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The dynamical evolution of spatial patterns in a complex system can reveal the underlying struc-
ture and stability of stationary states. As a model system we employ a two-component Bose-Einstein
condensate at the transition from miscible to immiscible with the additional control of linear in-
terconversion. Excellent agreement is found between the detailed experimental time evolution and
the corresponding numerical mean-field computations. Analysing the dynamics of the system, we
find clear indications of stationary states that we term nonlinear dressed states. A steady state
bifurcation analysis reveals a smooth connection of these states with dark-bright soliton solutions
of the integrable two-component Manakov model.

Bose-Einstein condensates have been established over
the past two decades as a prototypical testbed for ex-
citing developments ranging from nonlinear dynamics
and wave phenomena to superfluid features and quan-
tum phase transitions [1–5]. Especially two-component
ultracold gases are ideal for the study of the connection
of topological solutions of integrable systems and their
variants in the presence of different types of perturba-
tions [6, 7]. Identification and exploration of the topo-
logical stationary nonlinear solutions in complex systems
can give essential insight into the ongoing physics. We
report here on the finding as well as experimental de-
tection of a new class of nonlinear stationary states in
two component systems with linear interconversion at the
threshold between miscibility and immiscibility.

The properties of multi-component Bose Einstein con-
densates have been studied in numerous contexts. In par-
ticular, early experimental efforts produced binary mix-
tures of two different hyperfine states of 23Na [8] and
of 87Rb [9]. The progressively improving experimental
control has enabled detailed observations of phase sep-
aration phenomena and associated multi-component dy-
namics [10–16]. More recently, the mixing-demixing dy-
namics has been controlled both in pseudo-spinor (two-
component) [17] and spinor systems [18] via external cou-
pling fields. As a result, formation of domain walls has
been observed. In these systems additional topological
excitations such as dark-bright solitons do exist. These
have been experimentally realized building on dynamical
instabilities present in the regime of two counterflowing
superfluids [7]. The ability of phase imprinting offers
a controlled path for the generation of individual such
topological states [6]. All these observations are ade-
quately captured by the mean-field description. Thus,
the well established integrable Manakov model [19], i.e.
two nonlinearly interacting classical fields in one dimen-
sion at the miscibility-immiscibility threshold, forms a
basis for understanding the corresponding characteris-
tics. This model is also examined in other physical sys-
tems such as nonlinear polarization optics where multiple
dark-bright and dark-dark soliton solutions can be sys-
tematically constructed [20].
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FIG. 1. (Color online) Comparison of observed and numer-
ically calculated time dynamics of an elongated two compo-
nent condensate in the presence of a dressing field of different
amplitudes Ω. The asymmetry in the intra-species scatter-
ing lengths pushes component |1〉 to the wings of the trap
for Ω = 0. The trend reverses for Ω = 2π × 6 Hz. As Ω
increases further, the amplitude of the oscillatory dynamics
decreases and in the large coupling limit the system is well
approximated by stationary dressed states.

Here, we study the nonlinear dynamics of a two-
component Bose gas at the transition from miscible to im-
miscible, arising through linear interconversion between
the two components. In particular, we utilize a Rabi cou-
pling between two hyperfine states of 87Rb and identify
its significant impact on the dynamics as shown in Fig. 1.
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The comparison of experimental results with theoretical
predictions shows excellent agreement. A more system-
atic analysis discussed below reveals that these observa-
tions can be understood as a consequence of the presence
of stable nonlinear stationary states. These we will term
“nonlinear dressed states” (NDS). Additionally, this new
class of states is found to be interconnected as a function
of the linear coupling strength via a series of Hamilto-
nian saddle-node, as well as Hopf bifurcations [21]. A
key observation is that the resulting rich bifurcation dia-
gram connects the NDS with two previously studied lim-
its. For vanishing linear coupling we recover the sequence
of dark-bright solitonic states of the integrable Manakov
model [20] and in the limit of dominating interconversion
we identify the known dressed states in the homogeneous
miscible regime [22].

