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In the vicinity of a Feshbach resonance, a system of ultracold atoms in an optical lattice undergoes
rich physical transformations which involve molecule formation and hopping of molecules on the
lattice and thus goes beyond a single-band Hubbard model description. We theoretically explore
the response of this system to a harmonic modulation of the magnetic field, and thus of the scattering
length, across the Feshbach resonance. In the regime in which the single-band Hubbard model is
still valid, we provide results for the doublon production as a function of the various parameters,
such as frequency, amplitude, etc., that characterize the field modulation, as well as the lattice
depth. The method may uncover a route towards the efficient creation of ultracold molecules and
also provide an alternative to conventional lattice-depth modulation spectroscopy.

PACS numbers: 03.75.-b, 03.75.Ss, 71.10.Fd

I. INTRODUCTION

The field of ultracold atoms in optical lattices has been
opening up new possibilities which include a controlled
experimental realization of the fermionic Hubbard model
[1, 2]. Further challenges and opportunities arise with
the idea of creating and manipulating molecules in an
optical lattice. Molecules in an optical lattice allow a
much wider range of model Hamiltonians and physical
phenomena to be emulated and studied than is possible
with atoms. For example, spin models can be created
by manipulating the internal structure of the molecule,
and the interaction strength can be long-ranged [3], e. g.,
by creating dipolar molecules. However, it is more diffi-
cult to cool molecules down to low temperatures via laser
cooling, due to their more complex level structure which
includes rotational and vibrational degrees of freedom
(with some unique exceptions [4]). The cooling of indi-
vidual atoms to a very low temperature followed by the
formation of so-called preformed molecules in the optical
lattice is thus a promising alternative [5–7]. In this pa-
per, we explore theoretically the possibilities of achieving
this by temporally modulating the magnetic field around
a Feshbach resonance - we will refer to this as Feshbach
modulation.

Near a Feshbach resonance, bound states of these pre-
formed molecules occur. Depending on the value of the
magnetic field, molecules form and hop from one lattice
site to the other; these processes are governed by the
complex Fermi Resonance Hamiltonian (FRH) [8]. This
Hamiltonian and the physical phenomena it supports are
so complex, there has only been limited theory work per-
formed on it, and a wide range of its rich behavior has not
yet been explored thoroughly via experiment. Needless to
say, it is crucial to understand the FRH physics in order
to control and optimize the molecule formation process,
especially if one wants to find regimes where the forma-
tion might be more efficient than performing a simple

field sweep across the Feshbach resonance. Experimen-
tally, such an understanding of the FRH may be facili-
tated by Feshbach modulation spectroscopy, which would
be a study of the response of the system to a magnetic
field which is periodically temporally modulated across a
Feshbach resonance, as a function of the frequency and
the amplitude of the modulation.

The theoretical challenge, therefore, is to calculate the
response of the FRH to such a time varying magnetic
field. The FRH is, however, rather difficult to treat the-
oretically. So in this work, we focus primarily on Fesh-
bach modulation spectroscopy in the off-resonant limit of
the model, which is described by the simpler Fermi Hub-
bard model (FHM) (one could consider bosonic analogs
as well, but for concreteness we discuss only the Fermi
case here).

In case of the single-band Hubbard model, the so-
called lattice modulation spectroscopy has proved to be
useful for studying the nonequilibrium dynamics of the
model, and for experimentally determining the value of
the atom-atom interaction, given by U . In lattice mod-
ulation spectroscopy, the intensity of the laser defining
the optical lattice is varied harmonically. As a result,
the optical lattice depth is modulated, which causes the
hopping amplitude and the interaction strength to both
change as a function of time, allowing the Mott gap to
be measured directly in the experiment. Experimentally,
this technique has been applied in a number of different
situations, while numerous theoretical descriptions have
also been given [2, 9–26]. One of the motivations of this
work exploring Feshbach modulation spectroscopy is that
the latter does not involve modulating both terms in the
Hamiltonian. The reasons why this might be of interest is
that it would both provide more precise control and allow
the system to evolve in a more continuous fashion. For,
conventional lattice modulation spectroscopy evolves the
hopping to regimes where it becomes very small, essen-
tially “turning off” the hopping of the particles, resulting
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in what is a more “kicked” driving of the system. If one
can keep the hopping fixed in magnitude and modulate
only the interaction, as one can using Feshbach modu-
lation, then this will correspond to a smoothly driven
system, rather than a kicked one, which could have ex-
perimental advantages. Furthermore, lattice modulation
spectroscopy does not modify the sign of the interaction
strength and is thus fundamentally limited when more
general physics issues such as the molecule formation are
to be studied.

