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Fulde-Ferrell-Larkin-Ovchinnikov state of two-dimensional imbalanced Fermi gases

Daniel E. Sheehy1, ⇤

1Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA, 70803, USA

The ground-state phase diagram of attractively-interacting Fermi gases in two dimensions with a
population imbalance is investigated. We find the regime of stability for the Fulde-Ferrell-Larkin-
Ovchinnikov (FFLO) phase, in which pairing occurs at finite wavevector, and determine the magni-
tude of the pairing amplitude � and FFLO wavevector q in the ordered phase, finding that � can
be of the order of the two-body binding energy. Our results rely on a careful analysis of the zero
temperature gap equation for the FFLO state, which possesses nonanalyticities as a function of �
and q, invalidating a Ginzburg-Landau expansion in small �.

I. INTRODUCTION

The Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state is
a superfluid phase that can occur when two species (or
spin-state � =", #) of fermion pair and condense in the
presence of a density imbalance [1, 2] that is parameter-
ized by the polarization P = (N" �N#)/(N" �N#) with
N� the number of species �. The FFLO phase has been
predicted to occur in a wide range of systems, including
electronic materials and high-density quark matter [3, 4].
While recent experiments report evidence of the FFLO
state in organic materials [5] and in thin-film electronic
superconductors [6], definitive signatures of the FFLO
state (such as the predicted spatially-varying pairing am-
plitude) remain elusive.

Experimental advances in atomic physics have recently
led to another setting for observing the FFLO state,
namely cold atomic gases [7, 8], which exhibit several ex-
perimentally tunable parameters, including the fermion
densities, the interfermion interactions, and the e↵ective
spatial dimension of the gas (controlled by an applied
trapping potential).

However, cold atom experiments in the three-
dimensional (3D) limit observed no signatures of the
FFLO phase [9–12], consistent with theoretical work that
found the FFLO to be stable for a very narrow range of
density imbalance [13–15]. Imbalanced gases in 1D, stud-
ied experimentally at Rice [16], are predicted to have a
wide parameter region of stable imbalanced superfluid-
ity [17–23], although finite-momentum pairing correla-
tions (signifying the FFLO state) have not been directly
observed.

In this paper we investigate Fermi gases in two spatial
dimensions, which, in the balanced case, have been stud-
ied theoretically in Refs. [24, 25] and experimentally in
Refs. [26–29], with Ref. [30] providing a recent review.
Imbalanced 2D fermion superfluids have been studied
theoretically for many years in the condensed matter con-
text [31–34] and, more recently, by several authors in the
present cold-atom context [35–43]. Here, our main in-
terest is in determining the phase diagram of 2D Fermi
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FIG. 1: (Color Online) The top panel shows the phase dia-
gram for 2D imbalanced Fermi gases at fixed total chemical
potential µ and Zeeman field h (normalized to the two-body
binding energy ✏b). The two curves are hFFLO in Eq. (30) and
hc in Eq. (16). The bottom panel shows the phase diagram
for fixed total particle number N = N" + N#, as a function
of binding energy ✏b normalized to the Fermi energy. The
three curves are hFFLO in Eq. (32), hc1 in Eq. (17), and hc2

in Eq. (18).

gases as a function of the population imbalance (that is
controlled in cold-atom experiments) and the chemical
potential di↵erence h = 1

2 (µ" � µ#) (that is controlled in
condensed matter experiments via the Zeeman e↵ect). In
addition, we investigate the onset of pairing in the FFLO
phase of imbalanced 2D gases. Interestingly, it is found
that the equation controlling the pairing amplitude �
in the FFLO phase possesses a nonanalytic dependence
on � that precludes a simple Taylor expansion of the
ground-state energy in small �. Before presenting our
detailed calculations, in the next section we first briefly
describe our main results.
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A. Summary of Main Results

Using a model Hamiltonian for two species (labeled by
", #) of fermions in 2D with chemical potentials µ" =
µ + h and µ# = µ � h, we find the ground-state phase
diagram (Fig. 1 top panel) as a function of µ/✏b and h/✏b,
where ✏b is the two-body binding energy characterizing
the interactions (which are experimentally-controllable
in the cold-atom case). As seen in Fig. 1 (top panel),
we find a window of FFLO stability that widens with
increasing h, between a balanced [44] superfluid (SF) and
an imbalanced nonsuperfluid or normal (N) phase. The
red curve denotes a continuous N-FFLO transition, and
the black curve denotes a first order N-SF transition for
µ/✏b < 5/4 and a first order FFLO-SF transition for
µ/✏b > 5/4.
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FIG. 2: (Color Online) Phase diagram at fixed total particle
number and fixed polarization P , as a function of binding
energy normalized to the Fermi energy. The two curves are
PFFLO in Eq. (33) and Pc2 in Eq. (19).

While the top panel of Fig. 1 shows the phase diagram
in the fixed chemical potential (grand canonical) ensem-
ble, the bottom panel shows the phase diagram at fixed
total density and fixed chemical potential di↵erence h.
This case is appropriate for describing electronic super-
conductors, in which h arises from the Zeeman coupling
between an external magnetic field and the electron spin.
The axes in Fig. 1 are now normalized to the Fermi en-
ergy (defined below) that is related to the imposed par-
ticle number. We see that, by fixing N , the first order
transition becomes a regime of phase separation and that
the regime of stability for the FFLO phase is confined
to small ✏b < 4

5✏F (consistent with the 3D case, where
the FFLO is only stable in the weakly-interacting BCS
regime [13–15]). Fig. 2 shows the T = 0 phase diagram
at fixed total particle number and fixed polarization P ,
the case that is appropriate for cold atom experiments at
fixed N" and N#. (Although we do not take into account
the harmonic trapping potential that is typically present
in such experiments.) Since the SF state is unpolarized,
the entire SF region of the phase diagram in Fig. 2 is
confined to P = 0.

The FFLO state occuring for h below hFFLO is as-
sumed to be of the single plane-wave form, �(r) =
�eiq·r, characterized by the pairing amplitude � and
the FFLO wavevector q. In Fig. 3 we show our results
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FIG. 3: (Color Online) FFLO pairing amplitude � (top
panel) and wavevector q (bottom panel) for the case of µ =
3✏b. For this case, hFFLO =

p
5✏b ' 2.24✏b and hc ' 1.8✏b.

The red dots come from a direct numerical minimization of
Eq. (6), except for the points (� = 0, q = 2

p
✏b) at h = hFFLO

following from the continuous nature of the transition. The
dashed lines are the approximate formulas Eq. (84).

for � and q below hFFLO, with the dashed lines being ap-
proximate analytical formulas for these quantities (valid
asymptotically close to the transition) and the red dots
following from a numerical minimization of the mean-
field free energy.

As we will show, the value of the FFLO wavevec-
tor at the transition, qc = 2

p
✏b. This result was also

found in Ref. [35]. Additionally, the phase diagrams
shown in Figs. 1 and 2 are consistent with earlier
work [31, 32, 35, 36, 41]. Here, we show that the FFLO
phase boundary, and the universal FFLO wavevector, fol-
low from a nonanalytic structure of the integral governing
the FFLO gap equation. We present a detailed analysis
of the structure of the gap equation for the FFLO phase
which possesses kinks (slope discontinuities) as a function
of � (see Fig. 5 below). To understand this behavior, we
use the Jensen formula from complex analysis, which re-
lates integrals on the unit circle in the complex plane to
zeroes of the integrand. Despite the nonanalytic struc-
ture of the function governing �, we find a continuous
transition into the FFLO state, as seen in Fig. 3, with
the onset of � and the deviation of q from qc being linear
in |h� hFFLO|.
We conclude this section by noting that our work is

based on mean-field theory, which is known to be strongly
corrected by fluctuation e↵ects at finite temperatures in
two spatial dimensions. This deficiency may be addressed
by considering fluctuations around our mean-field solu-
tion, a task that we shall not address here. Additionally,
the present work may provide a useful starting point for
future theoretical work on coupled two-dimensional “pan-
cakes” (in which such flucutation e↵ects may be smaller).
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II. MODEL HAMILTONIAN

We now proceed to derive these results, starting with
the Hamiltonian

H =
X

�=",#

Z
d2r †

�(r)
� p̂2

2m
� µ�

�
 �(r)

+�

Z
d2r †

"(r) 
†
#(r) #(r) "(r), (1)

where  �(r) are field operators for fermions of spin � and
� parameterizes the short-range attractive interactions.
To describe the phases of an imbalanced Fermi gas in 2D,
we proceed by making the standard mean-field approxi-
mation, assuming an expectation value h #(r) "(r)i =
�eiq·r, with � and q being variational parameters that
must be minimized, at fixed µ" and µ#, to determine the
equilibrium state. The resulting mean-field free energy
is:

F = � |�|2
�

� kBT
X

p,↵=±
ln
�
1+ e��Ep↵

��
X

p

�
Ep � ⇠̃p

�
,

(2)
with � = 1

kBT . Here, we defined

Ep± = Ep ±
�
h+

p · q
2m

�
, (3)

Ep =
q
⇠̃2p + |�|2, (4)

⇠̃p = ✏p � µ̃, (5)

where ✏p = p2

2m and µ̃ = µ� q2/8m. Below we shall take
m = 1, and � real and positive. In the zero-temperature
limit, this becomes the ground-state energy [15]

EG = � |�|2
�

�
X

p

�
Ep� ⇠̃p)+

X

p,↵=±
Ep↵⇥(�Ep↵), (6)

where ⇥(x) is the Heaviside step function.
Our model Hamiltonian must include a ultraviolet

scale D cutting o↵ all momentum sums. As is stan-
dard [24], we express � in terms of the two-body binding
energy ✏b, satisfying

1

�
=

X

p

1

2✏p + ✏b
, (7)

where the sum is over ✏p < D, leading to ✏b '
2D exp[m/⇡�]. Upon inserting Eq. (7) into Eqs. (2)
and (6), we can take D ! 1 in the momentum sums,
with all dependence on D absorbed into ✏b. The bind-
ing energy is related to the 2D scattering length a2D by
✏b =

h̄2

ma2
2D

[25, 26, 30].

