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We numerically investigate the expansion of clouds of hard-core bosons in the two-dimensional
square lattice using a matrix-product state based method. This nonequilibrium set-up is induced
by quenching the trapping potential to zero and our work is specifically motivated by a recent
experiment with interacting bosons in an optical lattice [Ronzheimer et al., Phys. Rev. Lett. 110,
205301 (2013)]. As the anisotropy of the amplitudes Jx and Jy for hopping in different spatial
directions is varied from the one- to the two-dimensional case, we observe a crossover from a fast
ballistic expansion in the one-dimensional limit Jx � Jy to much slower dynamics in the isotropic
two-dimensional limit Jx = Jy. We further study the dynamics on multi-leg ladders and long
cylinders. For these geometries we compare the expansion of a cloud to the melting of a domain
wall, which helps us to identify several different regimes of the expansion as a function of time. By
studying the dependence of expansion velocities on both the anisotropy Jy/Jx and the number of
legs, we observe that the expansion on two-leg ladders, while similar to the two-dimensional case,
is slower than on wider ladders. We provide a qualitative explanation for this observation based on
an analysis of the rung spectrum.

PACS numbers: 67.85.-d, 05.30.Jp, 37.10.Jk

I. INTRODUCTION

Ultracold quantum gases are famous for the possibility
of realizing many-body Hamiltonians such as the Hub-
bard model, the tunability of interactions strengths and
effectively, also dimensionality [1]. This provides access
to genuine one-dimensional (1D) and two-dimensional
(2D) physics as well as to the crossover physics between
these limiting cases. Moreover, time-dependent changes
of various model parameters can be used to explore the
nonequilibrium dynamics of many-body systems (see [2–
4] for recent reviews). Timely topics that are investigated
in experiments include the relaxation and thermalization
dynamics in quantum quenches [5–14], the realization
of metastable states [15, 16], and nonequilibrium mass-
[17–19] and spin transport [20]. Due to the availabil-
ity of powerful analytical and numerical methods such
as bosonization [21], exact solutions for integrable sys-
tems [22], or the density matrix renormalization group
method [23–25], a direct comparison between theoretical
and experimental results is often possible in the case of
1D systems [8, 10, 13, 19].

Strongly interacting many-body systems in two spatial
dimensions, however, pose many of the open problems in
condensed matter theory and many-body physics, con-
cerning both equilibrium and nonequilibrium properties.
The reason is related to the lack of reliable numerical ap-
proaches. Exact diagonalization, while supremely flex-
ible, is inherently restricted to small system sizes [26].
Nevertheless, smart constructions of truncated basis sets
by selecting only states from subspaces that are rele-
vant for a given time-evolution problem have given access
to a number of 2D nonequilibrium problems (see, e.g.,
[27, 28]). The truncation of equation of motions for op-

erators provides an alternative approach [29], which has
also been applied to quantum quench problems in the 2D
Fermi-Hubbard model [30]. Quantum Monte Carlo meth-
ods can be applied to systems in arbitrary dimensions in-
cluding nonequilibrium problems (see, e.g., [31–33]), but
suffer, for certain systems and parameter ranges, from
the sign problem [34]. Dynamical mean-field methods
become accurate in higher dimensions, yet do not neces-
sarily yield quantitatively correct results in 2D [35].

Regarding analytical approaches, we mention just a
few examples, including solutions of the Boltzmann
equation [17], flow equations [36], expansions in terms
of the inverse coordination number [37], semiclassical
approaches [38, 39], or time-dependent mean-field ap-
proaches [40–42] such as the time-dependent Gutzwiller
ansatz (see, e.g., [43, 44]). All these methods have pro-
vided valuable insights into aspects of the nonequilib-
rium dynamics in two (or three) dimensions, yet often in-
volve approximations. Recently, the application of a non-
equilibrium Green’s function approach to the dynamics
in the sudden expansion in the 2D Fermi-Hubbard model
has been explored [45].

Although there have been very impressive recent ap-
plications [46–48] of the density-matrix renormalization
group (DMRG) method [23] to 2D systems, the method
in general faces a disadvantageous scaling with system
size in 2D [24, 48]. Tensor-network approaches [49–51]
that were specifically designed to capture 2D many-body
wave-functions are an exciting development, with promis-
ing results for the t−J model [52]. A relatively little ex-
plored area of research is the time evolution of 2D many-
body systems in quantum quench problems using DMRG
type algorithms [53–57].

In this work, we present the application of a recent
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extension [53] of 1D matrix-product state (MPS) algo-
rithms [58–60] that is specifically tailored to deal with
long-range interactions. Such long range interactions
arise by mapping even a short-range Hamiltonian on a
2D lattice to a 1D chain for the application of DMRG.

Recent experiments have started to study the nonequi-
librium dynamics of interacting quantum gases in 2D lat-
tices or in the 1D-to-2D crossover [17, 19, 61]. Motivated
by Refs. [16, 19], we study the sudden expansion of hard-
core bosons which is the release of a trapped gas into
a homogeneous optical lattice after quenching the trap-
ping potential to zero. The results of Ref. [19] show that
strongly interacting bosons in 2D exhibit a much slower
expansion than their 1D counterpart. In the latter case,
the integrability of HCBs leads to a strictly ballistic and
(for the specific initial conditions of Ref. [19]) fast ex-
pansion that is indistinguishable from the one of non-
interacting fermions and bosons. In the 2D case, it is
believed that diffusive dynamics sets in and virtually in-
hibits the expansion in the high-density region, leading to
a stable high-density core surrounded by ballistically ex-
panding wings [19], similar to the behavior of interacting
fermions in 2D [17]. The characteristic feature of these
diffusive-like expansions in contrast to the ballistic case
is the emergence of a spherically symmetric high-density
core, while the ballistic expansion unveils the topology of
the underlying reciprocal lattice.

In our work, we investigate this problem for both 2D
clusters that can expand symmetrically in the x- and
y-direction [see Fig. 1(a)] and wide cylinders and lad-
ders [see Fig. 1(b)]. We use the ratio of hopping ma-
trix elements Jx and Jy along the x- and y-direction as
a parameter to study the 1D-to-2D crossover. For the
2D expansion in the isotropic case Jx = Jy, we clearly
observe the emergence of a spherically symmetric core,
while for small values of Jy < Jx and on the accessible
time scales, the expansion is essentially 1D like. We fur-
ther compute the expansion velocities derived from the
time dependence of the radius as a function of Jy/Jx.

Since we are in general able to reach both longer times
and larger particle numbers in the case of ladders than in
2D, we present an extensive analysis of multi-leg ladders
and cylinders (i.e., ladders with periodic boundary con-
ditions in the (narrow) y-direction) with Ly = 2, 3, 4 legs
[see the sketch in Fig. 1(b)]. From the analysis of the ex-
pansion in 1D systems [16], we expect that the short-time
dynamics is identical to the melting of so-called domain-
wall states [62–64], in which half of the system is empty
while the other half contains one particle per site in the
initial state [see the sketch in Fig. 1(c)]. The domain-wall
melting has been attracting considerable attention as a
nonequilibrium problem in 1D spin-1/2 systems (see, e.g.,
[62–69]). Our results show that this similarity between
the expansion of clusters and the domain-wall melting
carries over to the transient dynamics on Ly-leg ladder
systems, irrespective of boundary conditions.