The effects of a modulated magnetic field near a Fesh-
bach resonance leading to a modulation of the scattering
length have previously been investigated in a number of
different contexts, both experimentally [27–30] and the-
oretically [31–36]. The experimental efforts have been
primarily focussed on molecule formation in the simpler
case when there is no optical lattice. In this regime,
modulating the field at a frequency close to that cor-
responding to the binding energy for the molecules can
both enhance their formation and also be used to measure
their binding energy [28–30]. Theoretically, the effects
were first explored for describing “Feshbach resonance
management” [31, 32], which controlled “breathers” and
solitons in trapped bosonic systems. Next, they were in-
voked to show how many-body effects and the periodic
driving could push the tunneling to vanish [33], also in
bosonic systems. More recently, they have been used
to illustrate how one can obtain correlated hopping in
bosonic systems when the amplitude of the magnetic field
oscillation is small and the frequency large compared to
the interaction scales [34–36]. Relatively recent experi-
ments on bosonic systems in an optical lattice [37] exam-
ined driven collective excitations. Here, we focus on the
Fermi version of the Hubbard model, and examine situ-
ations where the driving is pushed close enough to the
Feshbach resonance that nonlinear effects become very
important.

We thus consider the response of the system to a har-
monic modulation of the magnetic field

B(t) = B̄ + χ[0,tmod](t) ·∆B sinωt, (1)

near the Feshbach resonance, where

χI(t) =

{
1 if t ∈ I
0 otherwise

(2)

is the characteristic function of the modulation inter-
val. For the specific numerical calculations we have car-
ried out, we consider a system of fermionic 40K atoms
subject to the ab-Feshbach resonance [38] in an opti-
cal lattice with a laser wavelength of 1064 nm. We
use strong-coupling-expansion techniques to calculate the
doublon production as a function of the various parame-
ters, B̄,∆B and ω in Eq. (1), as well as the lattice depth,
and analyze the results to uncover the factors that favour
doublon formation and also permit the method to be of
value as a spectroscopic tool.

The rest of this paper is organized as follows. In Sec-
tion II, we present the model and the methods of calcu-
lation we use. In Section III, we present and discuss our
results for the doublon production. Section IV contains
our concluding discussion.

II. MODEL

As mentioned earlier, providing theoretical calcula-
tions for the full FRH in the presence of a time depen-
dent magnetic field (as described above) is currently be-
yond our reach. We treat instead the (Fermi) Hubbard
model [39] which should be a reasonable approximation
to the FRH in the early stages of the preformed molecule
formation process:

H(t) = − J(t)
∑
〈i,j〉,σ

(
c†iσcjσ + h.c.

)
+ U(t)

∑
i

ni↑ni↓ +
∑
iσ

εiniσ.
(3)

The time dependence of the lattice hopping and in-
teraction reads J(t) = J0 = const and U(t) =
g(t)

∫
|w(~r)|4d3r, where w(~r) is the maximally localized

Wannier function [40]. The time-dependent coupling
constant g(t) = 4π~2a(t)/m is determined by the mass
m of the 40K atoms and the s-wave scattering length

a(t) = abg

(
1− ∆

B(t)−B∞

)
, (4)

where abg = 174 a0 is the background scattering, B∞ =
202.1G is the position of the Feshbach resonance, where
the scattering length diverges, and ∆ = 8.0G is its width.