A. Gap equation

To find the phase diagram we need to minimize F with
respect to the variational parameters q and �. The min-
imization with respect to � defines a function S(h, q,�)

via @F
@� = �2�S(h, q,�) that is given by

S(h, q,�) =

Z
d2p

(2⇡)2

h1� nF(Ep+)� nF(Ep�)

Ep+ + Ep�

� 1

2✏p + |✏b|
i
, (8)

where we used Eq. (7). Here, nF(x) = 1
ex/T+1

is the
Fermi function. Equilibrium FFLO superfluid states sat-
isfy S(h, q,�) = 0 (also known as the gap equation) as
well as a similar equation coming from minimizing with
respect to q (@F@q = 0). Our main focus will be on evalu-

ating S(h, q,�) which, as we’ll show, has a nonanalytic
dependence on � in the T ! 0 limit.
As we will show, in the parameter region of interest

(where the FFLO is stable), S(h, q,�) is independent of
� for small �, exhibiting kinks (where its slope is discon-
tinuous) at two values of �. This implies that a simple
Ginzburg-Landau type expansion, based on a Taylor ex-
pansion in small �2:

S(h, q,�) ' S(h, q, 0) +�2S0(h, q, 0), (9)

with S0(h, q, 0) = @S
@�2

���
�2!0

, will fail. Although these

nonanalyticities are smoothed out by finite temperature,
at low T this function is “almost” nonanalytic, in the
sense that Eq. (9) yields a poor approximation to the
gap equation integral S(h, q,�).

III. PHASE DIAGRAM AT q = 0

In this section, we determine the phase boundaries as-
suming q = 0 pairing, which amounts to neglecting the
possibility of the FFLO state. Within this approxima-
tion, Eq. (6) exhibits, with increasing h, a first-order
transition from a fully-paired balanced phase to an im-
balanced normal phase, labeled hc in Fig 1 (top panel).
We will also take the zero temperature limit.

A. Balanced paired phase

We first recall the balanced paired phase [24] by setting
h = 0, yielding the gap equation 0 = �2�S(0, 0,�) with
(converting the momentum sum to an integration, with
the system area set to unity)

S(0, 0,�) =

Z
d2p

(2⇡)2

h 1

2
q
⇠2p +�2

� 1

2✏p + ✏b

i
. (10)

Thus, in this limit both Fermi functions in Eq. (8) van-
ish. Evaluation of the integral in Eq. (10) leads to the
stationary pairing amplitude [24] (a minimum of EG) at

� =
p
✏b
p
2µ+ ✏b, (11)



4

so that we must have µ > � 1
2✏b for a stable SF phase.

The total particle number of the SF state at fixed µ is
given by computing N = �@E

G

@µ , yielding for the total
density

n =
1

2⇡

�
µ+

p
�2 + µ2

�
. (12)

Combining the preceding expressions yields results for �
and µ for a system at fixed imposed particle number:

�

✏F
=

r
2
✏b
✏F

, (13a)

µ

✏F
= 1� 1

4

��
✏F

�2
= 1� 1

2

✏b
✏F

, (13b)

where the Fermi energy ✏F = ⇡n is defined by the value
of µ in the normal phase (� = 0).

B. Imbalanced case at fixed chemical potential

Having briefly reviewed the balanced case, we now con-
sider the imbalanced case h > 0 (but still with q = 0).
We find that the location of the minimum is unchanged
with increasing h, although a second minimum of EG, at
� = 0, appears describing the imbalanced normal phase.
The location, hc, of the first order transition between the
SF and N phases is obtained by equating the energies,
EG,SF = EG,N . To find EG,SF , we evaluate the momen-
tum sum in Eq. (6) (note the final term vanishes in this
phase) and insert the stationary gap-equation solution,
obtaining (note m = 1)

EG,SF = � 1

2⇡

�
µ+

1

2
✏b
�2
, (14)

where we assumed µ > � 1
2✏b. To find EG,N , we set� = 0

in Eq. (6) and evaluate the momentum sums. The result
is

EG,N = � 1

4⇡

h
(µ+h)2⇥(µ+h)+(µ�h)2⇥(µ�h)

i
. (15)

Since we always assume µ + h > 0, the first term in
square brackets is nonzero. The second term is zero if
the imbalanced normal phase has only one Fermi surface
(i.e., it is a single-species Fermi gas) and nonzero if the
imbalanced normal phase has two Fermi surfaces (i.e., it
is a two-species Fermi gas). Our result for hc(µ) is dif-
ferent depending on whether µ+h > 0 at the transition.
Equating the SF and imbalanced normal energies yields

hc(µ) =

(
✏b
⇥

1p
2
+
�p

2� 1
�
µ/✏b

⇤
for µ < µc,

1
2✏b

p
1 + 4µ/✏b for µ > µc,

(16)

where µc =
1
2 (1+

p
2)✏b separates the cases of a transition

into a phase with one (for µ < µc) or two (for µ > µc)
Fermi surfaces. This determines the black curve of Fig. 1
(top panel). As discussed above, for µ/✏b > 5/4, the

actual first order transition is between the FFLO and SF
phases. However, we find (numerically) that the FFLO
and N phases are almost equal in energy, so that the true
FFLO-N first order phase boundary is only slightly lower
than Eq. (16).

C. Imbalanced case at fixed particle number

Our next task is to consider the case of fixed parti-
cle number. There are two cases to consider, fixed to-
tal particle number and fixed Zeeman field h (appropri-
ate for a electronic thin-film superconductor in an in-
plane magnetic field) and fixed total particle number and
fixed magnetization (or fixed polarization, appropriate
for cold-atom realizations). We start with the first case.
Imposing fixed total particle number causes the first

order phase boundary in the fixed-µ ensemble to open
up into a region of phase separation bounded by curves
hc1 < hc2 as shown in Fig. 1 (bottom panel). The
lower critical Zeeman field hc1 is defined by approaching
the phase transition from the SF regime at fixed parti-
cle number. Inserting the SF phase chemical potential
Eq. (13b) into Eq. (16) leads to:

hc1

✏F
=

8
<

:

1
2
✏
b

✏F
+
p
2� 1 for ✏

b

✏F
>

p
2p

2+1
,

1
2
✏
b

✏F

q
4 ✏F
✏
b

� 1 for ✏
b

✏F
<

p
2p

2+1
.

(17)

The upper critical Zeeman field hc1 is similarly defined by
approaching hc assuming the chemical potential is given
by its value in the imbalanced normal phase. By solv-
ing the particle number equation, we find that the sys-
tem chemical potential µ = ✏F in the imbalanced normal
phase. This finally leads to

hc2

✏F
=

8
<

:

"
b

✏F

h
1p
2
+
�p

2� 1
�
✏F
"
b

i
for "

b

✏F
> 2p

2+1
,

1
2
"
b

✏F

q
1 + 4 ✏F

"
b

for "
b

✏F
< 2p

2+1
.

(18)

for the upper critical Zeeman field at fixed total particle
number.
Finally, we turn to deriving the phase boundaries at

fixed total particle number and fixed imbalance (or fixed
polarization P ). The phase boundaries hc1 and hc2 at
fixed Zeeman field then become phase boundaries Pc1 and
Pc2. However, Pc1 = 0 since the SF phase is balanced.
For Pc2, we need to determine the system polarization in
the imbalanced normal phase when hc2 is reached. In the
regime where the phase transition is into a fully polarized
N phase, the first case of Eq. (18), we’ll have Pc2 = 1. In
the second case of Eq. (18), we use that the magnetization
M = 1

⇡h in the partially polarized N phase, leading to

Pc2 =
1

2

✏b
✏F

r
1 + 4

✏F
✏b

, (19)

that we plot in Fig. 2. As we have mentioned, this result
was calculated assuming a first order transition between
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the SF and N while the actual transition is between the
SF and FFLO. However, since the ground state energy
of the FFLO is only slightly lower than the N phase, the
actual Pc2 is only slightly lower than the result displayed
in Fig. 2.

