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Quantum degenerate gases trapped in optical lattices are ideal testbeds for fundamental physics because these
systems are tunable, well characterized, and isolated from the environment. Controlled disorder can be intro-
duced to explore suppression of quantum diffusion in the absence of conventional dephasing mechanisms such
as phonons, which are unavoidable in experiments on electronic solids. Recent experiments use transport of
degenerate Fermi gases in optical lattices (Kondov et al. Phys. Rev. Lett. 114, 083002 (2015)) to probe extreme
regimes. These experiments find evidence for an intriguing insulating phase where quantum diffusion is com-
pletely suppressed by strong disorder. Quantitative interpretation of these experiments remains an open problem
that requires inclusion of non-zero entropy, strong interaction, and trapping in an Anderson-Hubbard model. We
argue that the suppression of transport can be thought of as localization of Hubbard-band quasiparticles. We
construct a theory of dynamics of Hubbard-band quasiparticles tailored to trapped optical lattice experiments.
We compare the theory directly with center-of-mass transport experiments of Kondov et al. with no fitting
parameters. The close agreement between theory and experiments shows that the suppression of transport is
only partly due to finite entropy effects. We argue that the complete suppression of transport is consistent with
short-time, finite size precursors of Anderson localization of Hubbard-band quasiparticles. The combination of
our theoretical framework and optical lattice experiments offers an important platform for studying localization
in isolated many-body quantum systems.

PACS numbers: 03.75.Ss, 67.85.-d

I. INTRODUCTION

Understanding the motion of a quantum particle in an oth-
erwise isolated lattice under the influence of an applied field
is central to our understanding of conductivity in electronic
solids. The theory of Anderson localization [1, 2] predicts
that quantum diffusion of a single particle can fail in a dis-
ordered lattice. Above a critical disorder strength, for which
the mobility edge encompasses all states participating in trans-
port [3, 4], strong interference forbids quantum diffusion. An-
derson’s mechanism of localization was first discussed in the
context of a simplified model designed to treat the propaga-
tion of highly excited states of nuclear spin systems but it has
since been applied to a wide variety of other systems [2], in-
cluding quantum degenerate atomic gases [5–10]. Disorder-
induced localization is also believed to play a key role in
metal-insulator transitions in a wide-range of materials [2–4].

Subsequent theoretical studies of Anderson localization
found that inclusion of realistic effects, specifically inter-
particle interactions and non-zero temperature [2, 11–15],
pose prominent problems. The competition between Ander-
son localization and strong interaction effects have been stud-
ied with a variety of methods, e.g., quantum Monte Carlo [16],
dynamical mean field theory [14, 17, 18], and related quan-
tum cluster methods [19]. Refs. [14] and [18], for example,
found a correlated Anderson insulator ground state for large
disorder strengths indicating that Anderson localization per-
sists in a strongly interacting limit. Other recent work has
studied Anderson localization of Bogoliubov quasiparticles in
bosonic models [20, 21]. A more complete understanding of
the interplay of strong inter-particle interactions and disorder
is urgently needed to enhance our knowledge of strongly cor-
related materials such as high-temperature superconductors.

Related work by Basko et al. [22] has triggered consider-

FIG. 1. (Color online) Schematic showing disordered lattice sites in
a parabolic trapping potential. The site coloring represents a dense
core that gives way to zero density at the edges. The system stud-
ied here can be thought of as a strongly interacting high temperature
paramagnet with a density less than one at the center. An applied
shift of the external trapping potential along the x-direction for a time
τ = τP forces center-of-mass motion along the x direction only if
the atoms are mobile. τP is chosen to be short on the time scale of
the inverse trapping frequency.

able interest in the interplay between interactions, tempera-
ture, and Anderson localization. Their work indicates that a
correlated Anderson insulator is stable at non-zero tempera-
tures and corresponds to a many-body localized state. This is
surprising because one might expect that interactions lead to
dephasing effects that mimic the effects of heat and particle
number reservoirs [23, 24] that are known to lead to conduc-
tion via variable range hopping in certain solids [4]. Interac-
tions would be expected to lead to effective reservoirs even
in the absence of an explicit reservoir. But Ref. [22] argues,
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surprisingly, that interactions allow a correlated Anderson in-
sulator to survive up to a characteristic temperature. More
recent work (See Ref. [24] for a review) points out that the
very notion of temperature should give way to the more gen-
eral concept of energy density in a many-body localized phase
in an isolated quantum system.

Quantum degenerate gases of atoms trapped in optical lat-
tices offer a controlled arena to study the interplay of inter-
actions, disorder, and thermal effects [25–28] because they
are, to an excellent approximation, isolated. The entropy
per particle, controlled via cooling in a parabolic trap, deter-
mines an equilibrium temperature when the lattice is turned
on, since atomic gases thermalize through inter-particle inter-
actions [29–31]. As a result of their isolation, quantum de-
generate Fermi gases in optical lattices exhibit quantum diffu-
sion (see, e.g., Ref [32]), even though their temperatures are
a significant fraction of the Fermi energy. This offers a use-
ful regime to study because isolated systems can, in principle,
exhibit many-body localization even at high energy densities
[33]. Furthermore, optical lattice experiments are well char-
acterized [27, 34]: interaction strength, lattice depth, entropy,
density, and other parameters are all known and tunable. The
impact of disorder can therefore be studied independently of
conventional dephasing phenomena arising from contact with
reservoirs [35–42].

Recent experimental work [43] has investigated interacting
fermions confined in a cubic optical lattice to study the influ-
ence of quenched speckle disorder on center-of-mass trans-
port, Fig. 1. This system is accurately described using the
Anderson-Hubbard model and transport in these experiments
is understood to imply the short-time response of the entire
system to an applied field [43]. The fact that the entire sys-
tem responds, and not just states near the Fermi surface, im-
plies an absence of a sharp transition. Nonetheless, the ex-
periments find intriguing insulating behavior above a critical
disorder strength that agrees qualitatively with the predictions
for many-body localization in the weakly interacting regime
[22].

Control over the lattice potential depth and disorder
strength was shown to lead to a regime where known types
of insulating behavior can be excluded. For example, it was
demonstrated that the insulating regime occurs for disorder
strengths well below the classical percolation threshold [43].
Furthermore, the system was made dilute enough to avoid
forming Mott [44–46] and band insulators. The regime they
explored can be thought of as a strongly interacting Hubbard
paramagnet with a temperature well below the bandwidth.
The insulating behavior of the isolated-strongly interacting
particles in these experiments [43] is therefore a highly non-
trivial probe of localization in many-body quantum states.

In this article, we provide, to our knowledge, a new per-
spective on disorder-induced localization in the Anderson-
Hubbard model and the measurements in Ref. [43]. We estab-
lish a connection to Hubbard-band quasiparticles that are very
robust because they are stabilized up to energy scales on the
the order of the interaction energy (as opposed to conventional
Landau-Fermi liquid quasiparticles near Fermi-surfaces that
set in at a much lower energy scale). We make a direct com-

parison between theory and experiment with no fitting param-
eters. This approach enables us to treat the strongly interact-
ing limit, which was not possible using the perturbation the-
ory employed in Ref. [22]. We derive the equations of motion
for the Anderson-Hubbard model in the paramagnetic regime
while taking into account all important experimental aspects,
particularly trapping and finite entropy effects. We show that
the equations of motion derived here to include a trap reduce
to the Hubbard-I [47] approximation normally considered in
the translationally invariant limit. This demonstrates that our
equations of motion quantitatively capture the dynamics of
Hubbard-band quasiparticles in a trap.