A considerable portion of the discussion in both theo-
retical and experimental papers has focussed on the ques-

FIG. 1. Illustration of initial states and geometries: (a) cen-
tral block for the 2D expansion; (b) central block of size B×Ly
and (c) domain wall on a cylinder with Ly = 4 legs.

tion whether there are signatures of diffusive dynamics in
the sudden expansion in 2D, in the dimensional crossover
[17, 19] or on coupled chains [70]. The analysis of the ex-
pansion of fermions in the 2D square lattice starting from
an initial state with two particles per site (i.e., a fermionic
band insulator) suggests that diffusive dynamics is re-
sponsible for the slow expansion in the high-density re-
gions [17]. This is expected to carry over to the bosonic
case, yet there, only two-leg ladders have been thoroughly
studied. In linear response, hard-core bosons on a two-
leg ladder realize a textbook diffusive conductor at high
temperatures [71, 72], thus suggesting that diffusion may
also play a role in the sudden expansion [70]. Curiously,
the expansion velocities measured numerically for hard-
core bosons on a two-leg ladder exhibit a dependence on
Jy/Jx that resembles the experimental observations for
the true 2D case [19, 70]. Here, we are able to provide a
more refined picture. Our analysis unveils that the sud-
den expansion becomes faster by going from two-leg to
three- or four-leg ladders. We trace this back to the exis-
tence of heavy excitations on the two-leg ladder that are
defined on a rung of the ladder and are inherited from
the Jx � Jy limit, which cannot propagate in first-order
tunneling processes in Jx/Jy. Conversely, the three- and
four-leg ladders possess single-particle like excitations,
which we dub propagating modes, that have a sufficiently
low mass to become propagating. This picture provides
an intuitive understanding of the emergence of slow mass
transport in the sudden expansion in the initial stages of
the time evolution, complementary to the discussion of
diffusive versus ballistic dynamics. The reasoning is sim-
ilar to the role that doublons play for slowing down mass
transport in the 1D Bose-Hubbard model [19, 70, 73–75],
which has also been emphasized in the case of the Fermi-
Hubbard model [76, 77]. Our results raise the question
whether the expansion in both directions in 2D and the
one-directional expansion on wide ladders and cylinders
will result in the same dependence of expansion veloci-
ties on Jy/Jx for large Ly. It appears that the ladders
and cylinders, at least for small Ly, preserve some de-
gree of one-dimensionality. A possible scenario is that
the expansion velocities in the x-direction will depend
non-monotonically on Ly for a fixed value of Jy/Jx if
ever they will become identical to the behavior on the
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2D systems. As a caution, we stress that long expansion
times may be necessary to fully probe the effect of a 2D
expansion at small Jy � Jx since the bare time scale for
charge dynamics in the y-direction is set by 1/Jy, as has
been pointed out in [78].

Apart from the nonequilibrium mass transport of
strongly interacting bosons, there are also predictions
for the emergence of nonequilibrium condensates at finite
quasimomenta in the sudden expansion in a 2D square
lattice. These predictions are based on exact diagonal-
ization for narrow stripes [79] as well as on the time-
dependent Gutzwiller method [43, 44]. The dynamical
condensation phenomenon has first been discussed for
1D systems (where it actually is a quasicondensation
[80]), where it was firmly established from exact numeri-
cal results [80, 81] and analytical solutions [64] (see also
[70, 82–84]) and has recently been observed in an exper-
iment [16]. In the sudden expansion of hard-core bosons
in one dimension, the dynamical quasicondensation is
a transient, yet long-lived phenomenon [70, 80] as ulti-
mately the quasimomentum distribution function of the
physical particles approaches the one of the underlying
noninteracting fermions via the dynamical fermionization
mechanism [85, 86].

It is therefore an exciting question whether a true
nonequilibrium condensate can be generated in 2D. Our
results cannot fully clarify this point, yet we do observe
a bunching of particles at certain non-zero momenta in
the quasimomentum distribution after releasing the par-
ticles whenever propagating modes as discussed above
are present. For the melting of domain walls, the occu-
pation of most of these modes, at which a nonequilib-
rium condensation is allowed by energy conservation and
at which a bunching occurs, saturates at long expansion
times. The notable exception are certain modes on the
Ly = 4 cylinder. This behavior, i.e., the saturation is
markedly different from the 1D case of hard-core bosons
in the domain-wall melting, where the occupation con-
tinuously increases. The reason for this increase is that
the semi-infinite, initially filled half of the system will
indefinitely feed the quasicondensates [16, 64]. As such
an increase is a necessary condition for condensation, we
interpret the saturation of occupations as an indication
that either breaking the integrability of strictly 1D hard-
core bosons or the larger phase space for scattering in 2D
inhibits the dynamical condensation of expanding clouds.
However, even in those cases on the ladder, in which we
do not see a saturation, the increase is slower than the
true 1D case, suggesting that coupling chains in general
disfavors condensation. Yet, a decisive analysis of this
problem will require access to larger particle numbers
and times in numerical simulations or future experiments.
Note that multi-leg ladder systems can be readily real-
ized with optical lattices, using either super-lattices [87]
or the more recent approach of using a synthetic lattice
dimension [88–90].

The plan of this paper is the following. In Sec. II, we
introduce the model and definitions. Section III provides

a discussion and definitions for various measures of ex-
pansion velocities employed throughout our work, while
Sec. IV provides details on our numerical method. We
present our results for the 2D case in Sec. V, while the
results for multi-leg ladders and cylinders are contained
in Sec. VI. We conclude with a summary presented in
Sec. VII, while details on the extraction of velocities and
on the diagonalization of rung Hilbert spaces are con-
tained in two appendices.

II. MODEL AND INITIAL CONDITIONS

We consider hard-core bosons on a square lattice and
on multi-leg ladders. The Hamiltonian reads

H = −
∑
ix,iy

[Jx(â†ix,iy âix+1,iy
+ h.c.)

+ Jy(â†ix,iy âix,iy+1 + h.c.)] . (1)

Here, â†ix,iy denotes the creation operator on site i =

(ix, iy) and Jx(Jy) are the hopping matrix elements in
x(y) direction. We choose the hopping matrix element
Jx in x-direction and the lattice constant a as units and
set ~ to unity; the ratio Jy/Jx is dimensionless. Note that
the Hamiltonian is equivalent to the spin-1/2 XX-model.
In 1D (Jy = 0), the Jordan-Wigner transformation maps
the bosons to free fermions [91]. Lx and Ly denote the
number of sites in the x- and y-direction, respectively.

We consider different geometries, namely (i) a small
square-shaped cluster of Lx = Ly = 12 sites with open
boundary conditions in both directions, (ii) ladders with
Lx = 60, Ly ∈ { 2, 3, 4 } with open boundary conditions
(OBC) in both the x- and y-direction, and (iii) cylin-
ders with Lx = 60, Ly ∈ { 2, 3, 4 } with periodic bound-
ary conditions (PBC) in y-direction and open boundary
conditions in x-direction. For two-leg ladders, the only
difference between the Hamiltonian with OPC and PBC
along the y-direction is thus a factor of two in the tunnel-
ing matrix element Jy. In praxis, we obtain the behavior
with PBC by just taking the OBC data with Jy → Jy/2.

For all simulations, we start the expansion from a prod-
uct state

|ψ0〉 =
∏
i∈B

â†ix,iy |vac〉 (2)

in real space. To model the fully 2D expansion, we choose
B to be a square-shaped block of B × B sites centered
in the cluster, see Fig. 1(a). On cylinders and ladders,
we study two different types of B: (i) a block of B × Ly
bosons, centered in x-direction and filling all the sites in
y-direction as shown in Fig. 1(b), and (ii) a domain wall,
where the left half of the lattice is occupied by a block
of Lx/2 × Ly bosons while the right half is empty, see
Fig. 1(c).
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III. DEFINITIONS OF EXPANSION
VELOCITIES

There are several possible ways of defining the spatial
extension of an expanding cloud, and thus also several
different velocities.

A. Position of the fastest wavefront

One can define the cloud size from its maximum ex-
tension, i.e., from the position of the (fastest) wavefront.
The velocity derived from this approach will typically
simply be the fastest possible group velocity (provided
the corresponding quasimomentum is occupied in the ini-
tial state). Thus, this velocity will not contain informa-
tion about the slower moving particles and any emergent
slow and possibly diffusive dynamics in the core region.
We do not study the wavefront in this work.