Thus, neglecting the FFLO phase, there are only two
homogeneous phases in the ground-state phase diagram,
the imbalanced normal phase and the balanced super-
fluid phase. In the 3D case, an additional phase is possi-
ble, the magnetic superfluid phase [13]. The SFM occurs
when the Zeeman field h exceeds �, leading to a partial
depopulation of the pair condensate. This ground state
is restricted to the deep BEC regime for a 3D gas since,
away from this regime, it is preempted by a first order
phase transition. In the present 2D case, we find that
the uniform SFM does not occur anywhere in the phase
diagram. However, we do find a stable FFLO phase over
a wide range of parameters, as we now show.

IV. FFLO PHASE BOUNDARY

To study the FFLO phase, we first assume a continuous
transition, with decreasing h, from the N phase to the
FFLO state, occurring when the curvature of EG vs. �,
at � = 0, becomes zero for some nonzero q. This is
equivalent to 0 = S(h, q, 0) with

S(h, q, 0) =

Z
d2p

(2⇡)2

h N(p)

⇠p� 1
2q"

+ ⇠p+ 1
2q#

� 1

2✏p + ✏b

i
, (20)

where we defined the numeratorN(p) = 1�nF(⇠p� 1
2q"

)�
nF(⇠p+ 1

2q#
) (for the moment generalizing to nonzero tem-

perature T ). We note that the assumption of a continu-
ous transition will be confirmed below (within our choice
of the single plane-wave FFLO ansatz) in Sec. VI where
we study the gap equation for h < hFFLO and find �! 0
for h ! h�

FFLO.
In the limit T ! 0, nF(x) = ⇥(�x), so that N(p)

exhibits discontinuities whenever an argument of one of
the Fermi functions vanishes. We proceed by choosing
the FFLO wavevector to be along the x̂ axis, q = qx̂
(valid since S is independent of this choice), and define
p+(✓) and p�(✓) to be the solutions to ⇠p� 1

2q"
= 0 and

⇠p+ 1
2q#

= 0, with ✓ the angle between p and q. We find:

p±(✓) =
1

2

�p
8(µ̃± h) + q2 cos2 ✓ ± q cos ✓

�
. (21)

As we will show, the behavior of Eq. (20) depends cru-
cially on whether the circles p+(✓) and p�(✓) (that we
can regard as the Fermi surfaces, “boosted” by ± 1

2q) in-
tersect. The two panels in Fig. 4 show these circles for
parameters such that q < qc (left panel) and q > qc (right
panel) where

qc ⌘
p
2(µ+ h)�

p
2(µ� h), (22)

-2 -1 0 1 2

-2
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0

1

2
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FIG. 4: (Color Online) Plots of the curves p±(✓), Eq. (21),
for µ = 1.4 and h = .4 with q = 0.25 (so that q < qc)
in the left panel and q = 0.4 (so that q > qc). Physically,
these correspond to the Fermi surfaces for the spin-" and spin-
# fermions, boosted by ±q/2. The yellow dashed curve is
0 = ⇠p� 1

2q" + ⇠p+ 1
2q# (or p2 = 2µ̃), the curve along which the

denominator of the first term of Eq. (20) vanishes. For an
intermediate q (at qc), it is clear that the circles will touch at
one point; this is the case at the FFLO phase transition.

is the di↵erence in Fermi wavevectors of the two species.
The yellow dashed line in these plots shows where the
denominator in Eq. (20) vanishes.
In the next section, we show that the FFLO phase

transition occurs for q = qc and, subsequently, we show
that the stable FFLO phase always occurs for q > qc. To
see this from a physical perspective, we note the yellow
dashed line in the left and right panels of Fig. 4, which
shows the curve, p2 = 2µ̃, where the denominator of
Eq. (20) vanishes. This vanishing denominator represents
a set of gapless excitations that are susceptibile to pairing
(as in the usual Fermi surface of a balanced fermion gas).
However, for q < qc, the curves p± never cross the yellow
dashed line, indicating that the numerator N(p) always
equals zero for p on the yellow dashed line. For q > qc,
the curves p± cross each other at the same point that
they cross the yellow dashed line, indicating the presence
of low energy fermionic excitations that are susceptible
to pairing. From this qualitative picture, we thus expect
pairing to occur for q > qc, and to be strongest near these
points of intersection.

A. Jensen formula

In the preceding subsection, we claimed that, at the
FFLO phase transition, q = qc. To show this, we must
evaluate the integral in Eq. (20). Although this integral
can be evaluated via contour integration, here we use the
Jensen formula from complex analysis [45], which states
that, for f(z) analytic,

1

2⇡

Z 2⇡

0

d✓ ln |f(ei✓)| = ln |f(0)|+
nX

i=1

ln
1

|ai| , (23)

with |ai| the zeroes of f(z) inside the unit circle |z| < 1.
To use the Jensen formula, we first must evaluate the
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radial momentum p integral. This can be written as

S(h, q, 0) =
1

4⇡2

Z 2⇡

0

d✓

Z 1

0

dp p
h 1

p2 � 2µ̃
� 1

p2 + 2✏b

�⇥(p+(✓)� p)

p2 � 2µ̃
� ⇥(p�(✓)� p)

p2 � 2µ̃

i
. (24)

We evaluate the p integral, treating the divergence at
p =

p
2µ̃ within principal value, obtaining:

S(h, q, 0) = � 1

8⇡2

Z 2⇡

0

d✓ ln
|(p2+(✓)� 2µ̃)(p2�(✓)� 2µ̃)|

2µ̃✏b
.

(25)
To express this in the form of Eq. (23) (albeit with a
di↵erent overall prefactor), we define p±(z) by replac-
ing cos ✓ ! 1

2

�
z + 1

z

�
in Eq. (21). Then, we can write

S(h, q, 0) as

S(h, q, 0) = � 1

8⇡2

Z 2⇡

0

d✓ ln |f�ei✓)|, (26)

f(z) ⌘ z2(p2+(z)� 2µ̃)(p2�(z)� 2µ̃)

2µ̃✏b
. (27)

Note the factor z2 in f(z). This factor is allowed, since
under the replacement z ! ei✓, it will only give a factor
|z2| = 1 in the argument of the logarithm. Additionally,
with this factor f(z) does not have a pole at z ! 0. To
use the Jensen formula, we need |f(0)| = 1

2 µ̃q
2 and the

zeros of f(z), which are determined by the solutions to
p2+(z) = 2µ̃ and p2�(z) = 2µ̃. These are:

z± =
�h±p

h2 � h2
c

hc
, (28)

where hc = q
p
µ̃/2. For h < hc (equivalent to q > qc),

the zeros z± are on the unit circle in the complex plane
(i.e. |z±| = 1), so that they give a vanishing contribution
to the sum in Eq. (23). For h > hc (equivalent to q <
qc), only z+ is inside the unit circle (i.e., |z�| > 1 and
|z+| < 1). Since it is a double zero of f(z), it contributes
twice to the sum in Eq. (23). Combining all terms gives:

S(h, q, 0) =

8
<

:

1
2⇡ ln

p
2µ̃✏

b

h+
p

h2� 1
2 q

2µ̃
for q < qc,

1
4⇡ ln 4✏

b

q2 for q > qc.
(29)

Remarkably, for q > qc (the regime where the curves
p± cross in Fig. 4), S(h, q, 0) is independent of µ and h.
Below, we show that this simple result also holds for the
full integral S(h, q,�) for su�ciently small �. Before
doing this, we first use Eq. (29) to find the location of
the FFLO phase boundary.