We use parameters taken from Ref. [43] to effectively repli-
cate the experiment numerically and find evidence for a quasi-
particle mobility edge. We find that at low disorder strengths
the Hubbard-band quasiparticles propagate in the lattice un-
der an applied force, i.e., they have non-zero mobility. We
also study the result of increasing disorder. At large disor-
der strengths we identify a transition to an insulator through
the absence of center-of-mass motion. A direct comparison
between theory and experiment shows good agreement. We
argue that the insulating behavior observed in Ref. [43] is
consistent with short-time, finite size precursors of Anderson
localization of Hubbard-band quasiparticles. To our knowl-
edge, disorder-induced localization in the Hubbard model has
not been previously understood using this approach, which
is complementary to other methods, e.g., perturbative theory
[22] and dynamical mean field theory [14, 17, 18].

We begin in Sec. II by defining the model used to simu-
late the experiments of Ref. [43] and all necessary parame-
ters. Here we also define the center-of-mass velocity as the
key observable. In Sec. III we then derive the equations of
motion in the paramagnetic regime. Sec. IV then shows that
the equations of motion reduce to the Hubbard-I approxima-
tion [47] that was originally used to define Hubbard-band
quasiparticles. Here we also show that, in a strongly inter-
acting limit, Hubbard-band quasiparticles obey an effective
Anderson model of non-interacting quasiparticles. Sec. V
then defines the approximations used in constructing the ini-
tial state that is propagated using the equations of motion.
Sec. VI points out an important feature of the initial states
used in these experiments. We find that increasing disorder
at fixed entropy effectively raises the system temperature to
at most B/3, where B is the bandwidth. Even though this
heating keeps the temperature well below the bandwidth, it
is nonetheless an important aspect of these experiments that
must be included to make a quantitative comparison with the-
ory. Sec. VII presents our central results. Here we directly
compare numerical solutions of the equations of motion with
experiments. We find that low disorder allows the Hubbard-
band quasiparticles to propagate in the trap. But we find a
critical disorder strength above which center of mass motion
is suppressed. We conclude in Sec. VIII by interpreting the re-
sults presented here as evidence for the Anderson localization
of Hubbard-band quasiparticles.
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II. MODEL AND PARAMETER REGIMES

We study the dynamics of an equal population of two-
component fermions in a cubic optical lattice in the presence
of spatial disorder. For deep lattices we assume that allN par-
ticles reside in the lowest Bloch band. In this limit the single-
band Anderson-Hubbard model is an excellent approximation
[27, 43]:

HAH =
∑
j,j′,σ

Tj,j′c
†
j,σcj′,σ + U

∑
j

nj,↑nj,↓ +
∑
j

µjnj .(1)

Here c†j,σ creates a fermion of spin σ ∈↑, ↓ at a site Rj ,
U > 0 derives from atomic s-wave scattering, and nj =
nj,↑ + nj,↓ is the number operator. The matrix elements
Tj,j′ ≡ −tδRj ,Rj′+δ are written in terms of a Kronecker
delta, δ, that enforces a hopping energy t between nearest
neighbor sites (δ is a nearest neighbor bond vector.)

The last term in Eq. (1) includes spatially inhomogeneous
perturbations to the chemical potential. We define:

µj = −µ0 +
mω2a2R2

j

2
+ εj + VPRj · x̂, (2)

where µ0 is the average chemical potential, m is the atomic
mass, ω is the trapping frequency that parameterizes the ex-
ternal confinement, a is the lattice spacing determined by the
optical lattice laser wavelength, εj denotes spatially random
disorder, and VP is a pulse strength that is switched on for a
time τ = τP to effectively shift the trap center.
VP acts as the analogue of a weak electric field used to drive

motion along the x-direction, see Fig. 1. At long times a sin-
gle particle with no disorder will oscillate in the trap. But we
consider pulse times that are short with respect to the inverse
trapping frequency to focus on the regime probed in Ref. [43].
At these short times, the center-of-mass velocity is unidirec-
tional and, in the absence of disorder, increases linearly with
VP .

We consider two distinct distributions of site disorder. In
the experiments of Ref. [43] the speckle potential used to es-
tablish a disordered optical lattice creates an exponential prob-
ability distribution function for the on-site energies [34]:

PE(ε) =
e−ε/∆E

∆E
, (3)

where ∆E is the strength of the exponentially distributed dis-
order assuming ε > 0 (this is accurate to within 10% of the
disorder strength used in Ref. [43]). We also consider a uni-
form (boxed) disorder probability distribution function for the
on-site energies εj :

PU (ε) =
Θ(∆U/2− |ε|)

∆U
, (4)

where Θ is the Heaviside step function and ∆U parameter-
izes the strength of the uniformly distributed disorder. PE in-
troduces behavior that is distinct from more common models
with PU because changing ∆E at fixedN forces µ0 to change.
This is in contrast to changes in ∆U which leaves µ0 constant
at fixed N .

TABLE I. Table of parameters used in the experiments of Ref. [43].
Here the recoil energy is ER = h2/(8ma2) and the atomic species
is 40K.

Lattice Depth VL 6ER 7ER

Trap Frequency ω 110× 2πHz 114× 2πHz
Lattice Spacing a 391.1 nm 391.1 nm
Number of Particles N 47100± 6500 48700± 1900

Entropy per Particle S/N 1.51± 0.18kB 1.6± 0.17kB

Hopping t 0.0509 ER 0.0395 ER
Interaction U 0.304 ER 0.355 ER
Relative Strength U/t 5.97 8.98
Disorder Strength ∆E 0-2 ER 0-2 ER
Pulse Time τP 2 ms 2 ms
Pulse Strength VP 0.011 ER 0.011 ER

Eq. (1) quantitatively captures the essential properties of
the experiments in Ref. [43]. We ignore disorder in t and U
that was shown [34] to be narrowly Lorentzian distributed. In
what follows, we find that we are able to make quantitative
comparison with experiment even while excluding the disor-
der in t and U . We will return to this point in Sec. IV.

The experiments proceed by trapping a fixed number of par-
ticles with a fixed entropy, S. The entropy and all other nec-
essary model parameters were determined in Ref. [43] and
are shown in Table I. We focus on the two lattice depths with
high U , where U/t ≈ 6 and U/t ≈ 9 for 6ER and 7ER, re-
spectively, which allows an approximation (the Hubbard-I ap-
proximation) that becomes exact in the atomic limit, t/U = 0.
Table I leaves no fitting parameters in using approximate solu-
tions of Eq. (1) to compare with the experiments of Ref. [43].

We will show that the entropies reported in Table I im-
ply temperatures that are well above the Néel temperature,
∼ t2/U [46, 48–52]. The experimentally relevant tempera-
ture regimes are above the hopping but below the bandwidth.
Our central set of approximations in studying Eq. (1) can be
summarized by:

t � U

t .kBT< 12t (5)

where the first inequality assumes that we focus on the high
lattice depth data of Ref. [43], and the second inequality im-
plies that high temperature limits are valid approximations.
Sec. V shows that the initial state for the parameters defined
by Table I can be thought of as a dilute (〈n〉 < 1) high tem-
perature paramagnet. We will therefore focus our study to
strongly interacting paramagnetic regimes.

