneling event is followed by an interdot charge transi-
tion, and subsequent tunneling of the electron from the
left dot to the source. The source-drain bias effectively
repumps the higher energy level in the DQD and gen-
erates conditions for population inversion. The interdot
charge transition results in microwave frequency photon
emission [18, 22].

The DQD micromaser is in some ways similar to a
quantum cascade laser (QCL). In a QCL, current flows
through a precisely engineered quantum well structure
and results in the cascaded emission of photons whose
frequency is set by the quantum well layer thicknesses
[33]. In comparison, photons in the DQD micromaser
are generated by single electron tunneling between elec-
trically tunable DQD energy levels. While electrical con-
trol allows for in situ tuning of the gain medium, it also
means that the energy level separation will be suscepti-
ble to charge noise. The root-mean-squared charge noise
σε/h = 10 GHz is typically much larger than gc/2π ≈ 30
MHz and the cavity linewidth κtot/2π ≈ 3 MHz [18, 24–
27]. Charge noise will drive the DQDs out of resonance
with the cavity, making it difficult to reach the strong-
coupling regime [34–36]. In terms of maser performance,
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Figure 2. Power gain G = CPout/Pin plotted as a function
of fin with the DQDs configured in Coulomb blockade with
no current flow (off state) and with current flowing through
the DQDs (on state). In the on state, the peak gain Gp ∼
1000 and the linewidth is dramatically narrowed, suggestive
of a transition to a masing state. Inset: IQ histogram of
the output field measured in the on state and with no input
tone applied to the cavity. The donut shape is indicative of
above-threshold maser action [12, 22].

charge fluctuations adversely impact emission frequency
and power stability [22].

III. EXPERIMENTAL RESULTS

We now present experimental data obtained on the
semiconductor DQD micromaser. In Section III.A we
briefly review measurements of the DQD micromaser
that examined the amplification of an input tone and the
photon statistics in free-running mode (i.e. cavity emis-
sion in the absence of an input tone) [22]. In Section III.B
we present new results showing that the maser emission
can be injection locked by driving the input port of the
cavity, with a corresponding reduction in the emission
linewidth. The injection locking range is measured as a
function of input power and shown to be in good agree-
ment with standard laser theory. Section III.C examines
the frequency pull and distortion sidebands that appear
outside of the locking range. Detailed analysis of the
sidebands also yields excellent agreement with theoreti-
cal predictions.

A. Free-Running Maser Characterization

The maser is first characterized by driving the input
port of the cavity at frequency fin and power Pin. Cavity
power gain is defined as G = CPout/Pin, where Pout is
the power exiting the cavity. The normalization constant
C is defined such that the peak power gain Gp = 1 when
both DQDs are configured in Coulomb blockade (referred
to as the “off state”). Figure 2 shows G as a function
of fin with Pin = -120 dBm. The black curve is the
cavity response in the off state [22]. Fitting the gain
to a Lorentzian we extract the cavity center frequency
fc = 7880.6 MHz and linewidth κtot/2π = 2.6 MHz.
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Figure 3. (Color online) (a) Power spectrum of the emitted radiation S(f) plotted as a function of Pin. The cavity input
frequency fin = 7880.25 MHz is close to the free running maser emission frequency fe = 7880.25 ± 0.03 MHz. Note the
significant fluctuations in fe for Pin < -120 dBm. The maser linewidth narrows with increasing Pin due to injection locking.
The upper panel shows S(f) for Pin = -125 dBm (blue) and Pin = -100 dBm (black), indicated by the dashed lines in the main
panel. (b) Phasor diagram of the maser output in the unlocked configuration. Here the cavity field is a combination of the
free running maser emission at frequency fe and the cavity input tone at fin. In this configuration the phase of the maser is
fluctuating relative to the input tone. (c) Schematic illustration of the cavity field in the injection locked state. To within a
relative phase φ, the maser emission is locked to the input tone.

Here κtot = κin + κout + κint. κin(κout) is the decay rate
through the input(output) port and κint is the photon
loss rate through other channels. The red curve shows
G as a function of fin when current is flowing through
both DQDs (defined as the “on state”). Here the cavity
response is sharply peaked at fin = 7880.25 MHz, yielding
Gp ∼ 1000 with a full-width-half-max (FWHM) Γ = 0.07
MHz, suggestive of a transition to an above-threshold
maser state.