B. Calculation of FFLO phase boundary

In Fig. 5 (top panel), we plot S(h, q, 0) for µ = 4 and
for three values of h, using units such that ✏b ⌘ 1. The

0 1 2 3 4 5

0
-0.04
-0.08
-0.12

q

SHh,q,0L

� ��� � ��� � ���
-����
-����

�
����
����

Δ

�(����Δ)

FIG. 5: (Color Online) The top panel shows S(h, q,�) at
� = 0 for µ = 4, ✏b = 1, and h = 3.5 (green long-dashed), h =
3 (blue short-dashed), and h =

p
7 ' 2.65 (red solid), with the

latter showing a finite q pairing instability where S(h, q, 0) =
0. The bottom panel shows S(h, q,�) as a function of � for
two di↵erent sets of parameters (note they overlap at small
� and at large �). The upper black curve shows the case of
µ̃ = 1.3, q = 1.8 and h = 0.28 and the lower red curve shows
the same µ̃ and q values but a larger h (h = 0.5). These curves
show that this function exhibits slope discontinuities at two
values of � that we denote by �c1 and �c2. The equilibrium
value of � in the FFLO state, which satisfies the gap equation
S(h, q,�) = 0, occurs for �c1 < � < �c2. The curves in the
top panel are our analytical results. The curves in the bottom
panel are numerical for �c1 < � < �c1 and analytical for
� < �c1 and for � > �c2 and given in Eq. (34) (although
these analytical results agree with numerical evaluations).

kink in each curve occurs at q = qc, and, consistent
with Eq. (29), the curves overlap for q > qc. To in-
terpret these physically, we note that the normal phase
is stable against a continuous transition if S(h, q, 0) < 0.
Therefore, since the maximum of this curve is the kink
location (at qc) we see that the FFLO phase occurs at
q = qc(µ, hFFLO) and S(hFFLO, q, 0) = 0, the simultane-
ous solution of which is

hFFLO =
q
2µ✏b � ✏2b , (30)

qc = 2
p
✏b, (31)

with the latter formula denoting the universal FFLO
wavevector at the transition discussed above. Thus, we
find that, at the FFLO transition, the momentum-shifted
spin-" and spin-# Fermi surfaces touch at exactly one
point. In the FFLO phase occuring for h < hFFLO, we
will always have q > qc [as in the right panel of Eq. (4)].
In Fig. 1 (top panel), we plot the FFLO phase bound-

ary hFFLO as a red curve. For su�ciently small µ, it
crosses hc(µ) at µ = 5✏b/4, indicated as a blue point in
this figure. To the left of this point, the FFLO phase
transition from the normal phase, occuring with decreas-
ing h, is preceded by the first-order N-SF phase transition
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(so the regime of FFLO vanishes). To the right of this
point, the phase boundary hc, derived above as the N-SF
phase boundary, becomes a SF-FFLO first order tran-
sition. Since the FFLO is only slightly lower in energy
than the N phase, the true hc will be only slightly lower
than that depiced in Fig. 1 (top panel).

The red curve labeled hFFLO in Fig. 1 (bottom panel)
is the location of the continuous FFLO phase transition
at fixed total particle number. To obtain this, we sim-
ply need to use the chemical potential in the imbalanced
normal state µ = ✏F. This gives

hFFLO = ✏b
p
2✏F/✏b � 1. (32)

Finally, we derive the critical polarization for the FFLO
phase in the fixed magnetization and fixed total density
ensemble. Using that the imbalanced normal state mag-
netization is M = n" + n# = h/⇡, we obtain

PFFLO =
✏b
✏F

r
2
✏F
✏b

� 1, (33)

plotted in Fig. 2.
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FIG. 6: (Color Online) The left panel shows where Ep+ < 0
(left blue-shaded region) and Ep� < 0 (right blue shaded
region), with parameters chosen so that � < �c1. The right
panel is the same, but with larger � such that � <⇠ �c1. We
chose µ = 1.4, q = 1, and h = 0.3 for each (in units such that
✏b = 1). For these parameters, �c1 ' 0.523. The left panel is
for � = 0.3 and the right panel is for � = 0.5.

To conclude this section, we have shown that, for
� = 0, the integral controlling the gap equation S(h, q, 0)
has a nonanalytic dependence on q that followed from the
Jensen formula of complex analysis (but which is di�cult
to obtain otherwise). This nonanalyticity, and the onset
of the FFLO phase, occurs when the Fermi circles (de-
picted in Fig. 4) cross. At fixed µ and h, with increasing q
the Fermi circles cross at q = qc. Equivalently, at fixed µ
and q and decreasing h the Fermi circles cross at h = hc

(defined below Eq. (28). In the next section, we show
that S(h, q,�) also possesses nonanalyticities at nonzero
�, complicating the problem of determining the stable
pairing amplitude in the FFLO phase.

V. ANALYSIS OF S(h, q,�)

In the preceding sections, we analyzed the phase dia-
gram of 2D imbalanced Fermi gases and found the phase
boundary for the onset of the FFLO phase. Our analysis
relied on calculating the gap equation integral, S(h, q,�),
in the limit �! 0, finding that S(h, q, 0) is independent
of µ and h for q > qc.
To understand the strength of pairing in the FFLO

state below hFFLO, in this section we analyze the � de-
pendence of S(h, q,�). We will show that S(h, q,�) sat-
isfies, for q > qc and T ! 0,

S(h, q,�) =

(
1
4⇡ ln 4✏

b

q2 for � < �c1,
1
4⇡ ln ✏

bp
�2+µ̃2�µ̃

for � > �c2,
(34)

with �c1 and �c2 defined below. For clarity, we em-
phasize here the qc is defined by Eq. (22). In contrast,
Eq. (31) denotes the value of qc at the FFLO phase tran-
sition.
In Fig. 5 (bottom panel) we show S(h, q,�) as a func-

tion of � for two di↵erent typical parameter choices (the
black curve and the red curve), obtained by numerically
integrating the integral governing S. Remarkably, con-
sistent with the first line of Eq. (34), S is indeed inde-
pendent of � for small �, and equal to the second line of
Eq. (29). The two slope discontinuities (or kinks) in these
curves are at �c1 and �c2, and we find that the stable
FFLO phase always occurs for �c1 < � < �c2. Al-
though we have not found an analytic form for S(h, q,�)
in this regime, our method (based on the Jensen for-
mula) for demonstrating the behavior in Eq. (34) leads
to a useful analytical approximation to S(h, q,�) valid
for � >⇠ �c1 (that we present in Sec. VI).
We start by directly evaluating some of the integrals

in Eq. (8). We find:

S(h, q,�) = S0 + S1, (35)

S0 ⌘ 1

4⇡
ln

✏bp
�2 + µ̃2 � µ̃

, (36)

S1 ⌘ � 1

4⇡2

Z 2⇡

0

d✓

Z 1

0

dp p
nF(Ep+) + nF(Ep�)

2Ep
, (37)

where S1 includes the terms with Fermi functions.
We now analyze S1 in the limit of T ! 0, where

nF(x) ! ⇥(�x), so that the integrand is only nonzero
for momenta such that Ep± < 0. To proceed, we need to
find the solutions to Ep± = 0, which are

0 = Ep ±
�
h+

p · q
2m

�
, (38)

which, after moving Ep to one side, squaring both sides,
simplifying and settingm = 1, takes the form of a quartic
equation [46]:

p4� (4µ̃+ q2 cos2 ✓)p2�4hq cos ✓p+4(�2�h2+ µ̃2) = 0.
(39)
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Here, we took q along the positive x axis with ✓ the angle
between p and q. The solution to the quartic equation
is rather complex, and we relegate some of the details to
Appendix A. Briefly, although there are generally four so-
lutions to the quartic equation, in the present case there
are at most two real and positive solutions, which are
given by:

p2(✓) = Ŝ +
1

2

r
�4Ŝ2 � 2p� q̂

Ŝ
, (40a)

p1(✓) = Ŝ � 1

2

r
�4Ŝ2 � 2p� q̂

Ŝ
, (40b)

defining two momenta that, when they are real, define the
boundaries of the regions where Ep± < 0, as illustrated

in Fig. 6. Here, p, q̂ and Ŝ are defined in Appendix A,
with the hats on q̂ and Ŝ intended to distinguish them
from the quantities q and S.

We now evaluate the radial p integral of Eq. (37) at
T = 0 for a particular angle ✓. There are two possible
cases to consider. In the first case, for angles ✓ such
that the radial p integration intersects one of the regions
where Ep± < 0, the Fermi functions e↵ectively restrict
the integration range to p1 < p < p2. In the second case,
for angles ✓ such that the radial p integration does not
intersect a region where Ep± < 0, the integrand vanishes.
In both cases, the result of the radial p integral gives:

S1 =
1

8⇡2

Z 2⇡

0

d✓ ln
���
p21 � 2µ̃+ 2Ep1

p22 � 2µ̃+ 2Ep2

���. (41)

This follows because, when p1 and p2 are real, the inte-
grand comes from the radial p integral corresponding to
the first case. In the second case, p1 and p2 are complex
quartic equation solutions (that are complex conjugates
of each other), and the absolute value bars inside the
logarithm ensure that the argument of the logarithm is
unity, giving zero for the integrand.

In the next subsection we demonstrate the second line
of Eq. (34).

A. Case of � > �c2

The form of Eq. (41) suggests that we may apply the
Jensen formula Eq. (23) if the argument of the logarithm
is analytic. We will show that this function is analytic
for � < �c1 (allowing us to use the Jensen formula),
but that a branch cut appears for � > �c1. Here, �c1

and �c2 (obtained below) are defined by the values of
� at which the regions of Ep± < 0 shrink to zero. In
particular, for � < �c1, the regions where Ep+ < 0 and
Ep� < 0 are given by the kidney shaped blue regions
plotted in Fig. 6. Note that the leftmost region (where
Ep+ < 0) is smaller than the rightmost region (where
Ep� < 0).