To make contact with experimental results presented in
Ref. [43] we study the dynamics of the center of mass. The
time dependent center-of-mass velocity in particular:

VC.M.(τ) =
∑
j

Rj〈
.
〈nj〉〉D, (6)

was inferred from time of flight images [43]. Here 〈〈...〉〉D
indicates disorder averaging of expectation values and τ de-
notes time. In the following we find that disorder averaging
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over 25-50 realizations is sufficient to reach convergence in
our numerical simulations. We will use Eq. (6) to compute
the center-of-mass velocity along the direction of the applied
pulse after a time τ = τP :

VC.M. = x̂ ·VC.M.(τP ). (7)

This quantity is akin to measures of mobility in solids. For ex-
ample, in the Drude model of electrical conductivity, VC.M. is
proportional to the electron mobility when measured in equi-
librium after a pulse. VC.M. will therefore offer a useful probe
to study the impact of disorder on transport of strongly inter-
acting atoms in optical lattices.

III. DYNAMICS FROM EQUATIONS OF MOTION

To study the center-of-mass dynamics we derive equations
of motion for correlation functions related to observables. The
trapping potential in Eq. (1) breaks translational invariance.
We will derive the equations of motion in the site (Wannier)
basis as opposed to the more conventional k-space (Bloch) ba-
sis to allow studies of local dynamics in trapped lattices. We
approximate the equations of motion by relying on the strong
interaction/high temperature limit, Eqs. (5). The next section
shows that our approximation reduces to Hubbard’s decou-
pling of the equations of motion, the Hubbard-I approxima-
tion [47], that introduced the concept of Hubbard-band quasi-
particles. The equations of motion derived here therefore offer
a tool to study the local dynamics of Hubbard-band quasipar-
ticles in the absence of translational invariance.

The exact equations of motion for the charge and spin de-
grees of freedom are given by:

i~
d〈ρσl′l〉
dτ

= 〈[ρσl′l, HAH]〉 (8)

and

i~
d〈Sl′,l〉
dτ

= 〈[Sl′,l, HAH]〉, (9)

respectively. Here the correlator:

ρσl′l ≡ c
†
l′,σcl,σ (10)

is the single-particle density matrix which is off-diagonal in
the site indices, l and l′, but measures density along the diag-
onal, since ρσl,l = nl,σ. The spin operator is: Sl′,l ≡ ψ†l′σψl,
where the fermion spinors are: ψ†l = (c†l,↑, c

†
l,↓) and σ are the

Pauli matrices. The equations of motion can be generalized to
include time dependence in the Hamiltonian but we exclude
that case here.

The high temperature limit studied here suppresses spin or-
der (which emerges for kBT . t2/U ). This implies that for
an equal number of atoms in each spin state we have a param-
agnet:

〈ρ↑l′l〉 = 〈ρ↓l′l〉. (11)

To focus on the charge degrees of freedom deep in the para-
magnetic regime we also assume an absence of in-plane spin
order as well. This leads to:

〈Sxl′l〉 = 〈Syl′l〉 = 〈Szl′l〉 = 0, (12)

thus allowing us to focus on approximations to Eq. (8) only.
To derive the equations of motion we construct and solve

the hierarchy of coupled differential equations with Hubbard’s
decoupling. The commutator in Eq. (8) can be evaluated:

i~
d〈ρσl′l〉
dτ

= (µl′ − µl)〈ρσl′l〉+ U〈Γσl′l〉

+
∑
j

[
Tl,j〈ρσl′j〉 − Tl′,j〈ρσjl〉

]
(13)

where the U term contains a higher order correlator:

Γσl′l ≡ ρσl′l(nl,−σ − nl′,−σ). (14)

The central aim of our protocol is to numerically solve
Eq. (13) and use the results to evaluate Eq. (6). This will re-
quire an estimate for Γσl′l.

To estimate Γσl′l we derive the equations of motion for
this higher order correlation function as well. The oper-
ator evolves as: dΓσl′l/dτ = dρσl′l/dτ(nl,−σ − nl′,−σ) +
ρσl′l(dnl,−σ/dτ − dnl′,−σ/dτ). We use this relation to ap-
proximate the evolution of 〈Γσl′l〉 by inserting Eq. (13) and
decoupling all products of Γσl′l and ρσl′l:

i~
d〈Γσl′l〉
dτ

= (µl′ − µl)〈Γσl′l〉+ U〈Γσl′l〉〈nl,−σ − nl′,−σ〉

+ 〈nl,−σ − nl′,−σ〉
∑
j

[
Tl,j〈ρσl′j〉 − Tl′,j〈ρσjl〉

]
+ 〈ρσl′l〉

∑
j

[
Tl,j〈ρ−σlj − ρ

−σ
jl 〉 − Tl′j〈ρ

−σ
l′j − ρ

−σ
jl′ 〉
]

(15)

The key decoupling used in deriving this equation is given by
a Hartree-Fock-like decoupling in the equations of motion of
the form:

ρ−σlj ρ
σ
l′l → 〈ρ−σlj 〉ρ

σ
l′l

nl,−σΓσl′l → 〈nl,−σ〉Γσl′l (16)

The next section shows that this decoupling reduces to Hub-
bard’s decoupling [47] that has been conventionally imple-
mented in a Green’s function approach [47, 53].

We self-consistently solve Eqs. (13) and (15) for the time
evolution of the correlation functions. We then use the correla-
tion functions to evaluate the center-of-mass position and ve-
locity. One can in principle solve for the dynamics at small τ
with a linear expansion. But we perform a full self-consistent
solution to account for short time scales induced by large dis-
order strengths and the trap. Large disorder strengths in par-
ticular lead to large inter-site energy differences and therefore
very short inter-site tunneling times between certain sites. Our
full self-consistent treatment therefore avoids possible prob-
lems with a small τ expansion.



5

The time evolution of other local correlation functions can
also be found. For example, the double occupancy, 〈nl,↑nl,↓〉,
can be obtained from:

i~
d〈γσl′l〉
dτ

= (µl′ − µl)〈γσl′l〉+ 〈ρσl′l〉
∑
j

Tl,j [〈ρ−σlj 〉 − 〈ρ
−σ
jl 〉]

+ 〈nl,−σ〉
∑
j

[
Tl,j〈ρσl′j〉 − Tl′,j〈ρσjl〉

]
+ U〈γσl′l〉(1− 〈nl′,−σ〉)(1− δl,l′) (17)

where the off-diagonal operator:

γσl′l ≡ ρσl′lnl,−σ, (18)

captures the conditional hopping of doublons.

IV. CONNECTION TO HUBBARD’S APPROXIMATION

In this section we argue that the formalism we have con-
structed can be understood in a quasiparticle picture. In
strongly interacting systems we often rely on mappings to
weakly interacting quasiparticles to gain a quantitative un-
derstanding of otherwise intractable problems. Quasiparticles
therefore offer useful tools to probe many-body localization
and related phenomena. We can then ask the following ques-
tion that parallels inquiries into many-body localization of ele-
mentary particles: Does spatial disorder localize weakly inter-
acting quasiparticles at non-zero temperature? Here the inter-
actions between the original particles are strong thus allow-
ing significant dephasing from interactions. But quasiparti-
cle problems are tractable and should therefore allow detailed
quantitative studies.

To connect the equations of motion to Hubbard-band quasi-
particles we will show that our formalism reduces to Hub-
bard’s approximation in the translationally invariant limit.
Our formulation is a local theory designed to incorporate spa-
tial inhomogeneity (i.e., trapping and disorder in the quasi-
particle degrees of freedom). By assuming translational in-
variance we can show that the above formalism simplifies to
the equations of motion found from Hubbard’s approximation.
We first briefly review Hubbard’s approximation.