In our experiment we initially prepare the gas in a
product of single particle dressed states, i.e. an equal su-
perposition of the two components, for given Rabi cou-
pling strength characterized by Ω0 = 2π × 600 Hz. This
is achieved by realizing a fast π/2 pulse with strong
coupling and a subsequent phase-adjusted driving (with
phase φ = −π/2) at the coupling strength of interest. It
is important to note that with this procedure the higher
excited states of the system are prepared. Fig. 1 illus-
trates the comparison of the spatial dynamics for the
two components, after a quench to different values of Ω.
The theoretical dynamics is based on the non-polynomial
Schrödinger equation (NPSE, see Appendix) [23]. This
confirms the relevance of the mean-field model as a suit-
able tool for predicting the dynamics.

We observe that for Ω = 0, i.e. no linear coupling,
component |1〉 is pushed to the edge of the condensate.
This results from the fact that the repulsive interaction
of component |1〉 is larger than for the other compo-
nent a11 > a22 ([a11, a22, a12] = [100.4, 95.0, 97.7]aBohr

[12, 24]; see, however, also [25]); here, axy represents the
scattering length between the x, y components. It is im-
portant to note that this is not due to demixing dynamics
resulting from an instability corresponding to ∆ < 1 (al-
though in our case ∆ < 1, its proximity to unity is such
that the growth times of the most unstable modes are
much longer than the time scale of our experiments). In-
stead, it has to be regarded as energetic separation of
the two components. For the experiment described here,
∆ = a11a22/a

2
12 = 0.998(2) ≈ 1. This trend is reversed as

Ω is increased, where the more strongly interacting com-
ponent |1〉 is compressed during the dynamics initiated
by the quench (see Fig. 1 for Ω = 2π × 6 Hz). This is a
consequence of the finite size of the system and is well
captured by the numerical calculations. For higher values
of linear coupling we observe faster oscillatory dynamics
which on average is reminiscent of the strongly dressed
state regime [22] reported in the context of miscibility
control by linear interconversion [17].

Before bringing these results into a more general con-
text we briefly discuss the experimental and numerical
methods used to monitor the system at hand. We cre-
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FIG. 2. (Color online) Stationary states in the presence of
a linear coupling field, exhibiting an intriguing cascade of
branches. The right columns show the theoretically obtained
normalized density profiles for the two components |1〉 (blue)
and |2〉 (green) for five characteristic values corresponding to
the parameters of Fig. 1.

ate a Bose-Einstein condensate of 5600 87Rb atoms in
an elongated optical dipole trap with a longitudinal trap
frequency ωx = 2π × 23.4 Hz and a transverse confine-
ment of ω⊥ = 2π × 490 Hz. The atoms are initially in
state |1〉 = |F = 1,mF = −1〉 of the ground state hy-
perfine manifold and can be linearly coupled to state
|2〉 = |F = 2,mF = 1〉 via two-photon microwave and
radio frequency radiation. The detuning from the inter-
mediate |2, 0〉 level is −2π × 200 kHz. A fast Ωτ = π/2
pulse with Ω = 2π × 600 Hz creates a spatially homoge-
neous equal superposition of the two states. Within 5µs
the phase of the coupling field is changed by −π/2 and
the amplitude is reduced to realize coupling strengths in
the range 0 < Ω < 2π×60 Hz. A uniform magnetic field
B = 3.23 G guarantees that the differential Zeeman shift
between states |1〉 and |2〉 is equal to second order and the
influence of magnetic field fluctuations is minimized. The
mean field shift due to the different intra-species scatter-
ing lengths a11 6= a22 is compensated with a detuning of
δ = −2π×16 Hz, which is adjusted through the frequency
of the rf coupling field. The time evolution is obtained
by repeating this procedure and detecting the atomic dis-
tributions after different evolution times past the initial
π/2 pulse using state-selective absorption imaging with
a spatial resolution of 1.1 µm.

Our quantitative theoretical analysis is based on both
a study of the system’s time evolution and on the ex-
ploration of its stationary states and their Bogoliubov-de
Gennes stability analysis (see Appendix). The time evo-
lution of the linearly coupled atomic clouds is performed
via the NPSE [23]. The simulation is initialized with the
mean field ground state of N = 5600 atoms in state |1〉
calculated via a Newton scheme. It subsequently repli-
cates the experimental procedure described above. For
the dynamical evolution in Figure 1, we have also incor-
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porated in the NPSE two- and three-body losses where
the most important contribution comes from the spin re-
laxation loss of F = 2.