At �c1, the region where Ep+ < 0 disappears, as de-
picted in the right panel of Fig. 6 (which is for parameters

such that � is slightly below �c1). For �c1 < � < �c2,
only the rightmost blue shaded region, where Ep� < 0
exists. It shrinks with increasing � until, at �c2, the
region where Ep� < 0 disappears.
Thus, for the case of � > �c2, both Fermi functions

in the numerator of Eq. (37) vanish and S1 = 0. This
immediately yields the second line of Eq. (34). Thus, our
remaining tasks are to derive the behavior in the regime
� < �c1 [the first line of Eq. (34)] and to obtain an
expression for �c1 and �c2.

B. Case of � < �c1

Turning to the regime of � < �c1, we first rewrite
Eq. (41) using Eq. (4):

S1 =
1

8⇡2

Z 2⇡

0

d✓ ln
���
(p21 � 2µ̃+ 2Ep1)(p

2
2 � 2µ̃� 2Ep2)

4�2

���,

(42)
which, defining z = ei✓, can be written as

S1 =
1

8⇡2

Z 2⇡

0

d✓ ln |f(ei✓)|, (43)

f(z)=
(p21(z)�2µ̃+2Ep1(z))(2Ep2(z)�p22(z)+2µ̃)

4�2z2
. (44)

Note that we included a factor of z2 in the denominator,
which is mathematically correct since the integral is on
the complex unit circle |z2| = 1. The reason for including
this factor is it simplifies the usage of the Jensen formula,
which relies on understanding the behavior of f(z) inside
the unit circle. In this expression, p1(z) and p2(z) are
defined by making the replacement

cos ✓ ! 1

2

�
z +

1

z

�
, (45)

in the quantities appearing in Eq. (40).
The function f(z) has no zeros inside the unit circle, so

to use the Jensen formula we only need f(0). This in turn
requires p1(z) and p2(z) for z ! 0, which are most easily
obtained by returning to the original quartic equation
in the limit z ! 0. Making the replacement Eq. (45) in
Eq. (39), in the limit z ! 0 we have solutions of the form
p / az or p / b/z. Plugging in these solutions, Taylor
expanding to leading order in small z, and solving for p
yields for a and b:

a =
4

q

�� h±
p
�2 + µ̃2), (46a)

b = ±q

2
, (46b)

describing four solutions to our quartic equation for z !
0. We need to know which of these solutions corresponds
to our solutions, p1(z) and p2(z), in the limit z ! 0.
To do this, for simplicity, we can approach z = 0 along
the positive real axis, so that all four solutions are real.
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From the general theory of the quartic equation, it is
known that the properties of quartic equation solutions
can be characterized by the discriminant �d [defined in
Eq. (A14)] and the quantity ⇢ defined in Eq. (A16). The
latter is given by (upon using Eq. (45)),

⇢ = �32µ̃� 2q2
�1
z
+ z

�2
, (47)

and is negative for z real and positive. Similarly, the dis-
criminant, although rather complicated, has the limiting
form

�d ' q8

4z8
�
�2 + µ̃8

�
, (48)

for z ! 0 and is positive for z real and positive. When
�d > 0 and ⇢ < 0, as is the case here, the quartic equa-
tion solutions are either all complex or all real. Clearly,
the present case is the latter, with the explicit form of
the four quartic solutions given in Eq. (A5), where the
parameter b = 0 and Ŝ > 0. Since the solutions x1,2 are
negative, the analytical continuation of p1 and p2 are the
two + cases in Eqs. (46). Furthermore, since p2 > p1, we
have:

p2 ⇠ q

2z
, (49)

p1 ⇠ 4

q

�� h+
p
�2 + µ̃2)z. (50)

The preceding arguments showed how the quartic equa-
tion solutions behave under the replacement Eq. (45).
Now all that remains is to plug these into Eq. (44) and
take the limit z ! 0. We find:

f(0) =
4(
p
�2 + µ̃2 � µ̃)

q2
, (51)

which, using Eq. (23), leads to:

S1 =
1

4⇡
ln

4(
p
�2 + µ̃2 � µ̃)

q2
, (52)

and S(h, q,�) = 1
4⇡ ln 4✏

b

q2 , demonstrating the first line of

Eq. (34).
This, as described above, for small � the gap equation

integral is independent of � (clearly invalidating using a
Taylor expansion as a strategy to approximately evaluate
S(h, q,�)). Our remaining tasks are to determine the
critical pairing amplitudes �c1 and �c2 and to show that
a branch cut in Eq. (44) appears for � > �c1.

C. Critical pairing amplitudes �c1 and �c2

In this section, we will relate the critical pairing am-
plitudes �c1 and �c2 to the quartic equation discrimi-
nant �d(✓). The discriminant (discussed in Appendix A)
helps classify properties of quartic equation solutions. Al-
though it is defined for any angle ✓ (since Eq. (39) is

defined for any ✓), in this section we will be mainly in-
terested in the discriminant for ✓ = 0. As shown below,
and illustrated in Fig. 7, �d(0) vanishes at �c1 and �c2.
We find this to be the simplest way to determine these
quantities.
To define �c1 and �c2, consider parameter ranges in

which both of Ep+ and Ep� are negative for some p. In
Fig. 6 (left panel) we depict such a case, with Ep+ < 0 in
the left blue region and Ep� < 0 in the right blue region.
With increasing � (holding other parameters fixed), the
leftmost blue region vanishes at �c1 and the rightmost
blue region vanishes at �c2.

� ��� � ��� � ��� �

-���
�

���
�

Δ

��-�Δ�(�)

↓
Δ��

↓
Δ��

FIG. 7: Plot of the quartic equation discriminant, �d(✓), at
angle ✓ = 0 (and multiplied by 10�6) for µ̃ = 1.3, h = 0.6
and q = 2 and as a function of �. As shown in Sec. VC, the
qualitative behavior shown here, in which �d(0) vanishes at
�c1 and �c2, always occurs in the FFLO regime. Therefore,
we can determine �c1 and �c2 by solving �d(0) = 0 for the
pairing amplitude �.

We now relate �c1 and �c2 to our quartic equation
solutions. Since the edges of the regions where Ep+ < 0
and Ep� < 0 are determined by p1(✓) = p2(✓), to find
�c1 we need to solve p1(✓) = p2(✓) at ✓ = ⇡. Similarly,
�c2 is obtained by solving p1(✓) = p2(✓) at ✓ = 0.
Examining Eq. (40), we see that the condition p1(✓) =

p2(✓) implies the vanishing of the argument of the square
root, or R�(✓) = 0 where

R±(✓) = �4Ŝ2 � 2p± q̂

Ŝ
(53)

= �4Ŝ2 + 2q2 cos2 ✓ + 8µ̃⌥ 4 cos ✓hq

Ŝ
, (54)

where we emphasize that p, q̂ and Ŝ all depend on ✓.
Here, R� appears in the quartic equation solutions defin-
ing the boundaries where Ep± cross zero, andR+ appears
in the other two quartic equation solutions.
The preceding discussion shows that the region where

Ep+ < 0 vanishes when R�(⇡) = 0, defining �c1. With
further increasing �, the region where Ep� < 0 van-
ishes when R�(0) = 0, defining �c2. However, since
the function Ŝ depends only on cos2 ✓ (so that it is the
same at ✓ = 0 and at ✓ = ⇡), Eq. (54) implies that
�c2 is equivalently defined by R+(⇡) = 0. Thus, �c1 is
defined by R�(⇡) = R+(0) = 0 and �c2 is defined by
R�(0) = R+(⇡) = 0.
We can furthermore connect R±(✓) to the discrimi-

nant �d(✓), using Eq. (A15) of the Appendix that relates
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�d(✓) to the four quartic solutions. This equation is

�d =
X

i<j

(xi � xj)
2, (55)

with the xi (i = 1, · · · 4) being the four quartic solutions.
By plugging in our quartic solutions, and simplifying, we
find

�d(✓) = R+(✓)R�(✓)
1

16Ŝ4

�
128Ŝ6 + 32Ŝ4p+ q̂2)2, (56)

showing that �d(✓) also must vanish, for ✓ = 0 and ✓ =
⇡, at �c1 and �c2. Indeed, by examining Eq. (A14) of
Appendix A, which relates �d(✓) to the quartic equation
coe�cients via the functions �0 and �1, we see that
�d(✓) is also only dependent on cos2 ✓, so that it has the
same value at ✓ = 0 and ✓ = ⇡. Thus, we need only
consider �d(0).

The explicit expression for the discriminant at ✓ = 0
is:

�d(0) = 64
⇣
h2q2(q2 + 4µ̃)3 � 108h4q4 + �̃2

⇥
(q2 + 4µ̃)4

�144h2q2(q2 + 4µ̃)
⇤
+ 32�̃4(q2 + 4µ̃)2 + 256�̃6

⌘
, (57)

where we defined �̃2 ⌘ �2 � h2 + µ̃2. We obtain the
critical pairing amplitudes by solving �d(0) = 0, which
is a cubic equation for �2. Thus, we can find �c1 and
�c2 by solving this cubic equation and taking the square
root. Since the cubic equation solution is well known
(and complicated), we will not reproduce the result but,
instead, now show that �c1 and �c2 are the only real
solutions to �d(0) = 0.