Hubbard’s approximation applies the Hartree-Fock decou-
pling to the equations of motion for the Green’s functions. The
approximation is, unlike the ordinary Hartree-Fock approxi-
mation, exact in both the band limit, i.e., no interactions, and
the atomic limit, i.e., infinity strong interactions. The approx-
imation assumes two Hubbard bands of quasiparticles where
the band parameters are renormalized by the density and the
interaction. Exact solutions of Hubbard’s equations of motion
are possible in the translationally invariant limit (µj → −µ0

in Eq. (2)). The quasiparticle Green’s function is:

Gk,σ(E) =
~

E − [ε(k)− µ0 + Σσ(E)]
, (19)

where the nearest neighbor tunneling leads to the single parti-
cle band dispersion:

ε(k) ≡ −2t
∑

ν∈x,y,z
cos(kνa). (20)

The self energy is [47]:

Σσ(E) =
U〈n−σ〉(E + µ0)

E + µ0 − U(1− 〈n−σ〉) + iξ
. (21)

Here the density is to be determined self consistently. Σσ(E)
therefore depends on temperature because the density is tem-
perature dependent (See Sec. V). We have also inserted
a small number, ξ, which parameterizes the quasiparticle
lifetime. Working with a purely real self energy assumes
Hubbard-band quasiparticles with an infinite lifetime. By
taking the limit ξ → 0 it is straightforward to show that
Σσ(E) satisfies the Kramers-Kronig relations. We follow the
Hubbard-I approximation [47] by setting ξ = 0 when we con-
sider the translationally invariant limit. Disorder, included
later in a self-consistent numerical protocol, can be parame-
terized in the Green’s function by taking ξ > 0.

It is important to note that this decoupling goes beyond con-
ventional Hartree-Fock decouplings of the Hamiltonian [54]
(which only capture the dynamics of very weakly interact-
ing limits) to instead apply a decoupling in the equations of
motion of higher order correlation functions. The Hubbard-I
approximation reproduces the exact correlation functions of
the Hubbard model in both the weak (t/U → ∞) and strong
(t/U → 0) interaction limits of the paramagnetic phase. But
it breaks down at intermediate interaction strengths, near the
Mott transition (half filling), and when magnetic ordering sets
in. A review of the limitations of the Hubbard-I approxima-
tion can be found in Ref. [55].

Long-lived Hubbard-band quasiparticles are a valid approx-
imation for both the initial state and the short-time dynamics
studied here. Sec. V shows that the initial thermal state pro-
duced by the Hubbard-I approximation (ξ = 0) reproduces
correlation functions obtained from the high temperature se-
ries which therefore shows that the Hubbard-I approximation
is valid at these temperatures. It is also reasonable to as-
sume that Hubbard-band quasiparticles are long-lived in the
time propagated state on time scales of the experiment (2 ms).
A theory-experiment comparison [56] shows that the absence
of dissipation prevents the decay of Hubbard-band quasipar-
ticles, e.g., doublons, because energy conserving decay pro-
cesses are higher order in t/U . Refs. [56, 57] find doublon
lifetimes on the order of 4h/t but the transport experiments
discussed here [43] are performed on time scales that are more
than two orders of magnitude shorter. These comparisons in-
dicate that infinite quasiparticle lifetimes are a reasonable ap-
proximation.

We also note that relaxation times in the propagated state
are assumed to be dominated by disorder in our calcula-
tion. We numerically solve for time evolved correlation func-
tions in the Hubbard-I approximation in the disordered land-
scape. Our procedure therefore implicitly imposes a disorder-
dominated relaxation time within the Hubbard-I approxima-
tion. We rely on the close agreement between theory and ex-
periment to validate this assumption.

Using the self energy we can define a spectral density that
is useful for calculations:

Sk,σ(E) = ~δ [E − ε(k) + µ0 − Σσ(E)] . (22)
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From the spectral density we find two (Hubbard) bands with
spectral weights that depend on the density and interaction.
The energies of each band are:

Eb,σ(k) =
U + ε(k)

2
+ (−1)b

√
[U − ε(k)]

2

4
+ U〈n−σ〉ε(k),

where b = 1 (b = 2) denotes the lower (upper) Hubbard band.
In the limit of weak interaction the bands become degener-
ate and we recover the Hartree-Fock limit from Hubbard’s ap-
proximation.

The Hubbard bands split in the strong interaction limit. To
see this we expand Eb,σ in powers of 1/U . We find:

E1,σ = [1− 〈n−σ〉] ε(k) +O(t2/U)

E2,σ = U + 〈n−σ〉ε(k) +O(t2/U) (23)

This shows that, to lowest order, lower Hubbard-band quasi-
particles can be thought of as non-interacting particles but
with a renormalized hopping, t [1− 〈n−σ〉]. (Technically, the
renormalized hopping allows the Hubbard-band quasiparti-
cles to interact through the mean field) The upper Hubbard
band is similar but with an energy offset U and a renormal-
ized hopping t〈n−σ〉. An important aspect of Eq. (23) is that
the corrections are ∼ t2/U and are therefore much smaller
than the temperature in most ongoing optical lattice experi-
ments. Fig. 2 plots Eb,σ(k) in comparison to ε(k) along one
dimension to show that the energetics of Hubbard-band quasi-
particles in the lowest band are close to those of free particles.

Hubbard-band quasiparticles are, for U/t � 1, fundamen-
tally different from quasiparticles near Fermi surfaces nor-
mally considered in the Fermi-liquid context. Quasiparti-
cles derived from Fermi-surfaces are adiabatically connected
to the non-interacting limit. Whereas Hubbard-band quasi-
particles are non-perturbative when viewed from the non-
interacting limit because two Hubbard bands with a gap ∼ U
are assumed. The Hubbard-I approximation becomes exact in
the atomic limit. Hubbard quasiparticles therefore have two
separate energy scales, a large energy gap ∼ U , and the en-
ergy scale for kinetics, t. The limit defined by Eqs. 5 therefore
allows a relatively large temperature while maintaining long-
lived Hubbard-band quasiparticles that can exhibit quantum
diffusion in the absence of dissipation. Conventional quasi-
particles, by contrast, decay quickly when the temperature ap-
proaches t.

We now show that the formalism presented in Eqs. (13)-
(17) reduces to Hubbard’s approximation in the translation-
ally invariant limit. To show this we simplify the equations
of motion for ρσl′l and γσl′l. We can then solve the equations
of motion by Fourier transforming into energy and wavevec-
tor variables. We find that the resulting energies are given by
Eb,σ(k).

Eqs. (13) and (17) define a coupled set of equations that can
be solved analytically in the translationally invariant limit. We
note that these equations are coupled since Γσl′l = γσl′l − γ

σ†
ll′ .

We impose translational invariance by setting µl = µl′ . The
density then becomes uniform: 〈nσ〉 = 〈nl,σ〉. We Fourier
transform all terms in Eqs. (13) and (17). For example, we

FIG. 2. (Color online) Plot of the energy versus wavevector for a
translationally invariant lattice. The solid (dashed) line plots the en-
ergy of the lower (upper) Hubbard band, Eb,σ(k), in one dimension.
The parameters U/t = 9 and 〈n〉 = 0.7 are chosen as characteristic
of the center of system for the 7ER data in Table I (with ω = 0 and
VP = 0). The dotted line plots the non-interacting case, Eq. (20),
but in one dimension, for comparison. Here we see that the lower
Hubbard band is very similar to the non-interacting band.

set:

ρσk,k′ = N−1
s

∑
l,l′

e−i(k·Rl−k′·Rl′ )ρσl′l, (24)

where Ns is the number of sites.
We can also transform the coupled set of first order differ-

ential equations in time to a set of coupled algebraic equations
by Fourier transforming to energy space. We then find:

−Eρσk,k′ = U(γσk,k′ − γσ†k′,k) +
[
ε(−k)− ε(k′)

]
ρσk,k′

−Eγσk,k′ = Uγσk,k′ + 〈n−σ〉
[
ε(−k)− ε(k′)

]
ρσk,k′ , (25)

where we have dropped higher order terms, i.e., terms of
the form U〈n−σ〉γσk,k′ . We have also made use of Tl,l′ =

N−1
s

∑
k ε(k)eik·(Rl−Rl′ ).