B. Radial velocity

Theoretically, it is natural to define the radius R as
the square root of the second moment of the particle
distribution 〈ni(t)〉. Supposed we are interested in the
expansion in x-direction, we average the density profile
over the y-direction to calculate the radius

R2
x(t) =

1

N

∑
ix,iy

nix,iy (t)(ixa− i0xa)2, (3)

where i0xa is the center of mass in x-direction and N is
the total number of bosons. An analogous expression is
used to define R2

y. To get rid of an initial constant part,

we use R̃2
µ(t) = R2

µ(t) − R2
µ(t = 0) to define the radial

velocity

vr,µ =
∂R̃µ(t)

∂t
(4)

with µ = x, y. The corresponding velocity has contribu-
tions from all occupied quasimomenta. It will ultimately
be dominated by the fastest expanding particles, and for
the sudden expansion, R will be linear in time in the
limit in which the gas has become dilute and effectively
noninteracting.

The radial expansion velocity of 1D systems was stud-
ied for the Fermi-Hubbard model [92], the Bose-Hubbard
model [19, 70], and the Lieb-Liniger model [93]. For
Bethe-integrable 1D systems, it can be related to dis-
tributions of rapidities [94]. For a recent study of the
radial velocity in the 2D Fermi-Hubbard model, see [45].

C. Core expansion velocity

In the related experiments with ultracold atoms [17,
19], the focus was on the core expansion velocity that is

derived from the time evolution of the half-width-at-half
maximum rc(t). The reason is primarily that in these
experiments, an average over many 1D or 2D systems
is measured. Moreover, the core expansion velocity is
primarily sensitive to the dynamics in the high-density
core (but insensitive to the ballistic tails) and thus yields
slightly different information. In case of multiple local
maxima, the two outermost points are taken. Since in
our simulations we have smaller particle numbers com-
pared to the experiments [17, 19], we use linear splines to
interpolate the density profile between the lattice sites in
order to get values for rc(t) to a better accuracy than just
a single lattice constant. The core expansion velocity is
defined as the time derivative

vc =
∂rc(t)

∂t
. (5)

The full time dependence of rc and the extraction of vc
is discussed in Appendix A.

IV. NUMERICAL METHOD

Although the Hamiltonian Eq. (1) itself is short
ranged, long-range interactions arise by mapping the 2D
lattice to a 1D DMRG-chain. The presence of such long-
range interactions renders most of the existing DMRG
based algorithms for the time evolution [25, 58–60] inef-
ficient because a direct Trotter decomposition of the ex-
ponential is not possible. In our work, we use a recently
developed extension of an MPS based time-dependent
DMRG algorithm that is particularly suited for such sys-
tems [53]. The method is based on a local version of
a Runge-Kutta step which can be efficiently represented
by a matrix-product operator (MPO) [95]. The actual
time evolution can then be performed using standard
alorithms that apply an MPO to a given MPS [25]. An
advantage of the method is that it can be easily imple-
mented into an existing MPS based DMRG code and has
a constant error per site.

For our simulations, we choose the DMRG-chain to
wind along the y-direction in order to keep the range of
the interactions as small as possible (namely Ly). Sources
of errors are the discretization in time and the discarded
weight per truncation of the MPSs after each time step.
The time steps are chosen small enough to make the er-
ror resulting from the second order expansion negligible.
We furthermore choose the truncation error at each step
to be smaller than 10−10 which is sufficient to obtain all
measured observables accurately. The growth of the en-
tanglement entropy following the quench requires to in-
crease the bond dimension χ with time. Conversely, since
we restrict the number of states to χ . 2000, we are nat-
urally limited to a finite maximum time tm at which the
truncation error becomes significant. Note that the bond
dimension χ required for the simulations grows exponen-
tially with time. Increasing the particle numbers and
Ly leads to a faster growth of the entanglement entropy
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FIG. 2. (Color online) Density profiles for the 2D expansion
from a 4 × 4 cluster with (a)-(c) Jy/Jx = 0.2 and (d)-(f)
Jy/Jx = 1.0 at times tJx = 0.0, 1.0, 1.5.

and thus to a shorter maximal time tm. However, we
stress that we clearly reach longer times and larger sys-
tems than what is accessible with exact diagonalization
(i.e., pure state propagation using, e.g., Krylov subspace
methods).

V. TWO-DIMENSIONAL EXPANSION

A. Density profiles

We first characterize the expansion by analyzing the
time- and position-resolved density profile nix,iy (t) =

〈n̂ix,iy (t)〉, where n̂ix,iy = â†ix,iy âix,iy is the number oper-

ator. We present exemplary density profiles for three dif-
ferent times and and two anisotropies Jy/Jx ∈ { 0.2, 1 }
in Fig. 2. For small Jy/Jx = 0.2 [Figs. 2(a)-(c)], there is
a fast expansion in x-direction and nearly no expansion
in y-direction. This is expected since the bare timescale
for the expansion in y-direction set by 1/Jy is here much
larger than the one in x-direction [78]. On the other
hand, for Jy = Jx, we find four “beams” of faster ex-
panding particles going out along the diagonals. These
beams are even more pronounced for initial states with
smaller clusters of 2 × 2 and 3 × 3 bosons (not shown
here).

The most important qualitative difference between the
density profiles at Jy/Jx = 0.2 and Jy/Jx = 1 is the
shape. In the former case, the profiles retain a rectangu-
lar form, reflecting the underlying reciprocal lattice and
the different bare tunneling times in the x- versus y- di-
rection. For the isotropic case, the initial square shape of
the cluster changes into a spherically symmetrical form
in the high-density region. This observation is consistent
with the experimental results of [19].

0.0 0.2 0.4 0.6 0.8 1.0

Jy/Jx

0.0

0.5

1.0

1.5

v r
,x
,
v r
,y

[J
x
a
]

x-dir., B = 2

x-dir., B = 3

x-dir., B = 4

x-dir., extrapolation
y-dir.

FIG. 3. (Color online) Radial velocity vr,x/y in x-direction
(top three solid lines) and y-direction (dashed lines) for the
2D expansion from B×B clusters. The small green triangles
show the result of an extrapolation to B =∞ using Eq. (6).

B. Radial velocity

In order to compare the expansion for different val-
ues of Jy/Jx more quantitatively, we extract certain in-
tegrated quantities from the profiles, which contain rele-
vant information. One such quantity is the radial velocity
vr,x/y derived from the reduced radius R̃x/y [see Eq. (3)].
Details on how we extract vr from the time-dependent
reduced radius R̃(t) can be found in Appendix A.

The radial velocities vr,x and vr,y for the 2D expan-
sion are shown in Fig. 3. Unfortunately, our simu-
lations for the 2D lattice are restricted to both very
short times and small numbers of bosons with block sizes
B ∈ { 2, 3, 4 }. For instance, for 4×4 bosons we reach only
times tm ≈ 1.5 J−1x . The short times prevent us from a
reliable extraction of the core expansion velocity, which
would allow for a direct comparison to the experiment
[17, 19]. The experimental results [19] suggest that for
increasing Jy, the core expansion velocity in x-direction
decreases dramatically [see Fig. 8], which has been at-
tributed to the breaking of integrability of 1D hard-core
bosons [19, 70].

Our results for the radial velocity vr show that for
the smallest block size B = 2, tuning Jy/Jx from 0 to 1
changes the velocity vr,x only gradually while the velocity
in y-direction scales almost linearly with Jy. A previous
study of the expansion of two-leg ladders also indicated
that the core expansion velocity exhibits a much stronger
dependence on Jy/Jx than the radial expansion velocity
[70]. We suspect that this weak dependence may addi-
tionally result from the small number of bosons consid-
ered in our simulations: Increasing Jy allows a hopping
in y-direction, which reduces the density and thus the
effective interaction. In other words, tuning Jy/Jx from
0 to 1 increases the effective surface of the initial block
to include the upper and lower boundary. From the sur-
face, there is always a fraction of the bosons that escape
and which effectively do not experience the hard-core in-
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FIG. 4. (Color online) Momentum distribution function
nkx,ky [dimensionless] for the 2D expanding cloud of 4 × 4

bosons at time t = 1.5 J−1
x . The solid green lines show the

solutions to Eq. (8).

teraction. This effect becomes more relevant for smaller
boson numbers, where the bosons are almost immedi-
ately dilute, feel no effective interaction and thus expand
(nearly) ballistically in both directions. For larger block
sizes B = 3, 4, the ratio of surface to bulk is smaller and
therefore, interaction effects become more relevant. In-
deed, we find for B = 3, 4 that tuning Jy/Jx from 0 to 1
leads to a significant reduction of vr,x, most pronounced
for B = 4.