To shed light on the complex sequence of dynamical
features observed for different values of Ω, we proceed
to compute the stationary states of the coupled NPSE
system in Fig. 2. These are obtained by means of a
fixed point (Newton) method as detailed in the appendix,
which is capable of also capturing dynamically unstable
states, a feature critical to our discussion below. The
stationary solutions are constructed by means of a small
change to the parameter Ω, using the previously con-
verged stationary state as a seed. This parametric con-
tinuation approach reveals a sequence of branches which
appear to be disconnected from each other, as can be
seen in Fig. 2. These form part of a progression whereby
an increasing number of spatial density modulations (and
number of maxima) of each component is present in each
higher branch; see Fig. 2(b). Notice, in particular, how
component |2〉 evolves from single hump for vanishing Ω
(top panel of Fig. 2(b)) to double and multi-humped as
Ω is increasing.

We now show that these stationary states are inti-
mately connected to the averaging of the experimental
and numerical dynamical observations, as is illustrated
in Fig. 3. For comparison, the population differences of
the components are averaged over the respective period
of the temporal evolution. Fig. 3(a) represents the ex-
perimental observations, panel (b) the direct numerical
time dynamics (via the NPSE) while panel (c) depicts the
corresponding stationary stable nonlinear dressed states;
see also the discussion below. We find excellent agree-
ment between time-averaged NPSE and the stationary
NDS state predictions. Only slight asymmetries (plau-
sibly due to inhomogeneities of the coupling field) can
be detected in these rows. These are roughly the same
in all rows in absolute magnitude but in our density dif-
ference diagnostic they become more pronounced when
the densities are nearly equal (i.e., in rows 4 and 5). If
the dynamics can be understood as interference between
different non-linear stationary states where one is much
more populated than the others, time averaging would
reveal the most populated state since the rest would av-
erage to zero in the long time limit.

In accordance with bifurcation theory, the depicted
endpoints for our stationary solutions (see Fig. 2) can-
not be isolated, but rather have to be continued. To
reveal this structure we utilize the method of pseudo-
arclength continuation [26] enabling the continuation of
the branches around these apparent endpoints. For
this analysis we employed the one dimensional Gross-
Pitaevskii equation to facilitate the stability computa-
tions, yet the qualitative observations reported below
are unaffected by this. Corresponding results including
the spatial profile at selected points along one branch
are shown in Fig. 4. This illustrates that the nonlinear
dressed states are smoothly connected to solutions of the
dark-bright soliton type for vanishing Ω that are known
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FIG. 3. (Color online) Detailed comparison of the time-
averaged density difference profiles with the stationary states.
(a) We extract the time averaged density profiles from the
experimentally observed dynamics shown in Fig. 1, averaging
over full oscillation periods for each value of Ω and normal-
izing the averaged profile (see Appendix), as shown in the
left column. The difference of the time-averaged density pro-
files in the experiment is shown in the right column. (b) The
same procedure is repeated for the numerical simulations of
the NPSE and in (c) compared to the stationary states from
Fig. 2 for the respective values of Ω, i.e., the NDS. The qual-
itative agreement reveals that the time averaged profiles are
accurately captured by the corresponding stationary nonlin-
ear dressed states. On a quantitative level, differences remain,
as the dissipative mechanisms are not accounted for in the de-
termination of the NDS.

to exist in the context of the Manakov model [20]. The
highlighted branch in Fig. 4 connects the state consisting
of eight topological excitations to the one with ten; simi-
lar features arise for lower, as well as for higher branches
(with correspondingly lower and higher soliton multiplic-
ities). The symmetry of our initial guess selects the states
with an even number of excitations. The observed pat-
tern in the experiment corresponds to the segment of
the branch between the panels 2 and 3 in Fig. 4. The
numerical Bogoliubov-de Gennes (linearization) stability
analysis confirms that this segment is stable. The sta-
bility regime is delimited by a saddle node bifurcation
at the lower corner (see e.g. marker 3 in Fig. 4). This
is characterized by a turning point of the branch con-
nected with a zero crossing of an eigenfrequency in the
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Bogoliubov-de Gennes analysis. The upper limit of the
stability segment (see e.g. marker 4 in Fig. 4) is associ-
ated with a Hamiltonian Hopf bifurcation [21], whereby
quartets of eigenfrequencies emerge and destabilize the
branch. Both unstable parts of the branch connect in
the limit of Ω = 0 to a train of dark-bright solitons but
with different even multiplicity. We emphasize that the
stable stationary solutions naturally connect to the linear
dressed states in the limit of large Ω [22]. The amplitude
of the spatial structure as well as its length scale de-
creases as Ω approaches this limit in accordance with the
Bogoliubov-de Gennes analysis of the uniform state [27].