Eqs. (25) can be solved analytically for the eigenvalues E
by setting k′ = 0 and solving for ρσk,0 and γσk,0. We can,
without loss of generality, set ε(0) = 0 in Eq. (25) to make
contact with the Hubbard approximation. We find three dis-
tinct modes. A trivial high energy mode with E = U corre-
sponds to a non-dispersive doublon mode obtained from so-
lutions with ρσk,0 = 0. But the remaining two modes we find
have precisely the same energies as those found in Hubbard’s
approximation: Eb,σ(k). We have therefore shown that the
formalism presented in Eqs. (13)-(17) reduces to Hubbard’s
approximation in the translationally invariant limit.

The reduction of the dynamics problem posed by Eq. (1) in
a high temperature paramagnetic limit into that of dynamics of
Hubbard-band quasiparticles has two important implications.
The first is practical: We will be able to compute correlation
functions for the initial state using the spectral density. This
is discussed in Sec. V.

The second implication is phenomenological. Since the
strongly interacting limit can be thought of as nearly free
Hubbard-band quasiparticles, the addition of disorder should
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FIG. 3. (Color online) Schematic of one two-dimensional plane
of the site-disordered cubic lattice. The blue (red) spheres depict
spin up (down) Hubbard-band quasiparticles in the lowest Hubbard
band. The highlighted nearest neighbor bonds between particles of
opposite spin symbolize the renormalized quasiparticle hopping in
Eq. (26). The hopping is suppressed on average. For example,
a lower-band quasiparticle with spin σ has a renormalized nearest
neighbor hopping t〈1− n−σ〉, for large U .

show features qualitatively similar to a weakly interacting sys-
tem. We have verified that the quasiparticle picture remains
valid even for large disorder strengths, ∆E/t ∼ 40, by check-
ing that the Hubbard-band spectral weight is non-zero. We
can therefore construct an effective model of Hubbard-band
quasiparticles in a disordered lattice (but in the absence of a
trap):

Heff =
∑
j,j′,σ,b

T̃ b,σj,j′ c̃
†
j,b,σ c̃j′,b,σ +

∑
j,b,σ

µ̃j,b,σñj,b,σ (26)

where the tilde indicates quasiparticle operators. µ̃ is the
chemical potential renormalized by the self energy and T̃j,j′
indicates quasiparticle hopping with:

T̃ b,σj,j′ = N−1
s

∑
k

Eb,σ(k)eik·(Rl−Rl′ ). (27)

Here we have assumed that the quasiparticle energies,
Eb,σ(k), depend on the Fourier transform of the randomly
distributed density.

We can get an intuition for the renormalized hopping if we
assume that the density, on average, remains uniform in the
presence of disorder. Eqs. (23) show that in the strongly in-
teracting limit this renormalized hopping reduces to: T̃ 1,σ

j,j′ ≈
Tj,j′〈1−n−σ〉+O(t2/U) and T̃ 2,σ

j,j′ ≈ Tj,j′〈n−σ〉+O(t2/U),
for the lower and upper Hubbard bands, respectively. The
renormalized hopping is shown schematically in Fig. 3.
Heff is an effective theory of Hubbard-band quasiparticles

that must, in principle, be solved self-consistently. But it
should nonetheless reveal a mobility edge of Hubbard-band

quasiparticles because it is essentially a non-interacting An-
derson model of Hubbard-band quasiparticles. For exam-
ple, it is well known that the Anderson model in the cu-
bic lattice with uniform disorder exhibits a mobility edge at
∆U/B = Xc, where Xc ≈ 1.6 [58]. For the lower Hubbard
band in the absence of a trap and in a paramagnetic state the
quasiparticle bandwidth becomes B = 12t(1 − 〈n〉/2). Heff
therefore qualitatively predicts a mobility edge for Hubbard-
band quasiparticles. We will return to this point in discussing
the suppression of transport in Sec. VIII.
Heff also shows that ignoring disorder in t and U is justified

in the large U limit. It Ref. [34] it was shown that speckle
disorder leads to a narrow Lorentzian distribution of t and
U . Even though the distribution is narrow, these parameters
could in principle have significant contributions to dynamics
due to the tails of the distribution. But we note that the large
U limit is dominated by dynamics of Hubbard-band quasipar-
ticles (not the original particles). Eqs. (23) and (26) explicitly
show that the effective quasiparticle hopping, T̃ , and chemical
potential, µ̃, are implicitly disordered even if disorder in t and
U are excluded. This shows that excluding disorder in t and
U still leaves an effective model with all terms disordered. In-
cluding disorder in t and U should therefore not qualitatively
alter the dynamics of Hubbard-band quasiparticles in the large
U limit.

V. INITIAL STATE

To time evolve correlation functions we must accurately es-
tablish the initial state. The system evolves in the absence of
a heat or particle number bath. The short-time dependence
therefore crucially depends on the initial state. We note that
the Hubbard approximation is very accurate in the limit de-
fined by Eqs. (5). To see this we note that the static properties
of optical lattice experiments with two-component fermions
are also accurately captured by a high temperature series ex-
pansion of Eq. (1) [59–61].

We have checked that the high temperature series expan-
sion and the Hubbard approximation agree in the limits dis-
cussed here, Eqs. (5). We have computed correlation func-
tions important for preparing the initial state (density, double
occupancy, energy, entropy, and hopping energy) using both
the high temperature series and the Hubbard-I approximation.
Both approximations agree in the temperature regime of in-
terest. Fig. 4 plots an example comparison for the density.
Here we see that all orders of the high temperatures series
agree with the Hubbard-I approximation for T & t. But the
agreement breaks down for low T where the high tempera-
tures series fails to provide convergent results and we expect
spin correlations to play an important role. In preparing the
initial state we have checked that we are working at entropies
where the high temperatures series converges and agrees with
the Hubbard-I approximation.

In this high T regime the initial state is also accurately cap-
tured by the local density approximation [53, 60]. We take
each site as a uniform system and compute correlation func-
tions. In the local density approximation we assume that each
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FIG. 4. (Color online) The density of the uniform Hubbard model
(∆U = 0, VP = 0, and ω = 0) as a function of temperature for
U/t = 9. Calculations are performed using the high temperature se-
ries and the Hubbard-I approximation for comparison. The high tem-
perature series is a perturbative expansion of the partition function in
powers of t/kBT . Each order corresponds to the largest power in
the expansion. The top (bottom) panels are for chemical potentials
representative of the edge (center) of the trapped system for the 7ER
data in Table I. In both panels we see that agreement for each or-
der of the series breaks down near kBT ∼ t where the Hubbard-I
approximation begins to deviate in comparison.

site of the trapped system can be approximated with param-
eters for a uniform system by setting µl to be the chemical
potential for the lth uniform system, and we average over
all uniform systems. Correlation functions from each site
are then combined and the average chemical potential is de-
termined self-consistently to fix the particle number. In the
case of multi-site correlation functions a complication arises:
the chemical potential varies from site to site. Here we find
that nearest neighbor correlation functions are sufficient to de-
scribe the initial state, since long range correlation functions
decay quickly at these temperatures. As a result, we are able
to approximate two-site correlation functions by setting the
chemical potential to be the average between the neighbors.