Above-threshold maser action is confirmed by measur-
ing the statistics of the output field [22]. These mea-
surements are performed in free-running mode (with no
input tone applied). The output signal is amplified and
demodulated to yield the in-phase (I) and quadrature-
phase (Q) components, which are sampled at a rate of
1 MHz. The results from 400,000 individual (I,Q) mea-
surements are shown in the two-dimensional histogram
plotted in the inset of Fig. 2(b). The IQ histogram has
a donut shape that is consistent with a stable oscilla-
tor, however the amplitude fluctuations are much larger
than expected. Time-series analysis of the free-running
emission signal suggests that large charge fluctuations
are impacting the emission stability [22]. It is therefore
desirable to stabilize the output of the maser.

B. Injection Locking the Semiconductor DQD
Micromaser

We now demonstrate injection locking of the maser by
measuring the power spectral density of the emitted ra-
diation S(f) as a function of the power Pin of the input
tone. The main panel of Fig. 3(a) shows S(f) as a func-
tion of Pin with fin = 7880.25 MHz set near the free run-

ning emission frequency fe. Line cuts through the data
are shown in the upper panel for Pin = −125 dBm (blue
curve) and −100 dBm (black curve). For negligible input
powers (Pin < −140 dBm) the power spectrum exhibits
a broad peak near fe = 7880.25 MHz. For a given value
of Pin, the emission peak typically has a full-width-half-
max (FWHM) Γ = 34 kHz. For Pin < -125 dBm, charge
noise causes the emission peak to significantly wander in
the frequency range 7880.25 ± 0.03 MHz. In this con-
figuration the relative phases of the input tone and the
maser emission are unlocked, as illustrated in Fig. 3(b).
As Pin is increased, the photon number in the cavity at
fin increases, resulting in increased stimulated emission.
With Pin > -125 dBm, the broad tails of the emission
peak are suppressed and the spectrum begins to narrow.
The free running maser emission is eventually locked to
the input tone around Pin = -115 dBm. Now the large
fluctuations that were observed in the absence of an input
tone are suppressed and Γ < 3 kHz [37]. The linewidth
is reduced by more than a factor of 10 compared to the
free-running case and indicates phase stabilization, as il-
lustrated in Fig. 3(c).

Although our minimum linewidth resolution is set by
technical limitations [37], we can estimate the fundamen-
tal linewidth limit for this device. Previous measure-
ments of the output field indicated that the masing pro-
cess intermittently shuts off due to large charge fluctua-
tions [22]. During these off periods, the maser emission
will cease to be injection locked to the input tone and
will lose phase coherence. As a result, the linewidth will
be limited by the inverse of the switching time τs. In
Ref. [22], τs was observed to be roughly 500 µs, which
sets the fundamental linewidth limit due to charge noise
as Γ ∼ 1/τs ≈ 2 kHz. The linewidth prediction is com-
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Figure 4. (Color online) S(f) plotted as a function of Pin

with fin = 7880.6 MHz far detuned from fe (note the change
in the x-axis scale relative to Fig. 3). The maser is injection
locked when Pin > -102 dBm. Distortion sidebands are clearly
visible in the emission spectrum. Upper panel: S(f) for Pin

= -115 dBm (red) and Pin = -100 dBm (black), indicated by
the dashed lines in the main panel.

parable to our measurement resolution and a factor of
10 smaller than the linewidth of the free-running maser,
but still larger than the ST limit by the same factor. Fur-
ther reductions of the linewidth will most likely require
reducing charge noise in these devices.

Comparable effects are observed when fin = 7880.60
MHz, more than 10 line-widths detuned from fe [Fig. 4].
With Pin < −140 dBm only the free running emission
peak is visible in S(f). As Pin is further increased the
injection tone becomes visible and the power spectrum
is simply a sum of the free running maser emission and
the cavity input tone. When Pin & -125 dBm distortion
sidebands appear and the free running emission peak is
pulled towards the input tone. The maser abruptly locks
to fin when Pin = -102 dBm, but the emission is still
somewhat broad. The linewidth continues to narrow un-
til Pin = -98 dBm, beyond which point the measured
linewidth is limited by experimental factors [37]. The
upper panel of Fig. 4 shows line cuts through the data,
acquired at Pin = -115 dBm (red curve) and Pin = -100
dBm (black curve). The sidebands that are visible in
S(f) (marked n = -2, -1, 0, 1, and 2) are quantitatively
analyzed in Section III.C [12, 21].