Even though we have access to only three values of
B, it is noteworthy that for all values of Jy/Jx, vr,x(vr,y)
decreases(increases) monotonically with B and thus with
total particle number. This tendency is compatible with
the behavior of the experiments [19] performed with
much larger boson numbers, which motivates us to per-
form an extrapolation to B =∞ despite the small num-
ber of bosons. We assume that the finite-size dependence
is dominated by the surface effects of the initial boundary,
which scales with B. Therefore, we extract the velocity
for B =∞ from a fit to the form

vr,x/y(B) = vr,x/y(B =∞) +
const

B
(6)

at fixed Jy/Jx. The resulting values, which are indicated
by the small green symbols in Fig. 3, should only be
considered as rough estimates.

C. Momentum distribution function

Figure 4 shows the momentum distribution function

nkx,ky =
1

LxLy

∑
ix,iy,jx,jy

e−i(kx(ixa−jxa)+ky(iya−jya))

× 〈â†ix,iy âjx,jy 〉 (7)

for the 2D expansion. For a purely 1D expansion (Jy =
0), dynamical quasicondensation occurs at kx = ± π

2a

[16, 80, 81]. As discussed in Refs. [43, 79], energy con-
servation restricts the (quasi)condensation to momenta
at which the single-particle dispersion relation ε(kx, ky)
vanishes since the initial state has zero energy, resulting
in the emission of bosons with, on average, zero energy
per particle. For a 2D system, this leads to

ε(kx, ky) = −2Jx cos(kxa)− 2Jy cos(kya) = 0. (8)

The solutions of this equation are indicated by the solid
green lines in Fig. 4. We indeed observe an accumula-
tion of particles at momenta compatible with Eq. (8).
For Jy/Jx = 0.2 [Fig. 4(a)], there is almost the same
weight at any momentum ky compatible with Eq. (8).
We suspect that this is a relict of the short time t =
1.5 J−1x = 0.3 J−1y reached in the simulations: up to this
time there was almost no expansion in y-direction, thus

we have roughly 〈â†ix,iy âjx,jy 〉 ≈ δiy,jy such that nkx,ky is

initially independent of ky. Nevertheless, closer inspec-
tion shows slightly more weight at compatible momenta
with ky = ± π

2a than at those with ky = 0 even for small
Jy [see Fig. 4(a)]. This becomes much more pronounced
for Jy = Jx [see Fig. 4(c)]. In this case, the strongest
peaks are at (kx, ky) = (± π

2a ,±
π
2a ), (± π

2a ,∓
π
2a ). These

four points correspond to the maximum group velocities
v(kx, ky) = (2Jxa sin(kxa), 2Jya sin(kya)) and, in real
space, manifest themselves via the four “beams” in the
density profile shown in Fig. 2(f).

Our results do not serve to clarify whether there ac-
tually is a dynamical condensation at finite momenta in
2D or not since our initial clusters have too few particles
in the bulk compared to their surface. The fast ballistic
propagation of the particles melting away from the sur-
face will only be suppressed once the majority of particles
is in the bulk initially. If we attribute the outermost par-
ticles to the surface, this would require us to be able to
simulate at least 7×7 clusters. We believe that the accu-
mulation at finite momenta seen in the quasimomentum
distribution function is due to these fast particles melt-
ing away from the boundary during the first tunneling
time. Moreover, we would need to be able to study the
particle-number dependence of the height of the max-
ima in the quasimomentum distribution function or the
decay of single-particle correlations over sufficiently long
distances [80].

VI. CYLINDERS AND LADDERS

In contrast to the 2D lattice, the ratio of surface to bulk
is much lower for cylinders and ladders, as we initialize
the system uniformly in the y-direction. Moreover, if
we tune Jy from 0 to 1, the additional hopping in the
y-direction does not lower the density (and with it the
effective interaction), as it is the case for the fully 2D
expansion. We thus expect a weaker dependence of the
results on the number of bosons. Additionally, we can
reach larger times than for the fully 2D expansion since
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FIG. 5. (Color online) Integrated density profiles
1
Ly

∑
iy
nix,iy (t) [dimensionless] for the expansion from a 6×3

cluster on a cylinder with Ly = 3. The green dashed line
shows the location of the half maximum on the left and right.

the range of hopping terms after mapping to the DMRG
chain is smaller. While we can reach times up to tm ≈
6 J−1x for Ly = 2, we are restricted to times up to tm ≈
4 J−1x for Ly = 3 and tm ≈ 3 J−1x for Ly = 4.

A. Density profile

Figure 5 shows some typical results for the column den-
sity for the expansion of a block on a cylinder with Ly =
3. We identify three different time regimes for the expan-
sion of blocks, schematically depicted in Fig. 6. First, the
evolution during the first tunneling time t1 ∝ 1/Jx is in-
dependent of Jy: Since we initialize our system uniformly
in y-direction, in the initial longitudinal hopping, there
cannot be any dependence on Jy and a finite amount of
time is required before correlations in the y-direction can
build up.

Then, in a transient regime 0 < t2 (where t2 > t1),
the melting of the block from either side is equivalent
to the domain-wall melting [16, 96] (compare the sketch
in Fig. 1). From the two boundaries, two “light cones”
emerge, consisting of particles outside and holes inside
the block. Both particles and holes have a maximum
speed of vm = 2 Jxa. Consequently, the time t2 := B/4Jx
is the earliest possible time at which the melting arrives
at the center, such that the density drops below one on
all sites. Thus, t2 marks the point in time at which den-
sity profiles obtained from blocks start to differ quanti-
tatively from those of domain walls, defining the third
time regime. In the case of a ballistic expansion realized
for Jy � Jx, the density in the center drops strongly at
t2 and we can clearly identify two outgoing “jets” as two
separating maxima in the density profiles, see Fig. 5(a).
To be clear, the expectation for the nature of mass trans-
port in a nonintegrable model such as coupled systems
of 1D hard-core bosons is diffusion, based on numerical
studies [71]. However, in the sudden expansion, the whole

domain-wall melting
regime

sudden expansion
 regime

indep. dependent

time

FIG. 6. Illustration of the time regimes for the expansion of
blocks (see the text in Sec. VI A for details).

cloud expands and it is conceivable that the expansion
appears to be ballistic because the cloud becomes dilute
too fast, resulting in mean-free paths being in the order
of or larger than the cloud size at any time [70].

On the other hand, for larger Jy the block in the center
does not split at t2, but a region with a high density
(“core”) remains in the center. The high-density core is
clearly established already at intermediate Jy/Jx = 0.5,
where it still expands slowly. For larger Jy, the spreading
of this core is continuously suppressed.

B. Integrated current

In order to investigate the different time regimes fur-
ther, we consider the number of bosons ∆N(t) that
at a time t have left the block B where they were
initialized. This is equivalent to the particle current

jxix = iJx
∑
iy
〈â†ix+1,iy

âix,iy − â†ix,iy âix+1,iy
〉 integrated

over time and along the boundary ∂B of the block,

∆N(t) =
∑
i/∈B

nix,iy (t) =

∫ t

0

ds
[
jxbr (s)− jxbl(s)

]
. (9)

Here, br and bl denote the right and left indices ix of the
boundary of the initially centered block B. We compare
∆N for the expansion on a two-leg ladder starting from
either central blocks or domain walls in Fig. 7(a). To
this end we normalize ∆N by the boundary length |∂B|,
which is simply 2Ly a for the central blocks and Ly a for
the domain walls.