For simplicity, we consider a translationally invariant
lattice in three dimensions at half filling in the Mott-
insulating phase and study the behavior of the double
occupancy. With a higher double occupancy, molecule
formation is more likely to occur in the later stages
of the driving of the full FRH system. Computation-
ally, we employ a strong-coupling approach which works
well at finite temperatures larger than the hopping and
has already successfully modelled the conventional lat-
tice modulation spectroscopy [25, 26, 41]. In order to
ensure the accuracy of the approach, we constrain the
studied parameter range to a maximum value jmax :=
max {J0/U(t)}t∈R ≈ 1/24.

For each lattice depth, the Feshbach resonance has a
different effect on the hopping relative to the interac-
tion,i. e. on j(t) := J0/U(t), which we will refer to as
the normalized hopping. Also, the magnetic field depen-
dence of the hopping strength in units of the interac-
tion, j(B) := J0/U(B), plays a key role in the Feshbach
spectroscopy of the Hubbard model. In Fig. 1, panel
(b) shows this map for several lattice depths. Panel (a)
shows the corresponding interaction strength. We limit
our consideration to the interval [0, jmax] indicated by
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FIG. 1: (Color online) ab-Feshbach resonances of the system
40K for different lattice depths. The upper panel (a) shows
the dependence of the interaction on the magnetic field and
the lower panel (b) shows the resulting normalized hopping
j = J0/U(B).

the horizontal dashed line in panel (b). In addition, we
assume that the amplitude, ∆B, of the magnetic field is
realistically smaller than 5 G for the necessary modula-
tion frequency of a couple of kHz (which is near the mag-
nitude of the average particle-particle interaction), since
these numbers are experimentally reasonable. We also
require the interaction to be significantly lower than the
non-interacting bandgap which is also displayed in panel
(a) at lattice depth V = 10ER. This, together with the
requirement that the normalized hopping j, while small,
should be large enough for the effects due to changes in
it arising from changes in B to be measurable, constrains
the considered parameter range to the right branches dis-
played in panel (b). Thus we consider magnetic field val-
ues within the interval (B∞+∆, 220G] and lattice depths
equal to or larger than 10ER (for smaller lattice depths,
the bandgap to the second band would be too small).

In experiments, the upper bound for the normalized
hopping need not apply. However, in the vicinity of the
resonance, the strong dependence of the normalized hop-
ping on the field also results in a stronger dependence on
the inhomogeneities of the magnetic field. It is therefore
reasonable to keep the value of j below a certain thresh-
old in experiments to reduce the effects of inhomogeneity.

In addition to the mean value of the magnetic field,
other important parameters to be considered are the am-
plitude ∆B and the frequency ω of the field modula-
tion. If the physical response of the system is sensitive to
these values, this may help to determine unknown model
properties (such as the lattice depth in the experiments)
more precisely than possible in lattice modulation spec-
troscopy. In order to explore such possibilities, we inves-
tigate the frequency dependence of the doublon produc-
tion rate for fixed windows of magnetic field modulation.

The field modulation in Eq. (1) is parametrized by the
magnetic field amplitude ∆B, the average field value B̄,
the length of the modulation time interval tmod, and
the modulation frequency ω. ∆B and B̄ can alter-
atively be expressed in terms of the minimum and max-
imum values of the field strength, Bmin = B̄ −∆B and
Bmax = B̄ + ∆B. These values also determine the min-
imum and maximum values of the normalized hopping
j(B) = J0/U(B). In order to translate Bmin/max into
jmin/max, one uses Fig. 1(b).