We next measure the frequency range over which the
maser is injection locked. The upper inset of Fig. 5 shows
a color-scale plot of S(f) as a function of fin measured
with Pin = -110 dBm. The input signal is visible in S(f)
and marked with an arrow for clarity. As seen in the
data, fin has little effect on the maser emission when it
is far-detuned from fe. As fin is increased and brought
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Figure 5. (Color online) The frequency range over which the
maser is injection locked, ∆fin, increases with Pin. The blue
line is a fit to the power law ∆fin ∝

√
Pin prediction of the

Adler equation. Insets: S(f) measured as a function of fin
with Pin = -110 dBm (upper left) and Pin = -100 dBm (lower
right).

closer to fe, frequency pulling is visible and emission side-
bands appear. The maser then abruptly locks to fin, and
remains locked to fin over a frequency range ∆fin = 0.27
MHz. The lower inset of Fig. 5 shows S(f) as a function
of fin with Pin = -100 dBm. Here the maser is injection
locked over a larger range ∆fin = 0.85 MHz. Similar
to the upper inset, frequency pulling and sidebands are
observed outside of the injection locking range. By re-
peating these measurements at different Pin, we obtain
the data shown in the main panel of Fig. 5, where ∆fin
is plotted as a function of Pin. The blue line in Fig. 5 is a
fit to the power law relation ∆fin = AM

√
Pin, with the

measured prefactor AM = (2.7 ± 1.0) × 106 MHz/
√

W,
where the error bar is due to 3 dB of uncertainty in the
transmission line losses.

The measured power law relation can be compared
with predictions from Adler’s theory, which considers the
maser dynamics in the rotating frame of the input tone by
assuming that the input power is small compared to the
free emission power [20]. We express the time-dependent
complex cavity output field amplitude as

α(t) = I(t) + iQ(t) =
√
Pee

2πifint+iφ(t), (1)

where Pe is the emitted power (assumed to be constant)
and φ = φe − φin is the relative phase of the input field
φin and the emitted field φe. The relative phase follows
the Adler equation:

dφ

dt
+ 2π(fin − fe) = −2π

∆fin
2

sin(φ). (2)
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In the injection locking range |fin−fe| < ∆fin/2, Eq. (2)
has a static solution φ = arcsin [2(fe − fin)/∆fin]. The
emission phase is then locked to the input tone with φ ∈
(−π/2, π/2), which corresponds to the case illustrated in
Fig. 3(c).

Adler’s analysis shows that ∆fin is proportional to the
amplitude of the input signal such that

∆fin = Cκ
κtot
2π

√
Pin/Pe ≡ AT

√
Pin. (3)

The cavity prefactor Cκ = 2
√
κinκout/κtot accounts for

internal cavity losses and is obtained using cavity input-
output theory [12]. Our microwave cavity is designed
with κin/2π = κout/2π = 0.39 MHz. κtot/2π = 2.6 MHz
is directly extracted from the data in Fig. 2. These quan-
tities yield Cκ = 0.3. The average emitted maser output
power Pe ≈ (2.5±1.9)×10−2 pW. Using these quantities
we find the theoretical prefactor

AT =
Cκ√
Pe

κtot
2π

= (4.9± 1.7)× 106 MHz/
√

W.

We therefore find reasonable agreement between the data
and the predictions from Adler’s theory, considering the
uncertainties in the transmission line losses.

C. Behavior Outside of the Injection Locking
Range: Frequency Pull and Distortion Sidebands

We now examine the behavior of the maser outside of
the injection locking range, where the frequency pull is
appreciable and distortion sidebands are visible. Figure
6(a) shows S(f) as a function of fin with Pin = −105
dBm. Injection locking is observed over a frequency
range ∆fin = 0.48 MHz. Focusing on the region with
fin > 7880.5 MHz, we observe one sideband for f > fe
and two sidebands for f < fe. For clarity, the emission
peaks are labeled with the index n: n = 0 corresponds
to the frequency pulled maser emission peak, n = −1
corresponds to the input tone, and the other peaks are
distortion sidebands. Figure 6(b) shows line cuts through
the data at fin = 7880.92 MHz (upper panel) and fin =
7880.60 MHz (lower panel). When fin = 7880.92 MHz,
the pulled emission peak f̄e (n = 0) is detuned from fin
by the beat frequency fb = f̄e − fin. For this set of
parameters we measure fb = −0.68 MHz. The n = 1
sideband is detuned from the n = 0 peak by fb. When
fin = 7880.60 MHz, the n = 2 sideband is also visible.
To allow for a quantitative comparison with theory, we
analyze the spectra in Fig. 6(b) by fitting the sideband
emission peaks to a Lorentzian lineshape and the input
tone to a Gaussian with a width of 10 kHz [37]. The
integrated sideband powers Pn extracted from the fitting
procedure are listed in Table I.