For short times t . 0.5 J−1x (i.e., t . t1, see the above),
all curves in Fig. 7 are independent of Jy. For the quan-
tity ∆N , the first deviations between domain walls and
cylinders do not occur at t2 but at 2t2 = B/2Jx, which
is exactly the time the fastest holes need to travel once
completely through the block: by definition, ∆N is not
sensitive to the density inside the initial block. For the
expansion of central blocks, particle conservation gives
a strict bound ∆N/|∂B| ≤ B/2a, in which case all the
bosons have left the initial block. These bounds [equal to
1.5 a−1 and 3 a−1 for B = 3 and B = 6, respectively] are
approached in the long-time limit of the ballistic expan-
sion for small Jy/Jx = 0.2, which for B = 6, however,
happens beyond the times reached in our simulations.
For the domain walls, ∆N is not bounded (as long as the
melting does not reach the boundary of the system) and
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FIG. 7. (Color online) Comparison of ∆N/|∂B| (a) on
a two-leg ladder for the expansion from central blocks
(dashed/dotted lines, B × 2 bosons) versus the melting of a
domain wall (solid lines). The lower panels compare domain
walls on ladders (dashed lines) to domain walls on cylinders
(solid lines) for (b) Ly = 4 and (c) Ly = 3. The curves for
the Ly = 4 cylinder in (b) with Jy/Jx = 1, 2 are nearly on
top of each other for t & 1.5 J−1

x .

grows for small Jy/Jx as ∆N ∝ t linearly in time, which,
via Eq. (9), corresponds to a non-decaying current jx.
On the other hand, ∆N gets almost constant for large
Jy/Jx for both the domain walls and the blocks. This
indicates that the expansion is strongly suppressed on
the two-leg ladder, with a high-density core remaining
in the center. We speculate that the regime in which
∆N increases only very slowly is indicative of diffusive
dynamics, by similarity with [17].

C. Propagating modes: Limit of large Jy � Jx

In order to qualitatively understand the suppression of
the expansion for certain geometries and specific values
of Ly, it is very instructive to consider the limit of large
Jy � Jx. We discuss this limit in more detail in Ap-
pendix B, while here, we provide only the general idea
and discuss the results. The Hamiltonian Eq. (1) can be
split up into the hopping on rungs [we denote sites with
the same index ix as a “rung” for both ladders and cylin-
ders], denoted by Hy proportional to Jy, and the hop-
ping terms in x-direction proportional to Jx, collected in
Hx. Our analysis is based on a diagonalization of Hy,
which is a block-diagonal product of terms operating on
single rungs. We view the eigenstates of single rungs

as “modes”, which can be delocalized by Hx. Since a
coherent movement of multiple bosons is a higher-order
process of Hx and thus generally suppressed for large
Jy/Jx, we focus on modes with a single particle on a
rung. We then look for modes which are candidates for
a propagation at finite kx. Importantly, the kinetic en-
ergy Ex ∝ Jx cannot compensate for a finite Ey ∝ Jy for
Jy � Jx. Since we initialize the system in states with
zero total energy, energy conservation allows only modes
with Ey = 0 to contribute to the expansion in first-order
processes in Jx/Jy in time. In general, one could also
imagine to create pairs of two separate bosons with ex-
actly opposite Ey, summing up to 0. Yet, Hx cannot
create such pairs [see Appendix B for details].

For smaller Jy, the scaling argument of the energy con-
servation does not hold and additional modes (beginning
with those of small energy Ey) can be used for the propa-
gation in x-direction – ultimately, for Jy � Jx any mode
contributes to the expansion already at short times. We
note that modes with strictly Ey = 0 are either present
or absent at any value of Jy/Jx.

Such propagating single-boson modes with Ey = 0 do
not exist on a two-leg ladder: there are, apart from the
empty and filled rung, only two states with large energies
Ey = ±Jy. We argue that precisely this lack of modes
with Ey = 0 leads to the suppression of the expansion
with increasing Jy/Jx. It is manifest in Fig. 7(a) by
the fact that ∆N gets almost constant. Thus, we can
view the expansion to be inhibited by the existence of
heavy objects (particles of a large effective mass) that
can propagate only via higher-order processes. This is
similar to the reduction of expansion velocities due to
doublons in the strongly interacting regime of the 1D
Bose-Hubbard model [15, 19, 70, 74, 75]. Another effect
with very similar physics is self-trapping (see, e.g., [44,
97, 98]).

Whether propagating modes with Ey = 0 exist or not
depends not only on Ly but also on the boundary condi-
tions in the y-direction. This can serve as a test for our
reasoning. For Ly = 4, we find modes with Ey = 0 on a
cylinder but not on a ladder (see Appendix B). We com-
pare ∆N for these two geometries directly in Figs. 7(b)
and (c). For small Jy/Jx = 0.2, the additional coupling
of the cylinders compared to the ladders has (at least on
the timescales accessible to us) nearly no influence. Yet,
for large Jy/Jx, we find not only a quantitative but even
a qualitative difference: For the Ly = 4 cylinders, ∆N
increases linearly in time, irrespective of how large Jy/Jx
is. Moreover, the slope is (at t & 1.5 J−1x ) roughly the
same for all Jy/Jx & 0.5 and does almost not decrease
with time. Using Eq. (9), we can relate this to the pres-
ence of a non-decaying current, which we explain in terms
of an enhanced occupation at momenta compatible with
Ey = 0. In contrast, on the four-leg ladder there are no
propagating modes with Ey = 0, thus we expect no linear
increase of ∆N . Indeed, we find that the currents – i.e.,
the slopes of ∆N in Fig. 7(c) – on the four-leg ladder
decay in time. Yet, the decay is not as extreme as for
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FIG. 8. (Color online) (a),(c) Core expansion velocities vc,x and (b),(d) radial velocities vr,x versus Jy for the expansion of a
6×Ly block. The left panels (a) and (b) are obtained on Ly = 2, 3, 4 cylinders, the right panels (c),(d) on Ly = 2, 3, 4 ladders.
The green triangles taken from Ref. [19] show the results of the experiments for the fully 2D expansion corresponding to the
setup of Sec. V.

the two-leg ladder, which we explain by the existence of
modes with lower energies Ey > 0 than on the two-leg
ladder. For Ly = 3, it is exactly the other way around:
there are modes with Ey = 0 on the ladder but not on
the cylinder. In agreement with this, Fig. 7(c) shows that
the expansion on a three-leg ladder is faster than on an
Ly = 3 cylinder for large Jy/Jx = 2.

D. Expansion velocities

Figure 8 shows the radial and core velocities for the
expansion of blocks on cylinders and ladders. We note
that, while vc and vr are nearly independent of Jy/Jx
in the range Jy/Jx = 0.6, . . . , 1 for the Ly = 4 cylinder

[Figs. 8(a),(b)], the values rc(t) and R̃(t) themselves ac-
tually do decrease when Jy/Jx is tuned from 0.6 to 1 (see
Figs. 12 and 13 in Appendix), due to different short-time
dynamics. Further, for the accessible times (tm = 3 J−1x
for Ly = 4), the density profile outside the original block
is still completely equivalent to the domain-wall melting.
Nevertheless, rc(t), by definition, is also sensitive to the

maximum value in the center of the block, and R̃(t) is
sensitive to the densities at all positions. Thus, the veloc-
ities shown in Fig. 8 contain valuable and complementary
information.

The two-leg ladder (for which the expansion velocity
has been studied in Ref. [70]) shows a behavior similar
to the experimental data for 2D expansions [19], namely
that the core velocity vc drops down to zero with increas-
ing Jy/Jx. However, by comparing different Ly, we find

a trend towards a faster expansion when Ly is increased
at fixed Jy/Jx. This trend is in contrast to the naive
expectation that wider cylinders should mimic the 1D-
to-2D crossover better. In other words, it demonstrates
that the two-leg ladder does not capture all the relevant
physics of the expansion in all directions in the 1D-to-2D
crossover, although it shows the same qualitative depen-
dence of velocities on Jy/Jx as the 2D system studied
experimentally [19]. However, we understand this from
our considerations of the limit Jy � Jx in Sec. VI C: On
the Ly = 4 cylinder and the Ly = 3 ladder, there exist
Ey = 0 modes, and thus a preferred occupation of these
propagating modes with nonzero ky is possible. More-
over, in those other cases in which there are no modes
with strictly Ey = 0, there are at least modes with lower
|Ey| < Jy.