The local density approximation was validated in Ref. [60]
using two different high temperature series expansions. In
Ref. [60] a series expansion that included the trapping poten-
tial was constructed. All terms were included for arbitrary
chemical potentials up to order (t/kBT )2. The expansion
with the trapping included was compared with a high temper-
ature series expansion derived for the uniform limit but with
trapping included in the local density approximation. All cor-
relation functions were found to agree for temperatures high

enough to maintain the paramagnet phase. Since the present
work examines the same temperature regimes, the local den-
sity approximation is appropriate.

Now that we have validated the Hubbard-I approximation it
can be used to approximate the initial state using correlation
functions computed directly from the spectral function within
the local density approximation. The spectral theorem implies
that we can compute the initial (τ = 0) correlation function
for ρσl′l using:

〈ρσl′l〉(τ = 0) =
∑
k

e−i(Rl′−Rl)·k

2~Ns

∫ ∞
−∞

dEf(E)

· Sk,σ(E − µ̄), (28)

where µ̄ ≡ (µl−µl′)/2 and f(E) is the Fermi-Dirac distribu-
tion function. Here we assume 〈ρσl′l〉 is equal to its Hermitian
conjugate. A similar relation can be used to obtain Γσl′l as
well:

〈ρσl′lnl,−σ〉(τ = 0) =
∑
k

e−i(Rl′−Rl)·k

2~Ns

∫ ∞
−∞

dEf(E)

·
[
E − ε(k)

U

]
Sk,σ(E − µ̄). (29)

Using the these relations we are able to set the initial state
correlation functions with a protocol discussed in Sec. VII.
The protocol allows use of the Hubbard approximation to
compute initial state correlation functions at fixed entropy for
a given disorder configuration. The following discusses the
temperature dependence in the initial state in the presence of
disorder.

VI. ADIABATIC HEATING DUE TO DISORDER IN THE
INITIAL STATE

The temperature in ultracold atom experiments is deter-
mined by the entropy. The relationship between temperature
and entropy relies, in general, on the intricate interplay be-
tween kinetics and interactions. The addition of disorder adds
another complication that alters the entropy-temperature re-
lation. Below we show that the addition of disorder leads
to adiabatic heating in the initial state. Specifically we find
that, at fixed entropy, increasing disorder increases the tem-
perature. This observation has important consequences for
the interpretation of the data in Ref. [43] and other optical
lattice experiments because increasing disorder strengths also
increases temperature. In subsequent sections we take adia-
batic heating from disorder into account when preparing the
initial state in a trap.

We use the high temperature series expansion to show that
the paramagnet experiences adiabatic heating due to disorder.
The solid line in Fig. 5 shows an example of the entropy per
particle versus temperature for an initial state without a trap.
We set µ0/t = 3.8 because it characterizes the non-disordered
limit of experiments reported in Ref [43]. We find 〈n〉 < 1.
Here we see that a fixed entropy (horizontal dotted line) sets
a low temperature, TL, in the absence of disorder. Because
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FIG. 5. (Color online) The disorder-averaged entropy per particle
computed as a function of temperature for Eq. (1) in the absence of
a trapping potential or a pulse (ω = 0 and VP = 0). The horizontal
dotted line indicates a fixed entropy per particle, S/N = 1.2kB. The
solid (dashed) lines were computed using ∆U = 0 (∆U = 20t) and
µ0/t = 3.8. The vertical lines labeled with TL and TH point to low
and high temperatures, respectively. The entropy-temperature curve
with a high disorder leads to a higher temperature.

optical lattice experiments take place in the absence of a heat
bath, entropy is preserved when a disordered optical lattice is
applied to a trapped gas. We then include a disorder strength
∆U = 20t in a calculation of the entropy per particle. We use
the local density approximation and integrate over disorder
configurations (See Eqs. (A3)). The dashed line shows the
disorder averaged results. The entropy is significantly lower.
The system therefore acquires a higher temperature, TH , at
the same entropy.

Adiabatic heating due to disorder arises because increas-
ing the disorder strength in a single band reduces the num-
ber of available states. As a result the entropy (which is the
logarithm of the number of available states) decreases with
increasing disorder. The net effect is then an increase in tem-
perature if the entropy is required to be fixed while increasing
disorder.

Adiabatic heating becomes more pronounced with expo-
nentially distributed disorder. Fig. 6 plots the entropy per par-
ticle as a function of both exponential disorder strength and

FIG. 6. (Color online) Disorder averaged entropy per particle plotted
as function of both temperature and disorder strength for Eq. (1) in
the absence of a trapping potential or an applied force (ω = 0 and
VP = 0). The 8th order high temperature series expansion was used
within the local density approximation. U/t = 9 and µ0/t = 3.8
were chosen as characteristic of the center of the system for the 7ER
data in Table I. The black contour lines indicate adiabats that reveal
significant adiabatic heating due to increasing exponential disorder.

temperature. The black lines depict adiabats. The correspond-
ing temperature can therefore increase by as much as a factor
of 2 at fixed entropy over the range of disorder strengths con-
sidered here. The impact of adiabatic heating due to disorder
on center-of-mass dynamics in trapped systems is discussed
in more detail in the following sections.

VII. CENTER-OF-MASS DYNAMICS: COMPARISON
WITH EXPERIMENT

This section culminates in a direct comparison between re-
sults from the equations of motion and experiments. We find
that small system size simulations can be scaled to directly
compare with experiments with no fitting parameters. The
close comparison between experiment and theory shows that
we can interpret the experiments of Ref. [43] as motion of
Hubbard-band quasiparticles. The simulations and experi-
ments are consistent with finite size precursors of Anderson
localization of Hubbard-band quasiparticles.

We now use Eqs. (28) and (29) to compare with experi-
ments in Ref. [43] using experimental input parameters from
Table I. To use our formalism to compute the center-of-mass
dynamics we prepare an initial state at fixed entropy in a dis-
ordered landscape. The system is numerically time evolved.
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The center-of-mass velocity is computed at the pulse time and
then disorder averaged. These simulations are performed on
system sizes up to L = 11, with L = Lx = Ly = Lz .
Finite size extrapolation is performed by decreasing the trap
frequency and repeating the simulation for large system sizes
while keeping µ0 fixed to values found for experimentally rel-
evant system parameters.

To keep the pulse time short on the time scales of the trap-
ping frequency (as is done experimentally [43]) we have to
rescale the pulse time used in our simulations. The pulse time
at system size L, τL, is adjusted for each trap frequency at
system size L, ωL, to maintain τL = τP

√
ω/ωL. This allows

a scaling to the trapping frequency and the pulse time found in
Table I, ω and τP , respectively. The impulse formula (Sec. A)
shows that this establishes an ω−1/2

L scaling of VC.M.. This
scaling is expected since the center-of-mass velocity from the
impulse formula scales as V0 ∼ τL ∼ ω

−1/2
L (Sec. A). We

have checked below that our finite size extrapolations do scale
as ω−1/2

L , as expected.
We use the following protocol to prepare initial states: 1)

We choose an entropy per particle determined experimentally,
high trap frequency (chosen to trap the system within the fi-
nite size limitations of our simulations), and a small number
of particles. 2) We choose a random distribution of chemical
potentials according to Eq. (3). 3) We then self-consistently
adjust µ0 and T so that the particle number and entropy match
the values set in step 1. This is done using the high tempera-
ture series expansion in the local density approximation. The
series expansion is controlled a these temperatures because we
can check higher orders [60, 61]. We find that 8th order in the
expansion is sufficient for parameters considered here. The
Hubbard approximation gives identical results for thermody-
namic functions. 4) We then use Eqs. (28) and (29) to compute
the initial state correlation functions. 5) We then return to step
1 to repeat the process with a smaller trap frequency.