III. RESULTS

We consider three field modulation intervals
[Bmin, Bmax] first, and compare the behavior for
two lattice depths. Depending on the frequency, the
field is modulated over a time interval [0, tmax], with

tmax(ω) =

⌊
t̃max ·

(
2π

ω

)−1⌋
× 2π

ω
, (5)

and t̃max×U0/~ = 29, resulting in 2 to 6 field modulation
cycles for ~ω/U0 = 0.5 . . . 1.5, where U0 := U(B̄). Note
that b· · · c denotes the floor operator which is equal to
the closest integer to its argument which is not larger
than its argument. As a physical observable, we study
the excitation from the lower to the upper Hubbard band
which is measured by the double occupancy per site

D(t) = 〈n↑n↓〉(t) (6)

and study the increase in this quantity, which we measure
as

∆D :=
U0

h

∫ t̃max+2

t̃max+2−h/U0

dtD(t)−D(t0). (7)

That is, the end value has been averaged over one oscilla-
tion period of a resonantly excited Hubbard system and
compared to the initial value D(t0).

Figures 2(a) and 2(b) shows the resulting frequency de-
pendence of ∆D for three different values of Bmax, while
we keep the minimum field value constant at Bmin =
212.9G. Panels (a) and (b) correspond to lattice depths
V = 10ER and V = 11ER, respectively. Since the nor-
malized hopping jmax is smaller for a deeper lattice, fewer
doublons are produced for V = 11ER than for V = 10ER.
However, the relative behavior of the curves as a func-
tion of Bmax is qualitatively the same for the two lattice
depths.

Hence we discuss the dependence of the resonance
curves on Bmin in more detail. Figure 2 shows several
resonance curves for two slightly different values of Bmin

in panels (b) and (c), respectively. It shows that even the
qualitative behavior of the Feshbach modulation can be
quite sensitive to the details of the model. In panel (c),
the shape and the strength of the different resonances
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FIG. 2: (Color online) Doublon production at different values of Bmax. Each panel represents different values of V and Bmin.
In panels (a), (c),(d), and (e), Bmin is chosen such that jmax = 1/24. The initial temperature is kBT = 0.1U0.

are approximately the same. For the slightly larger value
of Bmin shown in panel (b), the resonance curves change
drastically as a function of Bmax. The reason for this
qualitatively different behavior is that in case (c) a larger
fraction of the steep portion of the normalized hopping j
as a function of B (see Fig. 1) is sampled in the modu-
lation procedure than in case (b). An effect which both
the cases (b) and (c) have in common is that the max-
imum in doublon production is shifted towards smaller
frequencies for larger values of Bmax. The reason for
this may be the lower time-averaged value of the inter-
action strength for larger values of Bmax in units of the
respective values for U0 = U(B̄). For example, in the
simplified case Bmin = B∞ + ∆, the time-averaged value
of the interaction Utavg can be approximately written as
Utavg/U0 = 1− (Ubg/2U0)× b2, where Ubg is the interac-
tion associated with the background scattering abg and
b = (Bmax−Bmin)/2∆. A similar relation can be derived
for the more realistic Bmin > B∞ + ∆. However, since
the width of the resonance is almost independent of Bmax

in both panels (b) and (c), this reasoning cannot be the
whole story.

Furthermore, we can also compare the resonance
curves for several lattice depths at a fixed maximum value
jmax of the normalized hopping. This corresponds to ad-
justing Bmin appropriately for each lattice depth such
that the same value of jmax is obtained. In this case,
we choose jmax = 1/24, which is also the upper bound
we introduced previously in order to ensure the conver-
gence of the strong-coupling method. Panels (a), (c),(d),
and (e) of Fig. 2 show data for different lattice depths at
this constant maximum value of j. We again find that
the dependence on Bmax may depend very much on the
lattice depth. While for the shallow lattice, V = 10ER,
increasing the modulation amplitude yields a stronger
signal, we observe the opposite effect in a deeper lattice,