To do this, we note that, since the discriminant of the
cubic equation for �2 is positive, it has three real so-
lutions, two of which are �2

c1 and �2
c2. However, since

�d(0) > 0 for �! 0 (for small h in the FFLO regime),
and �d(0) ! +1 for large �, it is clear that there can-
not be three real and positive solutions for �d(0) = 0.
The third solution to �d(0) must be for �2 < 0, and the
two real and positive solutions to �d(0) = 0 determine
�2

c1 and �2
c2.

Therefore we conclude that �d(0) as a function of �
generically looks like Fig. 7, with �d(0) > 0 for � < �c1

and � > �c2 and �d(0) < 0 for � < �c1. Although
the full expressions for �c1 and �c2 are too unwieldy
to show, they are easily obtained from Eq. (56) and the
known cubic equation solutions.

D. Branch cut for � > �c1

Our final task in this section is to show that a branch
cut appears along the negative real axis for � > �c1. To
do this, we consider our quartic equation solutions, p1(z)
and p2(z), in the complex plane, that are obtained by
replacing cos ✓ ! 1

2

�
z+ 1

z

�
in Eq. (40). We also consider

the generalized discriminant, �d(z), given by:

�d(z) = R+(z)R�(z)
1

16Ŝ4

�
128Ŝ6 + 32Ŝ4p+ q̂2)2, (58)

R±(z) = �4Ŝ2 +
1

2
q2
�
z +

1

z

�2
+ 8µ̃⌥ 2hq

Ŝ

�
z +

1

z

�
,(59)

by analogy with Eq. (56). We emphasize that Ŝ, p, and
q̂ all depend on z, although we have not displayed their
dependence. Since p1(z) and p2(z) depend on R� via
p1,2(z) = Ŝ ± 1

2

p
R�(z), a vanishing of R�(z) for z on

the real axis implies a branch cut in p1,2(z) (and therefore
a branch cut in Eq. (26)), invalidating the use of the
Jensen formula. In this section we show that this occurs
for � > �c1.
We start in the regime � < �c1 and examine the be-

havior of �d(z) on the real axis. Since the points z = �1
and z = 1 correspond to ✓ = ⇡ and ✓ = 0 on the unit
circle, our previous discussion shows that �d(z) > 0 at
z = ±1 when � < �c1. Furthermore, since the ✓ de-
pendence of �d(✓) enters only via cos2 ✓, we know that
the z dependence of �d(z) enters only via

�
z+ 1

z )
2. This

implies that �d(z) only has extrema at z = ±1. There-
fore, for � < �c1, �d(z) > 0 for all z on the real axis.
Along with the fact that ⇢(z) in Eq. (A16) is negative,
this implies that the quartic equation has four real so-
lutions, two of which are p1(z) and p2(z). We conclude
that no branch cuts in p1(z) and p2(z) exist on the real
axis in the range of interest z = �1 < z < 1.
Now consider � � �c1. Our previous analysis shows

that R�(✓) and the discriminant �d(✓) vanish for ✓ = ⇡
at � = �c1, and for � > �c1 we found that �d(✓) is
negative for ✓ = ⇡. This implies that �d(z) < 0 for z in
the vicinity of �1 on the real axis, so that two of the four
quartic solutions are complex. The two complex solutions
are p1(z) and p2(z), since the other two solutions involve
R+(z) that is positive. Therefore, R�(z) < 0 for z on the
negative real axis, introducing a branch cut in Eq. (26).
To conclude this section, we see that, indeed, in the

T = 0 limit the gap equation integral Eq. (8) has the
form displayed in Eq. (29), with the behavior for �c1 <
� < �c2 being unknown (analytically). A numerical
integration of Eq. (8) (plotted in Eq. (5)) confirms the
form of S(h, q,�) for � < �c1 and for � > �c2, and also
shows that S(h, q,�) has slope discontinuities at�c1 and
�c2.

VI. APPROXIMATE SOLUTION FOR � >⇠ �c1

The non-analytic structure of S(h, q,�) precludes a
Taylor expansion in � for small � at zero temperature,
since S(h, q,�) is exactly �-independent for � < �c1.
FFLO gap equation solutions, satisfying S(h, q,�) = 0,
thus occur for � > �c1. We note that this does not
imply a first order transition, since�c1 vanishes at hFFLO

(as we show below). Indeed, we find that the transition
is continuous, with �c1 increasing from zero as h drops
below hFFLO while maintaining � > �c1.
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To understand this behavior, and to find an approx-
imate analytical expression for the degree of pairing in
the FFLO phase, in this section, we make an expansion
in small � � �c1 that holds close to the FFLO phase
transition. We start by finding an approximate form for
�c1. We first note that Ep+ only crosses zero for q > qc,
where we recall that qc, defined in Eq. (22), is the di↵er-
ence in Fermi wavevectors of the two species. Since �c1

is defined by the pairing amplitude at which the regime
where Ep+ < 0 disappears, we see that �c1 must vanish
for q ! q+c . Note that, since q = qc at hFFLO, this is
equivalent to the assertion (made above) that �c1 ! 0
for h ! hFFLO.

We proceed by assuming �c1 can be Taylor expanded
in small (q�qc) as �c1 = a(q�qc)+b(q�qc)2+ · · · , with
a and b unknown coe�cients, and plug this ansatz into
�d(0) = 0 (the vanishing of the quartic equation discrim-
inant). Keeping only the linear order term proportional
to (q � qc), we find:

�c1 ' 1p
2
(µ2 � h2)1/4(q � qc). (60)

Henceforth, in the subsections below, we will use Eq. (60)
for �c1.

A. Gap equation integral for � >⇠ �c1

Our next task is to find an approximation for S(h, q,�)
that is valid for � >⇠ �c1. We do this in an indirect
way that makes use of the Jensen formula result for the
behavior of S(h, q,�), allowing us to infer the behavior of
this quantity for� > �c1 from the behavior for� < �c1.

We start by writing Eq. (37) as S1 = S+ + S� with

S± = �
Z

d2p

(2⇡)2
nF(Ep±)

2Ep
. (61)

For � <⇠ �c1, the region where the integrand of S+ is
nonzero is about to shrink to zero, allowing us to accu-
rately approximate the integral in this limit. The result
is:

S+ =
1

4⇡h

r
qc

q � qc

�
���c1

�
. (62)

The calculations leading to Eq. (62) are described in Ap-
pendix B.

The result Eq. (62) holds for � <⇠ �c1. However, our
goal is to understand the region � >⇠ �c1. To determine
this, we note that our previous analysis tells us that, for
� < �c1, the full sum S = S0 + S+ + S� is

S =
1

4⇡
ln

4✏b
q2

. (63)

Note that the fact that S is �-independent for � < �c1

occurs despite the fact that S0, S+ and S� all depend

on �; this nontrivial behavior follows from the Jensen
formula as described in the preceding section.
Using Eq. (62), then, we obtain

S� =
1

4⇡
ln

4✏b
q2

� S0 � 1

4⇡h

r
qc

q � qc

�
���c1

�
. (64)

Note that, while S+ vanishes for � > �c1 (due to the
Fermi function vanishing), S� does not. In fact, S�
should be a smooth function of � since its integrand,
and the integration range, are smooth functions of �.
This implies that Eq. (64) should hold for � >⇠ �c1.
Combining this with the other terms determining S, we
have

S(h, q,�) =
1

4⇡
ln

4✏b
q2

� 1

4⇡h

r
qc

q � qc

�
���c1

�
. (65)

Thus, although a direct approximate evaluation of S�
would be di�cult due to the shape of the integration
region (e.g., the rightmost blue shaded regions of the left
and right panels of Fig. 6), the Jensen theorem allows
us to connect this quantity to S+. We are now able to
obtain an approximate result for the stationary pairing
amplitude, given by S(h, q,�) = 0:

� = �c1 + h

r
q̄

qc
ln

4✏b
q2

, (66)

where we defined q̄ = q � qc. This equation must be
solved along with the stationarity condition for the FFLO
wavevector q. To find the latter, we first determine the
ground-state energy Eq. (6) for � >⇠ �c1.

B. Ground-state energy

To obtain the mean-field ground-state energy EG, we
simply need to integrate the gap equation with respect
to �. This follows because S(h, q,�) is given by @E

G

@� =
�2�S(h, q,�). Therefore, up to an overall constant of
integration, we have:

EG = �2

Z �

0

dx xS(h, q, x). (67)

We note that, since the FFLO wavevector q is only de-
fined in the presence of pairing, EG is independent of
q in the limit of � ! 0. This can be verified directly
from examining Eq. (6) in this limit (it also holds for the
free energy F , Eq. (2)). This furthermore implies that
the abovementioned constant of integration in Eq. (67)
must be q independent, and that di↵erentiating EG (as
approximated by Eq. (67)) with respect to q leads to the
correct equation for the FFLO wavevector.
Henceforth we shall assume �c1 < � < �c2, and write

Eq. (67) as:

EG = �2

Z �
c1

0

dx xS(h, q, x)� 2

Z �

�
c1

dx xS(h, q, x).