We find that adiabatic heating in the initial state increases
the temperature by no more than a factor of 2. For all sys-
tem sizes studied we find that the temperature remains nearly
constant as function of system size. At the largest disorder
strengths, ∆E ∼ 1.5ER, we still find kBT < 4t. We con-
clude that adiabatic heating increases the temperature but the
temperature is still well below the bandwidth, 12t.

Given the initial state, we numerically time evolve correla-
tion functions according to Eqs. (13) and Eqs. (15), extrapo-
late to the thermodynamic limit, and disorder average. Figs. 7
and 8 plot VC.M. versus disorder strength for the 6 ER and
the 7 ER parameters, respectively. The data result from time
evolving the initial correlators, Eqs. (28) and (29). The top
panels show results for two different entropies. The larger en-
tropy leads to temperatures with T & t. The approximations
made here (paramagnetic order, no spin correlations, and the
local density approximation) are therefore valid at all disorder
strengths for the higher entropy. The top panels also compare
low entropy data that is consistent with the entropies used in
experiments (see Table I). Here adiabatic heating increases the
temperature to T & t only for ∆E & 0.2ER. Below these
disorder strengths the approximations made here break down

FIG. 7. (Color online) Top: Disorder averaged center-of-mass veloc-
ity as a function of the disorder strength for two different entropies.
Here the initial state correlation functions are estimated in the lo-
cal density approximation (using Eqs. (28) and (29) in combination
with a high temperature series expansion) and time evolved in the
trap (using Eqs. (13) and (15)). Model parameters are taken from the
6ER data in Table I. The S/N = 1.5kB results are plotted only for
large disorder strengths because here adiabatic heating allows access
to temperatures high enough to be consistent with the approxima-
tions made in preparing the initial state. Bottom: The circles plot
the same as the top panel and the diamonds plot experimental data
from Ref. [43] for comparison. The lines are a guide to the eye. The
error bars on the numerical simulations are the standard error found
from disorder averaging, while the experimental error bars are the
standard error in the mean for 7-9 measurements averaged for each
point.

because the temperatures are low enough to introduce poles
in thermodynamic functions using either the high temperature
series expansion (even out to 10th order) or the Hubbard ap-
proximation.

The top panels of Figs. 7 and 8 clearly show a suppres-
sion of the center-of-mass velocity with disorder. The map-
ping to Hubbard-band quasiparticles in the lowest Hubbard
band allows delineation of the sources of the suppression: 1)
As exponentially distributed disorder is increased, the bias
in the distribution leads to more sites with higher densities.
The increase in average density slows the propagation of the
Hubbard-band quasiparticles because the renormalized tun-
neling is given by t〈1 − n/2〉. This effect was implicit in the
suppression shown in Sec. A (See Fig. 9). We find that this is
a weak effect because the system is dilute, i.e., 〈nj〉/2 � 1
for many sites (the edges make up about 1/3 of the system) 2)
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FIG. 8. (Color online) The same as Fig. 7 but for the 7ER data in
Table I. Here the comparison between theory and experiment is better
because U/t is larger.

Adiabatic heating due to disorder also suppresses VC.M.. The
increase in the resulting temperature lowers the nearest neigh-
bor correlations, e.g., 〈ρσl,l+1〉, inherent in the initial state. The
initial state is therefore slower to respond because VC.M. scales
linearly with terms like t〈ρσl,l+1〉. This effect was shown to
dominate only at lower disorder in Sec. B (See Fig. 10). Fur-
thermore, we find that the temperature is at most B/3 at the
largest disorder strength, ∆E ∼ 1.5ER. 3) These effects are
modest and are not sufficient to completely localize the center
of mass. The final effect derives from disorder induced scat-
tering. The presence of disorder lowers the localization length
so that propagation is impossible for ∆E > 0.5ER. This fi-
nal effect is consistent with a finite size precursor of Anderson
localization of Hubbard-band quasiparticles because the crit-
ical disorder strength, ∆E ≈ 0.5ER, is near the approximate
location expected for the Anderson metal-insulator transition,
near B ≈ 0.47ER.

The bottom panels in Figs. 7 and 8 show a comparison be-
tween the results obtained from our formalism and the ex-
perimental data of Ref. [43]. The comparison is made where
possible (in the high temperature regime). The agreement in
Fig. 8 is better because U is larger. The Hubbard approxi-
mation becomes exact in the atomic limit. The comparison
suggests that the data from Ref. [43] can be thought of as re-
vealing a mobility edge of Hubbard-band quasiparticles.

VIII. DISCUSSION

We have found that two-component fermions in an optical
lattice fail to respond to a force for sufficiently strong disorder,
implying a phenomenon reminiscent of Anderson localization
in bulk systems. At strong disorder strengths the atoms fail
to move under weak perturbations. Here the suppression of
quantum diffusion indicates that the assumption of a thermal
initial state is incorrect, i.e., that the system is inherently non-
ergodic at large disorder strengths. Our comparison between
theory and experiment are therefore consistent with Anderson
localization of Hubbard-band quasiparticles at large disorder
strengths but a mobile state of Hubbard-band quasiparticles at
low disorder strengths. We interpret these results as evidence
for a mobility edge of Hubbard-band quasiparticles.

We can compare the center-of-mass velocity studied here
with conductivity studied in solids. Both measures can be
used as diagnostics of localization. The DC Conductivity
in solids is typically defined in infinite system sizes while
in equilibrium. The DC conductivity therefore gives a long
time/large length scale probe of the single particle density ma-
trix. The center-of-mass velocity is proportional to mobility
and therefore also offers an equivalent probe of the single par-
ticle density matrix provided the system is infinitely large and
it is allowed to evolve indefinitely. But the center-of-mass ve-
locity studied here was considered on time scales inversely
proportional to the trap frequency and in finite system sizes
out of equilibrium. We therefore conclude that the results pre-
sented in Figs. 7 and 8 only offer a short-time, finite size esti-
mate for the conductivity.

Our work opens interesting directions for future studies of
localization physics with Hubbard-band quasiparticles. The
work presented here is consistent with quantum Monte Carlo
results [16] and dynamical mean field theory studies of the
Anderson-Hubbard model [14, 17, 18]. But these methods
could be used to tackle lower temperature limits and include
spin fluctuations in a comparison with low temperature exper-
iments.

Furthermore, future work will be needed to rigorously es-
tablish a connection between the localized state found here
and many-body localization. The suppression of transport dis-
cussed here is a necessary condition for many-body localiza-
tion. But future work should look at sufficient conditions for
many-body localization using, e.g., entanglement measures in
the Anderson-Hubbard model, to make a direct comparison
with experiments.

In preparing this manuscript we became aware of work in
Ref. [62] that compared the entanglement entropy with popu-
lation imbalance in incommensurate optical lattices.