V = 15ER. This striking difference is due to the increas-
ing nonlinearity of j(B) as V increases. For a shallow
lattice, j(B) still exhibits a nearly linear behaviour, so
the peak strength is proportional to the amplitude. In a
deep lattice, j(B) is strongly nonlinear and the system
is rather kicked than driven. An increased amplitude de-
creases the kick strength in a deep lattice, because j is
close to jmax for shorter time spans during the modu-
lation. As the lattice gets deeper, a second order peak
appears at ~ω = U0/2, which is approximately as strong
as the first-order peak for strong modulation amplitudes.
The lattice depths between V = 10ER and V = 15ER in-
terpolate between these two behaviors. In the very deep
lattice, for V = 15ER, the strongest doublon produc-
tion can be achieved with a rather small amplitude corre-
sponding to Bmax = 212G, or ∆B ≈ 0.73G. Indeed, the
doublon production in the Hubbard model is the precur-
sor toward molecule formation in the FRH model. Un-
fortunately, our numerical techniques won’t allow us to
go farther with the calculation to examine those effects.

Finally, in order to compare different lattice depths, we
fix the values of Bmin and Bmax in such a way that the
normalized hopping oscillates between the same values
jmin = 1/48 and jmax = 1/24. The resulting resonance
curves at different lattice depths are shown in Fig. 3. In
contrast to the scenarios discussed in Fig. 2, the curves
are now essentially identical. This underlines the central
role of the normalized hopping in interpreting both Fes-
hbach and lattice depth modulation spectroscopy. How-
ever, we also observe a tendency towards a stronger dou-
blon production for deeper lattices. As can be seen in the
left inset of Fig. 3, this is not related to the initial number
of doubly occupied sites, which is essentially identical for
each lattice depth. Rather, the tendency is due to the
shape of the translation function between magnetic field
and renormalized hopping, as shown in the right inset
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FIG. 3: (Color online) Magnetic modulation with the nor-
malized hopping j oscillating within the interval [jmin, jmax],
with jmax = 1/24 and jmin = jmax/2 for different lat-
tice depths. The corresponding magnetic field intervals
IB = [Bmin, Bmax] are IB(V = 10ER) = [212.9G, 219.56G],
IB(V = 11ER) = [212.0G, 215.52G], IB(V = 12ER) =
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of Fig. 3. As the lattice depth is increased, the convex-
ity of the translation function is decreased and the latter
approaches a linear behavior. This gives rise to an in-
crease in the doublon production, and shows one of the
advantages of being able to modulate the interaction in-
dependently of the hopping.

IV. CONCLUSIONS

In this work, we have explored Feshbach modulation
spectroscopy, where tuning and temporally modulating
a magnetic field near a Feshbach resonance allows for
the system to have a time-dependent interaction, with
a constant hopping (the normalized hopping, of course
is time dependent), as an alternative to conventional

lattice-depth modulation spectroscopy. This changes the
behavior of the driving of the system from a more kicked
drive in the conventional approach to a smoother evolu-
tion. We find that in some cases, the signal can have
strong resonant effects that require fine tuning of the
magnetic field, and hence have the potential to produce
higher precision measurements. In addition, we find that
the “two-photon” peak at a frequency equal to half the
average interaction strength, is often enhanced in these
systems making it easier to study nonlinear excitation
effects. Finally, we conjecture that even more interest-
ing behavior will occur when the Feshbach modulation
spectroscopy is pushed through the Feshbach resonance
itself and allows for complete molecule formation. The
many mutually coupled degrees of freedom in the FRH
[8] promise a rich variety of physical effects which will be
interesting to investigate both experimentally and theo-
retically. In particular, it will be interesting to explore
the channels that lead to molecule formation spectro-
scopically. We do not yet have the ability to model and
calculate the behavior of such spectroscopy, but exper-
iments could potentially investigate such effects in the
near future.
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and V. S. Bagnato, Phys. Rev. A 81, 053627 (2010).

[38] Ch. Chin, R. Grimm, P. Julienne, E. Tiesinga, Rev. Mod.
Phys. 82, 1225 (2010).

[39] J. Hubbard, Proc. R. Soc. London 276 (1365), 238
(1963).

[40] W. Kohn, Phys. Rev. 115, 809 (1959).
[41] K. Mikelsons, J.K. Freericks, H. R. Krishnamurthy, Phys.

Rev. Lett. 109, 260402 (2012).