To compare the data with theory, we seek a general
solution for φ(t). In the limit of small Pin, ∆fin ≈ 0 and
φ(t) ≈ 2π(fe − fin)t. In this case the cavity field can
simply be considered as a sum of the free emission signal

and the cavity input tone, as shown in Fig. 3(b). Outside
of this limit, we solve the Adler equation analytically to
find the cavity field

α =
√
Pee

2πi(fin+fb)t

( ∞∑
n=−∞

ane
2πinfbt

)
. (4)

The expansion coefficients an have been calculated by Ar-
mand [38]. The beat frequency is found self-consistently
from this solution

fb = (fe − fin)

√
1−

(
∆fin/2

fe − fin

)2

. (5)

Given that fe wanders in the frequency range 7880.25±
0.03 MHz, Eq. 5 predicts fb = −0.63 ± 0.03 MHz at
fin = 7880.92 MHz and, fb = −0.25± 0.03 MHz at fin =
7880.60 MHz. These values are in general agreement with
the measured fb listed in Table I. The small discrepancy
may be due to charge-noise-induced drift in fe.

Predicted sideband positions can be obtained by eval-
uating Eq. 4 in several different regimes. For the far
detuned case |fe − fin| � ∆fin, higher order harmonics
are negligible and a0 ≈ 1. Equation (4) then simpli-
fies to α =

√
Pee

2πi(fin+fb)t, which represents the pulled
emission peak at frequency f̄e = fin + fb. First order
expansion of Eq. 4 in ∆fin yields a±1 ≈ i∆fin/4(fe−fin)
[39]. When the detuning |fe − fin| approaches ∆fin/2,
higher order terms in Eq. 4 give rise to non-negligible
expansion coefficients an, which results in higher order
sideband peaks at frequencies fn = f̄e ± nfb (n = ±1,
±2, ...). The predicted f̄e is plotted as black solid line
in Fig. 6(a) and the predicted n 6= 0 sidebands are plot-
ted as white dashed lines. Both the pulled emission peak
and the location of the distortion sidebands are in good
agreement with Adler’s theory.

The integrated sideband powers Pn can be compared
with calculations from Armand [38], who found:

a−1 =
fe − fin − fb + i(∆fin/2)

fe − fin + fb − i(∆fin/2)
.

Since the n = -1 sideband overlaps with the input tone,
it cannot be resolved experimentally. an = 0 for n ≤ -2,

a0 =
4(fe − fin)fb

[fe − fin + fb − i(∆fin/2)]
2 ,

and for n > 0

an = a0

[
(−fe + fin + fb) + i (∆fin/2)

(fe − fin + fb)− i (∆fin/2)

]n
. (6)

The predictions imply that the n > 0 sidebands are fa-
vored, an asymmetry that is consistent with the data in
Fig. 6(b), as well as other laser systems [39, 40].

We can now compare the measured sideband powers
with the theoretical predictions. For the data shown in
the upper panel of Fig. 6(b), we find P1/P0 = 2.7 ×
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Figure 6. (Color online) (a) S(f) measured as a function of fin with Pin = -105 dBm. The black line overlaid on the data is the
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Table I. Distortion Sideband Parameters

fin (MHz) 7880.92 7880.60

fb (MHz) -0.68 -0.33

P0 (pW) 2.1× 10−2 2.0× 10−2

P1 (pW) 5.4× 10−4 1.8× 10−3

P2 (pW) NA 1.59× 10−4

P1/P0 2.7× 10−2 9.1× 10−2

P2/P0 NA 7.9× 10−3

|a1/a0|2 2.9× 10−2 1.0× 10−1

|a2/a0|2 NA 1.1× 10−2

10−2, which is very close to the value predicted by Eq. 6
|a1/a0|2 = 2.9×10−2 . The theoretical value is calculated
taking the measured beat frequency fb = -0.68 MHz,
the measured ∆fin = 0.48 MHz obtained with Pin =
−105 dBm, and fe − fin = -0.72 MHz determined from
Eq. 5. Similarly, for the lower panel of Fig. 6(b) Adler’s
theory predicts ratios |a1/a0|2 = 1.0×10−1 and |a2/a0|2
= 1.1× 10−2, which are also in good agreement with the
experimental results listed in Table I.

IV. CONCLUSION AND OUTLOOK

In conclusion, the emission linewidth of the semicon-
ductor DQD micromaser can be narrowed by more than
a factor of 10 using injection locking. Measurements of
the injection locking range as a function of input power
very closely follow predictions from Adler’s theory [20].
We also examined the frequency pull and emission side-
bands outside of the injection locking regime. Our data
show that this exotic maser, which is driven by single
electron tunneling events, is well-described by predictions
from conventional laser theory. Future areas of work in-
clude the development of a quantitative theory to explain
how charge noise impacts the emission peak location and
linewidth, steps to improve materials to reduce charge
noise, and investigation of the micromaser in the single
emitter limit (with one semiconductor DQD in the cav-
ity).
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