E. Momentum distribution function

The momentum distribution nkx,ky on cylinders start-

ing from 6 × Ly blocks and at fixed time t = 2.0 J−1x is
shown in Fig. 9. At small Jy/Jx = 0.2, we observe a
bunching of particles at the kx = ± π

2a modes indepen-
dent of ky, similar to the fully 2D expansion at the same
value of Jy/Jx shown in Fig. 4.

For Jy = Jx and on the Ly = 3 cylinder, the en-
ergy Ey(ky = ± 2π

3a ) = Jy can be compensated by ki-
netic energy Ex = −2Jx cos(kxa) in x-direction, com-
pare Eq. (8). Indeed, we find a bunching of particles at
those momenta in Fig. 9(e). The Ey(ky = 0) = −2Jy
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FIG. 9. (Color online) Momentum distribution function
nkx,ky [dimensionless] for cylinders with (a),(d) Ly = 2,
(b),(e) Ly = 3 and (c),(f) Ly = 4, starting from a 6 × Ly
cluster. Data are shown for time t = 2.0 J−1

x and (a)-(c)
Jy/Jx = 0.2 and (e)-(f) Jy/Jx = 1.0 (Note that we have a
symmetry n−kx,ky = nkx,ky = nkx,−ky ). The black dashed
lines indicate the flat initial distribution at t = 0.

and Ey(ky = π
a ) = 2Jy mode would yield kx = π

a and
ky = 0, yet we find a slightly higher weight at smaller
kx in Fig. 9(e). However, we note that all these peaks
for Jy = Jx in Figs. 9(d) and (e) are not as high as
their counterparts for Jy/Jx = 0.2. As we have dis-
cussed above and in Appendix B, there are no modes
with Ey = 0 for Ly = 2, 3 on cylinders, hence the max-
ima in nkx,ky are generally suppressed as we go from small
to large Jy/Jx for Ly = 2, 3.

On the Ly = 4 cylinder, we find a bunching of particles
at (kx, ky) = ( π2a ,

π
2a ) with roughly the same weight for

all Jy, compare Figs. 9(c) and (f). This is in agreement
with our considerations of Sec. VI C, since the modes
with ky = π

2a have Ey = 0. The ky = 0, πa modes are
suppressed, similar to the case of Ly = 2, 3.

The question of whether the bunching of particles
at certain quasimomenta (that requires the existence of
propagating modes with energies compatible with those
quasimomenta) will lead to a true dynamical quasicon-
densation at finite momenta can best be addressed using
the domain walls as initial stats. Here, we are guided
by the behavior of 1D hard-core bosons: In the sudden
expansion [70, 80], the dynamical quasicondensation is a
transient phenomenon, hence the occupation at k = ± π

2a
first increases and then slowly decreases as dynamical
fermionization sets in [70, 85, 86]. The crossover between
these two regimes – the formation and the decay of quasi-
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FIG. 10. (Color online) Time evolution of the peak heights in
the momentum distribution function for cylinders with (a),(d)
Ly = 2, (b),(e) Ly = 3 and (c),(f) Ly = 4, starting from a
domain wall. Data are shown for (a)-(c) Jy/Jx = 0.2 and
(e)-(f) Jy/Jx = 1.0.

condensates – is given by t2 ∝ B (see also the discussion
in [16]). For the domain-wall melting, the quasiconden-
sates are continuously fed with particles with identical
properties due to the presence of an infinite reservoir and
thus the quasicondensation peaks in nk never decay but
keep increasing.

Figure 10 shows the time dependence of the occupation
at the maximum of nkx,ky for the domain-wall melting
on Ly = 2, 3, 4 cylinders for (a)-(c) Jy/Jx = 0.2 and (d)-
(f) Jy/Jx = 1. For Jy/Jx = 0.2 and the accessible time
windows of the Ly = 3, 4 cylinders, the occupation indeed
increases monotonically in time. On the Ly = 2 cylinder
in Fig. 10(a), the maximum initially increases similar as
for Ly = 3, 4, yet for times t & 3J−1x it saturates and
even decreases, which suggests that no condensation sets
in. Note that the time scale at which the saturation
happens is quite large, as it is set by J−1y . This suggests
that there is no condensation even for very small Jy > 0
on the Ly = 2 cylinder.

The behavior for Jy/Jx = 1 is quite different. In al-
most all cases, the occupation at the maximum quickly
saturates, which suggests that no condensation sets in.
This observation is consistent with the absence of fast
propagating modes on the Ly = 2, 3 cylinders. Among
the data sets shown in Fig. 10(d)-(f), there is one ex-
ception, namely the peak at (kx, ky) = ( π2a ,±

π
2a ) on the

four-leg cylinder, which monotonically increases without
a trend towards saturation. This case is thus the most
promising candidate for a condensation at Jy = Jx.
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F. Occupation of lowest natural orbital

To investigate the question of condensation in more de-
tail, we look at the maximum occupation λ0 of the natu-
ral orbitals [99]. The natural orbitals are effective single
particle states defined as the eigenstates of the one parti-

cle density matrix 〈âi âj 〉. The corresponding eigenvalues
sum up to the number of particles and can be interpreted
as the occupations of the natural orbitals. A true con-
densate requires that λ0 becomes macroscopically large.

The largest occupation λ0 for the domain-wall melting
of cylinders is shown in Fig. 11. In the 1D case, indi-
cated by the green dotted line, the occupation grows, for
large times, as λ0 ≈ 1.38

√
t [80]. For Ly = 2 we find

two degenerate natural orbitals with occupation λ0. For
Jy/Jx = 0.2, we find an initial growth for all Ly = 2, 3, 4,
but for Ly = 2, the occupation saturates and even de-
creases for large times t & 3J−1x , similar as for the peaks
in the momentum distribution function. In fact, the
peaks in the momentum distribution are directly related
to the natural orbitals with the largest occupation: For
Ly = 2 there are two degenerate natural orbitals with
maximal occupation with ky = 0 and ky = π

a , and their
Fourier transformation is peaked slightly above (below)
kx = π

2a for ky = 0 (ky = π
a ). Similarly, for Ly = 3

(Ly = 4) there are two natural orbitals with maximal
occupation with ky = ± 2π

3a (ky = ± π
2a ) and one (two)

with slightly lower occupation with ky = 0 (ky = 0, πa ),
leading to the peak structure of Figs. 9(b) and (c) (with
peaks only at kx > 0 for domain wall initial states).

For Jy = Jx, shown in Fig. 11(b), λ0 saturates and

even decreases for the cylinders of width Ly = 2, 3, but
keeps growing monotonically for Ly = 4 (at least on the
time scale accessible to us), in accordance with Figs. 9(f)
and 10(f). For Ly = 4, we find only two (degenerate)
natural orbitals with ky = ± π

2a with peaks at kx = π
2a .

Yet, the maximal occupation λ0 is significantly smaller
than in the 1D case and seems to saturate at larger times.

It is instructive to compare λ0 to the number of parti-
cles in the expanding cloud ∆N shown in Fig. 7, defining
a condensate fraction λ0/∆N . ∆N increases linearly in
time in 1D, hence the condensate fraction goes to zero
with 1/

√
t, consistent with the absence of true long range

order. In the case of cylinders, we never observe a sat-
uration of λ0/∆N to a constant nonzero value, but it
keeps decreasing as a function of time. Therefore, a true
condensation is not supported by the existing data on
all cylinders. Yet, the survival of a quasicondensation on
the cylinders is consistent with our data.