We note that for small linear couplings both the profile
and the energy is strongly influenced by the finite size of
the system. Especially the observed interchange of the
components between Ω = 2π × 4 Hz and Ω = 2π × 6 Hz
(see Fig. 1) can be attributed to the turning point of the
lowest branch shown in Fig. 4. The lower two branches
in Fig. 4 represent solutions whose spatial extent (even
with a single hump) induces competition with the spatial
length allowed by the trap, hence their “unusual” shape.
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FIG. 4. (Color online) The bifurcation loop structure for the
stationary states. The left graph shows the chemical potential
of the stationary states as a function of the linear coupling.
The states are stable only along the linear parts, e.g. between
markers 2 and 3, while the loops are unstable. The graphs
at the right illustrate the spatial structure of the probability
amplitudes of the corresponding stationary states. Following
one specific loop we find that the nonlinear dressed states
are smoothly connected to dark-bright soliton trains at Ω =
0 characterized by zero crossings of one component and a
corresponding amplitude maximum for the other component.
The location of one of the dark-bright solitons in the state
identified by marker 5 is indicated by the vertical line. Within
each branch two additional topological excitations are added
as the energy increases.

In the present work, we have studied experimentally
and theoretically the extension of the Manakov model
by introducing linear coupling between the two com-
ponents. In the numerical computations emulating the
experiment, we also incorporate the relevant nonlinear
losses and obtain quantitative agreement between the
two. We find stable stationary solutions for any value
of the linear coupling which we term nonlinear dressed

states. The theoretical identification is found to be in
excellent agreement with our experimenal observations.
Furthermore, we establish a connection to limiting solu-
tions in the form of dark-bright soliton trains in the van-
ishing linear coupling limit and to linear dressed states in
the large coupling limit. The associated branches reveal
stable and unstable segments separated by saddle-node
and Hamiltonian Hopf bifurcations.

Our results reveal a previously unidentified connec-
tion between highly nonlinear stationary states and the
weakly interacting regimes reached via a controlled per-
turbation. Identifying the nature of perturbations lead-
ing to such a smooth connection may provide critical in-
sights into a physical system revealing universal charac-
teristics for highly excited states. The translation of our
findings to spin models, e.g. in our case the mapping
to a transverse Heisenberg model [28], can prove fruitful
in characterizing the high energy part of the excitation
spectrum. This might have consequences on the recently
discussed excited state quantum phase transitions [29].
Moreover, it would be interesting to explore how such
phenomenologies may extend to higher dimensional set-
tings, potentially forming a multi-dimensional analog of
nonlinear dressed states and a set of branches connecting
different spatially modulated states.
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P.G.K. acknowledges support from the National Science
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APPENDIX

A. Extraction of the linear density profiles

The two components are detected via state-selective
high-intensity absorption imaging with a pulse dura-
tion of τ = 10µs, using two subsequent pulses which
are temporally separated by 780µs. The obtained two-
dimensional density distributions are integrated along
the short axis of the atomic cloud to obtain the longitudi-
nal linear density profiles. Due to the destructive nature
of absorption imaging, the experiment is repeated with
different evolution times.
For the time-averaged profiles, the linear density pro-
files of each component are averaged over full oscillation
periods. To compensate spurious population differences
caused by the small differences of the detectivities for
the two states, the individual averaged profiles are nor-
malized. To ensure comparability, the same procedure is
applied to the theoretical time-averaged profiles.
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B. Non-polynomial Schrödinger equation

In the non-polynomial Schrödinger equation, the ansatz for the order parameter of the BEC in a close to one-
dimensional situation is

Ψk(x, y, z, t) =
1√

πa⊥σk(x, t)
exp

{
− y2 + z2

2(a⊥σk(x, t))2

}
ψk(x, t), (1)

where σk(x, t) describe the transversal extension relative to the harmonic oscillator length a⊥ =
√