(68)
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The first integral in Eq. (68) is trivial, because S is �-
independent in this regime. For the second integral we’ll
use our approximate result Eq. (65). Evaluating the re-
sulting integral finally leads to:

EG =
1

4⇡
�2 ln

q2

4✏b
+

1

12⇡h

r
qc

q � qc
(���c1)

2(2�+�c1),

=
1

12⇡h

r
qc

q � qc

�
�3

c1 ��3
���2S(h, q,�), (69)

where in the second line we see that EG does not contain
a term linear in � (as one might have expected from the
way we wrote the polynomial in the first line).

Analytically finding the stationary FFLO wavevector,
q, turns out to be somewhat tricky despite the approxi-
mations made so far. To find an approximate formula for
q that is valid near the continuous FFLO transition, it
is convenient to di↵erentiate the first line of EG, keeping
� arbitrary (i.e., not necessarily the stationary solution).
This leads to:

@EG

@q
=

1

96⇡hq̄2(qc + q̄)
(70)

⇥
h
6�2q̄3/2

�
8h

p
q̄ �

p
2
p
qc(qc + q̄)(µ2 � h2)1/4

�

�8�3pqcq̄(qc + q̄) + 5
p
2
p
qcq̄

7/2(qc + q̄)(µ2 � h2)3/4
i

where we inserted the explicit expression for �c1 and
we recall that q̄ ⌘ q � qc. The stable FFLO wavevector
satisfies @E

G

@q = 0, but solving this generally is an arduous
task. In the vicinity of the transition, the stationary �
and q̄ both vanish linearly with h � hFFLO. Thus we
shall Taylor expand the quantity in square brackets in
Eq. (70) in small� and q̄. To do this, we formally replace
�! �� and q̄ ! �q̄, Taylor expand in small �, and keep
terms up to O(�3). After setting � ! 1 simplifying, we
obtain

0 = �3 +
3

2
�2�c1 � 5

2
�3

c1 �
6�2h

q
3/2
c

q̄3/2, (71)

the approximate stationarity condition for the FFLO
wavevector. Note that the term that is of highest or-
der in � (and therefore the smallest) is the final term in
Eq. (71). However, neglecting this leads to a cubic equa-
tion for�, with only one real solution that is� = �c1. In

terms of q, this corresponds to q̄ =
p
2�

(µ2�h2)1/4
. Therefore,

within this approximation the stationary q is adjusted to
keep � equal to �c1. However, this solution is unsat-
isfactory, because we know the correct solution for � is
slightly above �c1, and we are interested in this small
di↵erence.

We then proceed by assuming q̄ =
p
2�

(µ2�h2)1/4
+✏. Plug-

ging this into Eq. (71), keeping only terms up to O(✏),
solving for ✏, and dropping subdominant terms in �, we
obtain:

q̄ =

p
2�

(µ2 � h2)1/4
�

25/4h
�
�
q
c

�3/2

(µ2 � h2)5/8
, (72)

our final expression for the FFLO wavevector near the
FFLO transition. In the subsequent section, we approx-
imately solve this simultaneously with the gap equation
to study the stable FFLO solution.

C. Solving the remaining equations

We are now left with the following two equations for q̄
and �:

q̄ =

p
2�

(µ2 � h2)1/4
�

25/4h
�
�
q
c

�3/2

(µ2 � h2)5/8
, (73)

� = �c1 + h

r
q̄

qc
ln

4✏b
q2

, (74)

where�c1 is given by Eq. (60). We now endeavor to solve
these simultaneously (close to the transition) to establish
� and q in the FFLO phase. To simplify our analysis,
we define

� = ax+ bx3/2, (75)

q̄ = cx+ dx3/2, (76)

q̃ = ex+ fx3/2, (77)

with x ⌘ hFFLO � h is the distance to the transition,
which we treat as a small parameter. Recall hFFLO =
✏b
p

2µ/✏b � 1. Note that, although we only obtain a re-
sult valid to O(x), to obtain this we need to keep terms
up to O(x3/2).
Here, q̃ = qFFLO � q > 0, with qFFLO = 2

p
✏b the

wavevector at the onset of the FFLO phase transition.
Clearly, q̄ and q̃ are not independent since they both
contain q and can be related by Taylor expanding qFFLO

in small x. Doing this leads to the relation

e =
hFFLOp
✏b(µ� ✏b)

� c. (78)

We now plug Eqs. (75), (76), and (77) into Eqs. (73) and
(74), expanding all quantities to O(x3/2) and demanding
equality order by order in x. We find:

c =

p
2ap

µ� ✏b
, (79)

d =

p
2bp

µ� ✏b
� a3/2

p
2µ� ✏b

21/4✏1/4b , (µ� ✏b)5/4
(80)

b =
1p
2
d
p
µ� ✏b +

1p
2
e✏

1/4
b

p
c

r
2µ

✏b
� 1, (81)

that lead to the final results

a =

p
2

3

hFFLOp
✏b(µ� ✏b)

, (82)

e =
1

3

hFFLOp
✏b(µ� ✏b)

. (83)
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Inserting these results into our equations for � and q
leads to our final approximate results

� '
p
2

3

hFFLOp
✏b(µ� ✏b)

(hFFLO � h), (84a)

q ' 2
p
✏b � 1

3

hFFLOp
✏b(µ� ✏b)

(hFFLO � h), (84b)

showing a continuous onset of FFLO order for h <
hFFLO. In Fig. 3, we plot these curves (dashed lines)
for the case of µ = 3✏b. The red dots show the results
obtained by numerically minimizing the full mean-field
ground state energy, showing agreement close to the tran-
sition but noticeable deviations at lower h.

VII. EFFECT OF FINITE TEMPERATURE

We have found that the integral controlling the gap
equation for a 2D FFLO state, S(h, q,�) possesses a
nonanalytic structure, as a function of the pairing am-
plitude �, that invalidates a Taylor series in small �
(along the lines of Ginzburg-Landau theory) in the limit
of zero temperature. A natural question to ask is whether
our findings are relevant given that all experiments occur
at finite temperature. Although we leave a full analysis
of the finite temperature behavior of the 2D FFLO state
to future work, in this section we briefly touch on this
question.

� ��� � ��� � ��� �
-����
-����
-����

�
����

Δ

�(����Δ��)

� ��� � ��� � ��� �
-����
-����
-����

�
����

Δ

�(����Δ)

FIG. 8: (Color Online) The top panel shows the function
S(h, q,�, T ) for µ = 1.3, h = 0.5, and q = 1.8 (in units such
that ✏b = 1) and kBT = 0.1µ. The solid black curve is an
exact numerical integration and the red dashed curve is the
quadratic order approximation Eq. (85) with the coe�cients
calculated numerically, showing a large discrepancy between
the gap equation solutions (given by S(h, q,�, T ) = 0) within
the two approaches. The bottom panel shows the same curves
but for larger temperature (kBT = 0.25µ), showing that the
quadratic order approximation holds at larger T .

As depicted in Fig. 8, we find that, at finite T , the

singularities in S(h, q,�) are smoothed out. This can be
traced to the fact that the Fermi functions are no longer
sharp steps for T > 0. Therefore, a Ginzburg-Landau
expansion of the form

S(h, q,�, T ) = S(h, q, 0, T )+�2S0(h, q, 0, T )+· · · , (85)

with S0(h, q, 0, T ) = @S(h,q,�,T )
@�2

���
�2!0

, is (technically)

valid. Here, we have added a temperature argument to
this function that is defined in Eq. (8). However, al-
though such an expansion can be in principle used to
solve the gap equation S(h, q,�, T ) = 0, in practice one
typically terminates the expansion at finite �, for exam-
ple at quadratic order as in Eq. (85). Such a truncation
fails at su�ciently low T , as illustrated in Fig. 8, which
shows the numerically calculated function S(h, q,�, T )
for the case of µ = 1.3, h = 0.5, and q = 1.8 (in units
such that ✏b = 1). In each panel the solid black curve is
the exact numerical integration and the red dashed curve
is the quadratic-order Ginzburg-Landau approximtion.
The top panel is for low temperature (kBT/µ = 0.1),

showing that the true gap equation solution (deter-
mined by S(h, q,�, T ) = 0), is at � ' 1.22. This is
much smaller than that predicted by the quadratic-order
Ginzburg-Landau expansion, with the red dashed curve
intersecting zero at � ' 2.83. Note that the curves in
the top panel do overlap at low �, showing that the �-
independent behavior of S(h, q,�) for � < �c1 becomes
a very small quadratic order dependence of S(h, q,�, T )
at nonzero temperature.
The bottom panel compares S(h, q,�, T ) to the pre-

diction of the quadratic order approximation to Eq. (85)
at a higher T , with kBT/µ = 0.25. Clearly, these agree
well, showing that the Ginzburg-Landau theory does hold
at higher T . Indeed, we must emphasize that, strictly
speaking, Ginzburg-Landau theory is valid for T ! Tc

and the results of the present paper do not invalidate
this. However, we expect that our zero temperature re-
sults may hold until temperatures of the order of ⇠ 0.1µ.