VII. SUMMARY

Motivated by recent experiments with ultracold bosons
in an optical lattice [16, 19], we simulated the sudden ex-
pansion of up to 4 × 4 hard-core bosons in a 2D lattice.
In the limit Jx � Jy, we find a fast expansion (at least
on the timescale accessible to us), similar to the 1D case.
When Jy is tuned to the isotropic limit Jx = Jy, some
fraction of the particles remains as a high-density core
in the center and a spherically symmetric shape emerges.
This trend is compatible with the observations made in
the experiment of Ref. [19]. Unfortunately, our results
for the 2D expansion are dominated by surface effects
due to the small boson numbers as in fact, in our sim-
ulations we have more particles at the boundary of the
initial block than in the bulk. This prevents us from an-
alyzing the core expansion velocity [19], yet the radial
velocities vr,x decrease monotonically with the block size
B at any fixed Jy/Jx. We observe a bunching in the
momentum distribution function at quasimomenta com-
patible with energy conservation. This bunching could
signal a dynamical condensation at finite quasimomenta
as in the 1D case, where this dynamical quasiconden-
sation [80] has recently been observed in an experiment
[16]. Although we cannot ultimately clarify the question
of dynamical condensation in 2D with our small clusters,
we believe that the bunching of particles at certain fi-
nite momenta in the 2D expansion Jy ≈ Jx stems from
surface effects.

In order to investigate the dimensional crossover fur-
ther, we studied the expansion on long cylinders and lad-
ders with up to Ly = 4 legs. Correlations between the
particles in different legs, which lead to a Jy dependence,
built up on a very short timescale of about one tunnel-
ing time in the longitudinal x-direction. Until a time t2
that is proportional to the linear dimension of the initial
block, the expansion of blocks, restricted to either the left
or right half of the system, is identical to the domain-wall
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melting. On two-leg ladders, the density in the central
region becomes very weakly time dependent and almost
stationary for Jy/Jx & 1, even for the domain walls. This
is reflected by a vanishing or even slightly negative core
velocity, similar to the observations made in experiments
[17, 19]. By considering the limit Jy � Jx, we argue that
this suppressed expansion on the two-leg ladder for large
Jy/Jx stems from the fact that there are no modes with
Ey = 0 on single rungs. For cylinders and ladders with
larger Ly ∈ { 3, 4 }, we generically find a faster expansion
with higher velocities than in the Ly = 2 case. Addi-
tionally, there is a dependence of expansion velocities on
the boundary conditions in y-direction. For instance, the
expansion on Ly = 4 cylinder is faster than on a four-
leg ladder. In agreement with our considerations of the
limit Jy � Jx, this is accompanied by a bunching at pre-
ferred momenta ky = ± π

2a and kx = ± π
2a and increasing

occupation of natural orbitals. This scenario does not
prove the existence of dynamical condensation since the
particles in propagating modes will still interact during
the expansion, yet identifies the Ly = 4 cylinder as a
promising candidate system for future studies.

Finally, we state the interesting question whether the
expansion velocities on cylinders or ladders will ever show
the same dependence on Jy/Jx as the width Ly increases
compared to the expansion of a 2D block. The obvi-
ous difference is that we fill the cylinders and ladders
completely in the y-direction. Due to symmetry, the
expansion on cylinders is restricted to be along the x-
direction and as such closer to the 1D case, at least for
small Ly. There can thus be two scenarios: either, even
for Ly → ∞, the velocities of the cylinders might well
be above the experimental results or, as Ly increases be-
yond Ly = 4, the velocities at a fixed Jy/Jx will depend
non-monotonically on Ly.

Further insight into these questions, i.e., the depen-
dence on Ly or the question of dynamical condensation
at finite momenta in dimensions higher than one, could
be gained from future experiments with access to measur-
ing the radius. This could be accomplished using single-
site resolution techniques, see [100–102] for work in this
direction.
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Appendix A: Extraction of core and radial velocity

Both velocities vr = ∂R̃(t)
∂t and vc = ∂rc(t)

∂t are time
derivatives of quantities which are not strictly linear in
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FIG. 12. (Color online) Reduced radius R̃(t) for cylinders
with (a) Ly = 2, (b) Ly = 3, and (c) Ly = 4, starting from
a 6 × Ly cluster. The thick dashed lines show the linear fits
used to extract the radial velocities vr, which are shown in
Fig. 8(b).

time. Thus, both vr and vc themselves are time de-
pendent. Figure 12 shows the time dependence of the
reduced radius R̃(t), while Fig. 13 shows the core ra-
dius rc(t). In the ideal case we would expect them
to get constant in the long-time limit. Unfortunately,
our calculations are limited to finite times tm = 6 J−1x
for the two-leg ladder, tm ≈ 4 J−1x for Ly = 3 cylin-
ders/ladders, tm ≈ 3 J−1x for Ly = 4 cylinders/ladders,
and just tm ≈ 1.5 J−1x for the 2D lattice.

The reduced radii all start as R̃(t) =
√

2tJxa on very
short time scales t . 0.5 J−1x . This is clear as we are
initially confined to the hopping in x-direction, indepen-
dently of Jy. For very small Jy � Jx, the reduced ra-

dius remains linear in time with the velocity vr =
√

2Jxa
at all times, as expected for a ballistic expansion from
an initial state with a flat quasimomentum distribution
function [19, 92]. A Jy-dependence may show up on a
timescale t ∝ J−1y . For larger Jy the slope vr reduces
at intermediate times (in the time range where we can
observe it) but increases again for large tJx. The lat-
ter can be understood as follows: the outermost parts
have the strongest contribution to the sum in Eq. (3),
and naturally these outer parts have the highest velocity
2 Jxa (and also reached a low density such that they are
dilute and thus do not see each other any more). As-
suming a fraction p of the particles to expand with v
and the rest (1 − p) to form an inert time-independent
block in the center (see also the argument given in [75]),

a straightforward calculation shows that R̃(t) ≈ √p v t
at large times. This is also the reason why R̃(t) does
not settle to a constant value on the two-leg ladder even
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FIG. 13. (Color online) Core radius rc(t) for cylinders with
(a) Ly = 2, (b) Ly = 3, and (c) Ly = 4, starting from a 6×Ly
cluster. The thick dashed lines show the linear fits used to
extract the core velocities vc, which are shown in Fig. 8(a).

for large Jy, although the core in the center barely melts
and ∆N becomes only weakly time-dependent: there is
always a nonzero fraction of particles which go out from
the center.

We extract the time-independent expansion velocities
vr shown in Fig. 3 and 8 by a linear fit R̃(t) = vr ·t+const
in the time interval 2.0 J−1x ≤ t ≤ tm, where tm is the
maximum time reached in the simulations, see the above.
For the 2D lattice, we reach only tm = 1.5 J−1x , thus we
fit only in the interval 1.0 J−1x ≤ t ≤ 1.5 J−1x in this case.
In Fig. 8 we show error bars resulting from similar fits
but using only the first or the second half of the time
interval.

In the time regime 0 < t < t2, the core radius is con-
stant, although the cloud already expands: from both
edges, the block melts, but the location of the half-
maximum density does not move due to particle-hole
symmetry. Just when the first holes arrive in the cen-
ter of the block, the global maximum decreases and rc,
the half-width-at-half-maximum, begins to increase. It
then exhibits strong initial oscillations. The latter stem,
on the one hand, from the discreteness of the particles’
coordinates on the lattice, which is only partly cured
by the linear splines used to extract rc. On the other
hand, the melting of domain walls in one dimension hap-
pens in quantized “charges”, which lead to well-defined
structures in the density profile [96, 103, 104]. Those
oscillations prevent us from extracting the core veloc-
ity for the 2D lattice, where they are too strong at the
times reached in the simulations. Yet, it seems reason-
able to extract vc for the cylinders and ladders by linear
fits rc(t) = vc · t+ const in the same way as for vr. While

it works quite well for the ballistic expansion at Jy � Jx
and quite large Jy & Jx, rc(t) still exhibits a stronger
time dependence for intermediate Jy, e.g., Jy ≈ 0.3Jx
on the Ly = 2 cylinder. In the latter case, some of the
bosons expand initially during the domain-wall melting
and thus the block and rc grow, yet then the expansion is
slowed down and the extension of the high-density block
measured by rc becomes weakly time dependent.

Appendix B: Limit of large Jy � Jx

We split the Hamiltonian (1) into two parts ac-
cording to H =

∑
ix

(Hy
ix

+ Hx
ix,ix+1), where Hy

ix
=

−Jy
∑
iy

(â†ix,iy âix,iy+1 + h.c.) collects the hopping terms

within the rung ix and Hx
ix,ix+1 collects the hopping

terms between neighboring rungs.