~/mω⊥. The
longitudinal parts ψk are normalized on the number of atoms in each component:

∫
|ψk(x, t)|2dx = Nk(t). This turns

the coupled three-dimensional Gross-Pitaevskii equations (GPE) into the coupled set

i~∂tψ1 =

[
H0 +

~ω⊥
2

1 + σ4
1

σ2
1

+
G11
σ2
1

|ψ1|2 +
2G12

σ2
1 + σ2

2

|ψ2|2 +
G111
σ4
1

|ψ1|4 +
~δ
2

]
ψ1 +

~Ω

2
ψ2 + G1 (2)

i~∂tψ2 =

[
H0 +

~ω⊥
2

1 + σ4
2

σ2
2

+
G22
σ2
2

|ψ2|2 +
2G12

σ2
1 + σ2

2

|ψ1|2 +
G222
σ4
2

|ψ2|4 −
~δ
2

]
ψ2 +

~Ω∗

2
ψ1 + G2 (3)

(4)

and

σ4
1 = 1 + 2a11|ψ1|2 + 8a12|ψ2|2

σ4
1

(σ2
1 + σ2

2)2
, (5)

σ4
2 = 1 + 2a22|ψ2|2 + 8a12|ψ1|2

σ4
2

(σ2
1 + σ2

2)2
. (6)

The term H0 = −~2∂2x/2m + mω2
xx

2/2 contains the kinetic energy and the spin-independent longitudinal trapping

potential, and Gjk = (gjk − i~K(jk)
2 /2)/(2πa2⊥) describe two-body interactions gjk = (4π~2/m)ajk with the s-wave

scattering lengths ajk and two-body loss channels with the loss coefficients K
(jk)
2 . Gj = (−i~K(j)

1 /2) describe

one-body losses and Gjjj = (−i~K(jjj)
3 /2)/(2πa2⊥)2 capture three-body losses. Ω = Ω0 exp(iφ) is the phase controlled

linear Rabi coupling with detuning δ from atomic resonance.

For constant transversal width σk = 1, the NPSEs turn into the corresponding 1DGPEs. For both approaches, the
stationary solutions for the ansatz ψk(x, t) = exp(−iµkt)ψk(x, 0) with the chemical potentials µk are obtained on a
linear grid. The time evolution is calculated with a 4th order Runge-Kutta method.

The employed loss parameters in the simulations are K
(1)
1 = K

(2)
1 = 0.01 s−1, K

(22)
2 = 2.39 × 10−14 cm3/s, K

(12)
2 =

3.9× 10−14 cm3/s, K
(111)
3 = K

(222)
3 = 5.8× 10−30 cm6/s with all others set to zero.

C. Newton’s method

For obtaining stationary states of either NPSE or 1DGPE, Newton’s method is employed. It converges quadratically
to any stationary solution if the initial guess for the wave functions is sufficiently close to the stationary state, and
thus can capture not only just the ground state, as is the case for the often employed evolution in imaginary time.
The stationary equations are (

H11 H12

H21 H22

)(
ψ1

ψ2

)
=

(
µ1ψ1

µ2ψ2

)
. (7)

Both ψ1 and ψ2 are realized on the grid with spacing ∆x and are thus vectors (ψk)j with ng entries. All loss constants
and the detuning δ are set to zero for this steady state computation. For the Newton method, the normalization
conditions

∑
j(ψk)2j = Nk are introduced via Lagrange multipliers λk, assuming that the solutions ψk are real. This

leads to a system of equations for the 2ng + 2 variables Φ = {ψ1, ψ2, λ1, λ2}, which reads

F (Φ) =


(
H11 − µ1 H12

H21 H22 − µ2

)(
ψ1

ψ2

)
+

(
2λ1∆xψ1

2λ2∆xψ2

)
∑

j(ψ1)2j∆x−N1∑
j(ψ2)2j∆x−N2

 = 0. (8)
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Newton’s iterative method for finding the nearest root for a given starting point Φ0 of this equation reads

Φk+1 = Φk − J−1(Φk)F (Φk). (9)

Computing the inverse of the Jacobian Jij(Φ) = ∂Fi/∂Φj in every step is the computationally most expensive part.