VIII. CONCLUDING REMARKS

To conclude, we find that even the simplest 2D FFLO
phase, based on a single plane-wave ansatz, has an ex-
tremely nontrivial structure in which the gap equation,
determining the location of the phase transition and the
strength of pairing � in the FFLO state possesses nonan-
alyticities as a function of � and the FFLO wavevector
q. Although Ginzburg-Landau theory formally holds at
any nonzero temperature (if one keeps terms to all orders
in the pairing amplitude �), in practice one typically re-
tains terms to quadratic or quartic order in �, which
yields results that are very di↵erent from numerical so-
lutions of the gap equation.
We find approximate analytic formulas for the phase

boundaries in a 2D imbalanced Fermi gas and also find
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that the equilibrium � can be of the order of the two-
body binding energy, making it plausible to find the
FFLO state in 2D imbalanced Fermi gases.

We conclude this section by noting some natural ex-
tensions of this work. One clear extension is to further
investigate how the gap-equation nonanalyticities impact
nonzero-temperature quantities and to fully investigate
the phase diagram as a function of temperature, inter-
action strength and population imbalance. Although we
have only studied the simplest single plane wave ansatz
(�(r) = �eiq·r), higher plane-wave FFLO states (such
as the LO state with �(r) = � cosq · r) are expected
to be more stable than the single plane-wave state. Fur-
thermore, since these higher plane-wave FFLO states are
often studied within a Ginzburg-Landau approach (see,
e.g., Ref. [47]), it is natural to consider extending the
present work to determine how the nonanalyticities stud-
ied here impact such complex FFLO-type phases. Ad-
ditionally, cold atom experiments often achieve the 2D
limit using an optical lattice to split a 3D atom cloud
into an array of quasi-2D pancakes. At low optical lattice
depth these clouds are expected to become coupled and
the present framework could be extended to describe this
2D-3D crossover. Finally, fluctuation e↵ects are expected
to be strong in 2D [38], and it is essential to determine
how they will a↵ect the FFLO phase.
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Appendix A: Quartic equation

In this section we recall the solution to the quartic
equation [46]. A general quartic equation is of the form

ax4 + bx3 + cx2 + dx+ e = 0, (A1)

which, comparing to Eq. (39), we’ll need for a = 1, b = 0
and

c = �(4µ̃+ q2 cos2 ✓), (A2)

d = �4hq cos ✓, (A3)

e = 4(�2 � h2 + µ̃2). (A4)

The general solution to the quartic equation is [46]:

x1,2 = � b

4a
� Ŝ ± 1

2

r
�4Ŝ2 � 2p+

q̂

Ŝ
. (A5a)

x3,4 = � b

4a
+ Ŝ ± 1

2

r
�4Ŝ2 � 2p� q̂

Ŝ
, (A5b)

where x2 and x4 take the � in each line.
Here we defined:

p =
8ac� 3b2

8a2
= �4µ̃� q2 cos2 ✓, (A6)

q̂ =
b3 � 4abc+ 8a2d

8a3
= �4hq cos ✓, (A7)

where the final equalities apply to the present case.
We also define:

Ŝ =
1

2

s

�2

3
p+

1

3a

�
Q+

�0

Q

�
, (A8)

Q =
3

s
�1 +

p
�2

1 � 4�3
0

2
, (A9)

Here, �0 and �1 are :

�0 = c2 � 3bd+ 12ae, (A10)

= 48(�2 � h2 + µ̃2) + (�4µ̃� q2 cos2 ✓)2,(A11)

and

�1 = 2c3 � 9bcd+ 27b2e+ 27ad2 � 72ace, (A12)

= 432h2q2 cos2 ✓ + 288(�2 � h2 + µ̃2)(4µ̃+ q2 cos2 ✓)

�2(4µ̃+ q2 cos2 ✓)3. (A13)

Note that Ŝ and Q are too complex to write out explic-
itly for the present case. In terms of �0 and �1, the
discriminant �d is

�d = � 1

27

�
�2

1 � 4�3
0

�
. (A14)

Additionally, �d can be written in terms of the quartic
equation solutions as

�d =
X

i<j

(xi � xj)
2, (A15)

with the sum being over all pairs of solutions.
The quartic equation solutions are further character-

ized by the functions

⇢ = 8ac� 3b2 = �8(4µ̃+ q2 cos2 ✓), (A16)

D = 64a3e� 16a2c2 + 16ab2c� 16a2bd� 3b4(A17)

= 256(�2 � h2 + µ̃2)� 16(4µ̃+ q2 cos2 ✓)2,(A18)

which determine the nature of the roots in various
regimes. Our p1 and p2 are given by x3 and x4 since
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x1,2 are negative for our parameters (when they are real).
Therefore we define:

p2(✓) = S +
1

2

r
�4S2 � 2p� q̂

S
, (A19a)

p1(✓) = S � 1

2

r
�4S2 � 2p� q̂

S
. (A19b)

For angles ✓ such that p1 and p2 are real, these will define
the boundaries of the regions where Ep± < 0. However,
in the main text we’ll need these solutions even when
they are complex, which occurs for angle ✓ that do not
intersect (for any radial p) a region where Ep± < 0.

Appendix B: Approximate calculation of S+

In this section, we approximately evaluate the integral
S+ in the region � <⇠ �c1. A direct integration of the
radial p integral gives

S+ =
1

4⇡2

Z ⇡

✓
c

d✓ ln
p21 � 2µ̃+ 2Ep1

p22 � 2µ̃+ 2Ep2

, (B1)

where ✓c is the point where p1 and p2 cross, with p1,2 =

S ± 1
2

q
�4S2 � 2p� q̂

S as previously. To find approxi-

mate results for p1 and p2 we define small parameters
� = ���c1 and q̄ = q� qc, and approximate �c1 by its
form near qc, given in Eq. (60). This implies

� = �� 1p
2
(µ2 � h2)1/4q̄. (B2)

For � <⇠ �c1, the angle integral of S+ is restricted to the
immediate vicinity of ✓ = ⇡, allowing us to simultane-
ously expand in the small parameters y = cos ✓ + 1, q̄,
and �.

Within this approximation, we find, for the following
quantities entering p1,2,

Ŝ ' 1

4
h
⇣�2 + 8(µ2 � h2)

qc(µ2 � h2)
� (2q̄ + qc)yp

µ2 � h2

⌘
, (B3)

�4Ŝ2 � 2p� q̂

Ŝ
' 4h2q̄(yc � y)

qc
p
µ2 � h2

, (B4)

where yc = 1 + cos ✓c is given by

yc ' � �qc

2
p
2h2q̄

�p
2� + 2q̄(µ2 � h2)1/4

�
. (B5)

After using the preceding results in Eq. (B1), we Taylor
expand to leading order in the small parameters �, q̄ and

y, and take the limit of small y � yc, arriving at

S+ =
1

4⇡2

Z ⇡

✓
c

d✓
�8

p
2h(µ2 � h2)3/4

q
q̄
q
c

a� 2by

p
yc � y,

(B6)
where we defined

a = 2
p
2q̄(µ2 � h2), (B7)

b = h2
⇣2

p
2µ

qc
� qcp

2

⌘
=

2
p
2h2

p
µ2 � h2

qc
, (B8)

which, in the parameter range of interest, are always pos-
itive.

The range of the integral is the vicinity of ⇡. In this
limit, we can write

y ' 1 + cos ✓ ⇡ 1

2
(⇡ � ✓)2. (B9)

Then, defining x = ⇡ � ✓, we have y = 1
2x

2 and S+ is :

S+ ' � 2

⇡2

r
q̄

qc
h(µ2 � h2)3/4

Z x
c

0

dx

p
x2
c � x2

a� bx2
, (B10)

where we defined x2
c = 2yc. We can evaluate the x inte-

gral, assuming the denominator does not vanish:

Z x
c

0

dx

p
x2
c � x2

a� bx2
=

⇡

2b

�
1� 1p

a

p
a� bx2

c

⌘
. (B11)

After plugging in and substituting the definition of � in
terms of �, we obtain

S+ = �
p
q̄qc(µ2 � h2)1/4

2
p
2⇡h

⇣
1�

s
1

2
+
�2

2�2
c1

⌘
,(B12)

where we used the definition of �c1 to this order, i.e.,
Eq. (60). This expression is only valid to leading order
in the simultaneous small parameters q̄ and���c1. The
quantity in parentheses vanishes for �! �c1; to leading
order in small ���c1 the quantity in parentheses is :

⇣
1�

s
1

2
+
�2

2�2
c1

⌘
' 1

2

�
1� �

�c1

�
. (B13)

Using this, and again using Eq. (60), we arrive at Eq. (62)
from the main text.
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