1. Two-leg ladder

In the following we give an explicit expression for
Hx
ix,ix+1 on a two-leg ladder in terms of the eigenstates

of Hy
ix

and Hy
ix+1. We denote the four eigenstates of Hy

ix
on rung ix as

|0〉 = |vac〉 , |1+〉 =
â†ix,1 + â†ix,2√

2
|vac〉 ,

|2〉 = â†ix,2â
†
ix,1
|vac〉 , |1−〉 =

â†ix,1 − â
†
ix,2√

2
|vac〉 , (A1)

where |vac〉 denotes the vacuum on rung ix. The corre-
sponding eigenenergies Ey of Hy

ix
are listed in Tab. A1.

We then express âix,iy and â†ix,iy in terms of these eigen-

states, plug them into Hx
ix,ix+1 and obtain:

−Hx
ix,ix+1/Jx = |0; 1+〉 〈1+; 0|+ |0; 1−〉 〈1−; 0|

+ |2; 1+〉 〈1+; 2|+ |2; 1−〉 〈1−; 2|
+ |1+; 1+〉 〈0; 2| − |1−; 1−〉 〈0; 2|
+ |1+; 1+〉 〈2; 0| − |1−; 1−〉 〈2; 0|
+ h.c. .

(A2)

Here, |α;β〉 ≡ |α〉 ⊗ |β〉 with α, β ∈ { 0, 1+, 1−, 2 } de-
notes the tensorproduct of the eigenstates on rungs ix
and ix + 1. The terms in the first two lines of Eq. (A2)
correspond to just an exchange of the eigenstates α↔ β
between the neighboring sites. Thus we can identify the
terms of the first line to drive the propagation of single
bosons on top of the vacuum. The second line can be
seen as the propagation of a particle on top of a one-
particle background, or alternatively, a single hole in the
background of filled rungs.

In contrast to the terms of the first two lines, the terms
in the third and fourth row of Eq. (A2) mix different
eigenstates. If we imagine to start from a domain wall
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Ly = 2 ladder

N ky [π
a

] Ey [Jy] state

0 0 0 |0〉
1 0 -1 |1+〉

1 1 |1−〉
2 0 0 |2〉

Ly = 4 cylinder

N ky [π
a

] Ey [Jy]

0; 4 0 0

1; 3 0 -2

0.5 0

-0.5 0

1 2

2 0 -2.828

0.5 0

-0.5 0

1 0

1 0

0 2.828

Ly = 4 ladder

N Ey [Jy]

0; 4 0

1; 3 -1.618

-0.618

0.618

1.618

2 -2.236

-1

0

0

1

2.236

TABLE A1. Eigenenergies of a single rung. For a given parti-
cle number, degenerate levels are listed by their multiplicity.

|. . . ; 2; 2; 0; 0; . . .〉, those are the terms which “create” the
single particle modes |1±〉 at the border of the domain
wall. Subsequently, we would imagine these modes to
propagate away to the left as single-hole modes and to the
right as single-boson modes. Yet, for the two-leg ladder
all these mixing terms change the total energy Ey from 0
to either +2Jy or −2Jy. Thus, the creation is only possi-
ble via higher-order processes, which are suppressed with
increasing Jy/Jx. A term such as |1+; 1−〉 〈2; 0| would not
change the total energy Ey, but such a term is not present
in Eq. (A2) due to the conservation of total momentum
ky: it would change from ky = 0 + 0 to ky = 0 + π

a .
To summarize, we argue that the Ly = 2 ladder is

special as it possesses the two extremal modes ky = 0
and π with a large energy Ey = ±Jy for one particle on
a rung. We argue that it is not the propagation of the
modes |1±〉 into the vacuum but the creation at the edge
of the initial blocks or a domain wall that is suppressed by
energy conservation for large Jy � Jx. As a consequence
the current decays very rapidly as evidenced in Fig. 7(a).

2. Larger cylinders and ladders

We turn now to the cylinder and the ladder with
Ly = 4. The eigenenergies of Hy

ix
on a single rung

are listed in Tab. A1. Giving an explicit expression for
Hx
ix,ix+1 on an Ly = 4 cylinder or ladder is not possible

here, since it contains too many terms. Nevertheless, we
examine its structure. Similar as for the two-leg ladder,
we can distinguish between terms which just exchange
the eigenstates of neighboring rungs and terms which

mix them. As on the two-leg ladder, we associate the ex-
change terms with the propagation of modes. Since Hx

contains only single-particle hopping, the exchange terms
appear only between eigenstates with N and N+1 bosons
on neighboring rungs. Thus, to first order in Jx/Jy, a
mode of N bosons can propagate “freely” only in a back-
ground of N ±1 bosons per rung. By definition, all these
exchange terms do not change the total energy Ey.

For the mixing terms, there is no restriction on the ini-
tial particle numbers on the neighboring rungs. However,
Hx
ix,ix+1 obviously preserves the total number of particle,

thus there are only mixing terms for |. . . N,N ′ . . .〉 ↔
|. . . N ± 1;N ′ ∓ 1 . . .〉. The initial melting of the edge
thus happens via a cascade of subsequent mixing pro-
cesses. For example, consider

|. . . 4; 4; 0; 0 . . .〉 → |. . . 4; 3; 1; 0 . . .〉 → |. . . 4; 2; 2; 0 . . .〉
→ |. . . 3; 3; 2; 0 . . .〉 → |. . . 3; 3; 1; 1 . . .〉 . (A3)

On the cylinder there are states with Ey = 0 for any
number of bosons per rung (see Tab. A1). This makes
it plausible that cascades like (A3) are possible without
changing Ey on the single rungs. Indeed, we find the
corresponding terms in the expression for Hx

ix,ix+1 (not
given here). The initial edge of a block or domain wall
can thus gradually melt into states with one particle per
rung while preserving the energy Ey. This is confirmed
by a strong peak in the momentum distribution function
depicted in Fig. 9(f). These additional ky = ± π

2a modes
with Ey = 0, which are not present in the two-leg lad-
der, explain thus the trend of a faster expansion seen as
higher velocities in Fig. 8. Moreover, we stress that this
process is independent of Jy, provided that other modes
with Ey 6= 0 are suppressed and our picture is applicable.
Indeed, we find that the velocities in Fig. 8 and currents
(slopes) in Fig. 7(b) are roughly independent of Jy/Jx,
even for moderate Jy/Jx & 0.6.

On the other hand, on the four-leg ladder, there are
no states with Ey = 0 for one or three bosons on a rung.
It is thus immediately clear that there can be no mixing
terms which preserve Ey on every rung separately. More-
over, we find that there are also no mixing terms which
create modes with opposite energy starting from Ey = 0
on both rungs. As a consequence, the domain wall melt-
ing on the four-leg ladder requires higher-order processes,
similar to the two-leg ladder. However, the necessary in-
termediate energies Ey = ±0.613× 2Jy are smaller than
for the two-leg ladder, such that these higher-order pro-
cesses processes are more likely. This is reflected in Fig. 8
by higher velocities for the four-leg ladder compared to
the two-leg ladder.

[1] I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys.
80, 885 (2008).

[2] T. Langen, R. Geiger, and J. Schmiedmayer, Annual

Rev. of Condensed Matt. Phys. 6, 201 (2015).
[3] C. Gogolin and J. Eisert, (2015), arXiv:1503.07538

[quant-ph].



15

[4] J. Eisert, M. Friesdorf, and C. Gogolin, Nature Phys.
11, 124 (2015).

[5] M. Greiner, O. Mandel, T. Hänsch, and I. Bloch, Na-
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[87] S. Fölling, S. Trotzky, P. Cheinet, M. Feld, R. Saers,
A. Widera, T. Müller, and I. Bloch., Nature (London)
448, 1029 (2007).

[88] A. Celi, P. Massignan, J. Ruseckas, N. Goldman, I. B.
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