D. Bogoliubov-de Gennes stability analysis

The BdG analysis is a method for numerically computing the excitation spectrum and the corresponding spatial
modes on top of a background state of the two stationary order parameters. We assume ψk,0(x) to be a known
stationary solution of the NPSE with the time evolution ψk,0(x, t) = exp(−iµkt)ψk,0(x, 0) and δψk(x, t) a perturbation
on top of ψk,0(x, 0)

ψk,0(x, t) = exp(−iµkt)[ψk,0(x, 0) + ε δψk(x, t)]

with ε � 1. Inserting this state into the time-dependent NPSE and ignoring terms of second or higher order in ε
results in equations of motion for the perturbations δψk(x, t). We assume them to be of the form

δψk(x, t) = ak(x)eiωt + b∗k(x)e−iωt

with the complex amplitudes ak(x) and bk(x) and the energy ~ω. Inserting this ansatz into the equations of motion
and sorting by e−iωt and eiωt results in four coupled equations for the excitation modes

~ω

a1b1a2
b2

 =

 A1 B1 A12 B12

−B∗1 −A∗1 −B∗12 −A∗12
A12 B12 A2 B2

−B∗12 −A∗12 −B∗2 −A∗2


a1b1a2
b2


with the matrix elements

A1 = H0 +
~ω⊥

2

1 + σ4
1

σ2
1

+
2G11
σ2
1

|ψ1,0|2 +
2G12

σ2
1 + σ2

2

|ψ2,0|2 +
~δ
2
− µ1

A2 = H0 +
~ω⊥

2

1 + σ4
2

σ2
2

+
2G22
σ2
2

|ψ2,0|2 +
2G12

σ2
1 + σ2

2

|ψ1,0|2 −
~δ
2
− µ2

B1 =
G11
σ2
1

|ψ1,0|2

B2 =
G22
σ2
2

|ψ2,0|2

A12 =
2G12

σ2
1 + σ2

2

ψ∗1,0ψ2,0 +
~Ω

2

B12 =
2G12

σ2
1 + σ2

2

ψ∗1,0ψ2,0

The eigenmodes and eigenvectors of the matrix are obtained on the linear grid by numerical diagonalization. Here, all
loss constants and the detuning δ are set to zero, as in the search for the stationary states with Newton’s method (i.e.,
we consider the corresponding Hamiltonian problem). Due to the Hamiltonian structure of the underlying model, the
stability of the nonlinear dressed states of either NPSE or 1DGPE is confirmed if no BdG excitation mode obtains
an imaginary part above the numerical accuracy.
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Sengstock, Nat. Phys. 4, 496 (2008).

[7] C. Hamner, J.J. Chang, P. Engels, and M. A. Hoefer,
Phys. Rev. Lett. 106, 065302 (2011); M.A. Hoefer, J.J.
Chang, C. Hamner, and P. Engels, Phys. Rev. A 84,
041605 (2011); D. Yan, J.J. Chang, C. Hamner, P.G.
Kevrekidis, P. Engels, V. Achilleos, D. J. Frantzeskakis,
R. Carretero-Gonzalez, P. Schmelcher, Phys. Rev. A 84,
053630 (2011); D. Yan, J.J. Chang, C. Hamner, M.
Hoefer, P.G. Kevrekidis, P. Engels, V. Achilleos, D.J.
Frantzeskakis and J. Cuevas, J. Phys. B: At. Mol. Opt.
Phys., 45 115301 (2012).

[8] D.M. Stamper-Kurn, M. R. Andrews, A. P. Chikkatur,
S. Inouye, H.-J. Miesner, J. Stenger, and W. Ketterle,
Phys. Rev. Lett. 80, 2027 (1998).

[9] D.S. Hall, M.R. Matthews, J.R. Ensher, C.E. Wieman,
and E.A. Cornell, Phys. Rev. Lett. 81, 1539 (1998).

[10] J. Stenger, S. Inouye, D.M. Stamper-Kurn, H.-J. Mies-
ner, A.P. Chikkatur and W. Ketterle, Nature 396, 345
(1998).

[11] V. Schweikhard, I. Coddington, P. Engels, S. Tung and
E.A. Cornell, Phys. Rev. Lett. 93, 210403 (2004).

[12] K.M. Mertes, J.W. Merrill, R. Carretero-González, D.J.
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