V.W.S. acknowledges support from AFOSR under grant
FA9550-11-1-0313. B.D. acknowledges support from the
NSF under grant PHY12-05548 and from the ARO under
grant W9112-1-0462.
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Appendix A: Order of Magnitude Estimate

This section uses a semiclassical impulse formula for
Hubbard-band quasiparticles to estimate the center-of-mass
velocity dependence on disorder strength for very weak dis-
order. This estimate shows that renormalization of the quasi-
particle hopping due to disorder can suppress the center-of-
mass velocity. It also yields the correct order of magnitude
for the center-of-mass velocity at low disorder. A simple or-
der of magnitude estimate for the center-of-mass velocity will
be useful in establishing a scaling relation to extrapolate our
finite sized simulations to experimental system sizes.

To estimate the center-of-mass velocity we use a semi-
classical estimate of velocities in combination with the local
density and effective mass approximations. The quasiparti-
cle effective mass in the lowest Hubbard band is obtained
from the single-particle effective mass using the replacement
t→ t〈1− nj/2〉:

m∗j =
~2

2t(1− 〈〈nj〉〉D/2)a2
, (A1)

where the limit 〈nj〉 → 0 returns the single-particle effective
mass. Note that disorder averaging is implicit in this defini-
tion.

At short times, the semiclassical estimate of the center-of-
mass velocity reduces to the well known impulse formula. We
apply the impulse formula to the dynamics of Hubbard-band
quasiparticles in the lowest band. (Note that the impulse for-
mula also follows from the generalized Kohn’s theorem in
an effective mass approximation) Averaging the velocity of
each site,

.
〈Rxj 〉, leads to a total center-of-mass velocity for

one disorder configurationN−1
∑Ns

j 〈nj〉
.
〈Rxj 〉. Applying the

impulse formula to Hubbard-band quasiparticles and averag-
ing over disorder realizations gives an approximation to the
center-of-mass velocity:

V I = V0[1−
Ns∑
j

〈〈nj〉2〉D/(2N)], (A2)

where V0 ≡ 2aVP τP t/~2 depends linearly on τP and
〈〈nj〉2〉D indicates the disorder average of 〈nj〉2.
V I gives the correct order of magnitude for the center-of-

mass velocity. To show this we use the high temperature series
expansion to estimate the density in the initial state in the trap.
We choose the parameters for the 7ER lattice depth presented
in Table I but we fix the entropy to be S = 1.9kB .

We use a simplified version of the protocol constructed in
the main text to get a rough estimate of V I. Once the entropy
and particle number are fixed, the approach used in the main
text then finds the µ0 and T at each disorder configuration
using the high temperature series expansion. These parame-
ters are then, for each disorder configuration, used to compute
〈nj〉 within the trap. Disorder averaging proceeds by sum-
ming the center-of-mass velocity over all disorder configura-
tions. But in this section we solve for the chemical potential
and temperature differently so we can access experimentally
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FIG. 9. (Color online) The top and middle panels plot the density
and the quasiparticle effective mass, Eq. (A1), respectively, as a func-
tion of disorder strength for a chemical potential at the central site.
The bottom panel plots the center-of-mass velocity versus disorder
strength from a disorder-averaged impulse formula, Eq. (A2), that es-
timates the velocity of Hubbard-band quasiparticles in the trap size
consistent with experiment. The local density approximation was
used to sum over all sites. All quantities are computed using the high
temperature series expansion at 8th order with the parameters cho-
sen from the 7ER data in Table I but with S/N = 1.9kB . Eqs. (A3)
were used as rough estimates for disorder averaging.

relevant system sizes without finite size extrapolation. We use
the high temperature series expansion to approximate the en-
tropy and density with integration (rather than explicit sum-
mation) over the disorder distribution:

〈〈S〉〉D ≈
∫ ∞

0

dεPE(ε)S(ε)

〈〈n〉〉D ≈
∫ ∞

0

dεPE(ε)〈n(ε)〉. (A3)

These approximations can be used to self-consistently solve
for T and µ0 given S and N for large systems sizes. This
simplified protocol uses entropies and densities that are not
self-consistently solved for each disorder configuration but are
instead taken in a mean-field limit separately. As a result,
self-consistent solutions of these coupled formulas only offer
a rough estimate for T and µ0 because they are assumed to
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FIG. 10. (Color online) The disorder averaged center-of-mass ve-
locity (Eq. (7)) as a function of temperature for several disorder
strengths computed from solutions of Eqs. (13) and (15). Param-
eters are chosen to yield a small system size replica of the larger
system implied by the parameters for the 7ER data in Table I (see
text). The velocities are disorder averaged using uniform disorder.
Here we see that increasing temperature suppresses the velocity only
at low disorder strengths.

decouple for each disorder configuration. We can therefore
only apply these approximations for low disorder strengths.

The top panel of Fig. 9 plots the disorder-averaged density
of the central site in the trap as a function of disorder strength.
Here we see that the density decreases due to adiabatic heat-
ing and a redistribution of the particles due to biased exponen-
tial disorder. The quasiparticle effective mass (middle panel)
therefore also decreases.

The bottom panel of Fig. 9 plots the disorder-averaged
center-of-mass velocity from Eq. (A2). Here we see that the
velocity decreases due to an enhancement of the density. The
experimental data, for comparison, starts out with a center-of-
mass velocity ∼ 1 mm/s. The impulse formula for Hubbard-
band quasiparticles therefore gives the correct order of magni-

tude and shows suppression due to a modulation of the density
due to disorder.

Appendix B: Temperature Dependence

In this section we study the temperature dependence of the
center-of-mass velocity in small trapped systems by solving
for the dynamics of correlators using Eqs. (13) and (15). Here
it is shown that temperature increases (expected in adiabatic
heating) suppress the center-of-mass velocity but only for low
disorder strengths.

We can use Eqs. (13) and (15) to compute the center-of-
mass dynamics in trapped systems on small system sizes. We
solve Eqs. (13) and (15) numerically. The initial state is de-
termined using Eqs. (28) and (29) within the local density ap-
proximation at fixed temperature. Fig. 10 shows example re-
sults for the center-of-mass velocity. The simulations are car-
ried out on a periodic cubic lattice with edges of size L = 11
where the trap zeroes the density at the the edges. We consider
a small system size replica of larger experimental parameters
by choosing a stronger trap frequency ~ω/t = 0.757 but at
the same chemical potential as that found for experimental
system sizes, µ0/t = 3.8. τP = 0.514h/t is chosen by a
trap-dependent rescaling discussed in Sec. VII. The entropy
is allowed to vary but otherwise the remaining parameters are
chosen from the 7ER data in Table I.

Fig. 10 shows that by increasing temperature, the center-of-
mass velocity can decrease at low disorder. This is the oppo-
site of what is expected from variable range hopping in com-
mon regimes, e.g., in semiconductors, where the presence of
a bath typically increases conductivity with increasing tem-
perature. Here we do not have an external bath. At low
disorder, increasing temperature suppresses the amplitude for
particles to tunnel between neighboring sites, e.g., t〈ρσl,l+1〉,
in the initial state. As a result, the center-of-mass velocity
(which scales linearly with the nearest neighbor elements of
the single-particle density matrix) is suppressed with increas-
ing temperature. The high disorder limit has a different be-
havior. Here the dynamics is strongly suppressed by disor-
der and the thermal suppression of tunneling has little effect.
These qualitative trends show that, when we study the experi-
mentally relevant fixed entropy case, adiabatic heating due to
disorder will tend to suppress the center-of-mass velocity only
at low disorder strengths.
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