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Stopping powers of antiprotons in H2 and H2O targets are calculated using a semiclassical time-
dependent convergent close-coupling method. In our approach the H2 target is treated using a two-
center molecular multiconfiguration approximation, which fully accounts for the electron-electron
correlation. Double ionization and dissociative ionization channels are taken into account using
an independent-event model. The vibrational excitation and nuclear scattering contributions are
also included. The H2O target is treated using a neonization method proposed by Montanari and
Miraglia [J. Phys. B 47 015201 (2014)], whereby the ten-electron water molecule is described
as a dressed Ne-like atom in a pseudo-spherical potential. Despite being the most comprehensive
approach to date, the results obtained for H2 only qualitatively agree with the available experimental
measurements.

PACS numbers: 34.10.+x, 34.50.Bw

I. INTRODUCTION

The study of energy loss as heavy charged particles
travel through matter is of fundamental importance in
many fields including medical radiation therapy [1], avi-
ation and space exploration [2], and astrophysics [3]. The
development of sources of low energy antiprotons is draw-
ing significant attention to the area of antiproton scatter-
ing from atoms and molecules, see the review of Kirchner
and Knudsen [4]. With potential application to radio-
therapy and oncology, interest in the processes occurring
during antiproton scattering from atoms and molecules
is growing (see, e.g., Refs. [5, 6]).

Stopping power measurements for antiprotons in a gas
of H2 were first performed by Adamo et al. [7] at the
CERN LEAR facility. To obtain the stopping power they
first simultaneously measured the spatial coordinates and
annihilation times of antiprotons traveling through a gas
of H2. The measured quantities are then expressed in
terms of the stopping power with the resulting equations
solved numerically using parameters to obtain the best
fit to the data. Agnello et al. [8] later repeated the ex-
periment using the same technique due to errors in the
pressure scale of the original measurements. This lead to
significantly different results, thus superseding the ear-
lier ones given by Adamo et al. [7]. Lodi Rizzini et al. [9]
later reanalyzed the data with emphasis on the Barkas
effect [10].

From a theoretical perspective, Bethe [11] was the first
to develop a quantum-mechanical approach to calculat-
ing stopping powers in atomic targets. However, his gen-
eral formula is applicable only at sufficiently high pro-
jectile energies due to the first Born and dipole approx-
imations used in the approach. When Bethe theory is
applied to molecules Bragg’s additivity rule [12] is usu-
ally used. With significant developments in the field of
hadron therapy the importance of highly accurate calcu-
lations of heavy projectile interactions with matter has
been growing. The most recent calculations of antipro-
ton stopping in H2 have been performed by Lühr and

Saenz [13]. They used a semiclassical close-coupling ap-
proach to the solution of the time-dependent Schrödinger
equation. The radial wave function was expanded in
a B-spline basis with the H2 target described using an
effective one-electron treatment. Poor agreement with
the experiment of Agnello et al. [8] was obtained. How-
ever good agreement with the original (incorrect) data of
Adamo et al. [7] was seen. Lühr and Saenz [13] concluded
that a two-electron description of H2 was required to re-
duce uncertainties in the calculations and also test the
accuracy of the latest experimental measurements. The
only other H2 calculations available have been performed
by Schiwietz et al. [14, 15] using a quasi-atomic general-
ized adiabatic-ionization (AI) method which is valid at
low energies.

There are a number of calculations for antiproton stop-
ping in atomic hydrogen. These are usually compared
with the experimental data for its molecular counterpart
divided by two. Schiwietz et al. [14, 15] performed calcu-
lations using atomic-orbital close coupling and distorted-
wave Born methods, while Cabrera-Trujillo et al. [16]
used electron nuclear dynamics (END) formalism. Both
concluded that disagreement with experiment around
and below the stopping maximum was due to neglect-
ing molecular structure effects in their calculations.

Recently we have applied a semiclassical time-
dependent convergent close-coupling (CCC) method to
calculations of antiproton stopping powers in the atomic
targets of H, He, Ne, Ar, Kr, and Xe [17]. For H we ob-
tained excellent agreement with other theoretical calcula-
tions while for He our results were in best agreement with
experiment when compared to other theories. In this pa-
per we extend the method to antiproton stopping in the
molecular targets of H2 and H2O. The results presented
in this paper improve upon the current theory of Lühr
and Saenz [13] by employing a correlated two-electron
multiconfiguration molecular treatment of H2 and taking
into account double ionization and dissociative ioniza-
tion via an independent-event model. In addition, we
include vibrational excitation and the so-called nuclear
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stopping power. When calculating the dominant elec-
tronic stopping power we use an analytic orientation av-
eraging technique to account for all possible orientations
of the H2 molecule and compare this to the average over
three orientations.

The H2O target is treated using a neonization method
proposed by Montanari and Miraglia [18], whereby the
ten-electron water molecule is described as a dressed Ne-
like atom in a pseudo-spherical potential. To our best
knowledge there have been no other stopping power cal-
culations for the antiproton-H2O system. Our calcula-
tions should provide a guideline to future experiments
on antiproton stopping in H2O.

The paper is set out as follows. Section II outlines the
method. The results of calculations are presented in Sec-
tion III. Section IV discusses the status of the experiment
and theory. Finally in section V we draw conclusions.

II. TIME-DEPENDENT CONVERGENT
CLOSE-COUPLING METHOD IN

IMPACT-PARAMETER REPRESENTATION

The time-dependent CCC method has been applied to
calculations of ionization cross sections for antiprotons
incident on H2 [19, 20] and H2O [21]. Here we summarize
the method for these targets.

A. H2 target

A semi-classical impact-parameter approach is used
whereby the relative motion of the incident antiproton
is treated classically however the target electrons are
treated fully quantum mechanically. The antiproton is
assumed to have a straight line trajectory [R(t) = b+vt]
where v is velocity and b is impact parameter. We ex-
pand the total (electronic) scattering wave function in
terms of a complete set of target pseudostates Φα, that
is

Ψ(t, r,R,d) =
∑
α

Aα(t, b,d) exp(−iεαt)Φα(r,d), (1)

where εα is the energy of the target electronic state α,
R is the position vector of the antiproton relative to the
target center of mass, r collectively denotes the position
vectors of all target electrons, and d is the relative coor-
dinate of the target nuclei in the laboratory frame. The
probability for transitions into electronic bound and con-
tinuum states are defined by the expansion coefficients
Aα. Substitution of the total scattering wave function (1)
into the time-dependent Schrödinger equation yields a set
of coupled-channel differential equations for the expan-
sion coefficients Aα, which are solved with the condition
that the target is initially in the ground state. In or-
der to find orientation-averaged transition probabilities
we factor out the orientation-dependent parts from our

equations and after analytically integrating over all ori-
entations of the molecular axis we obtain a system of dif-
ferential equations for the orientation-independent part
of the scattering amplitudes Aαλµ. Orientation-averaged
probabilities for transition of the target from the ground
state to some final state f at fixed internuclear distance
d are then defined by

pf (b) =
∑
λµ

1

2λ+ 1
|Afλµ(t = +∞, b, d)|2, (2)

where λ and µ are limited by the maximum allowed total
orbital angular momentum and b is the magnitude of the
impact parameter. Scattering cross sections are obtained
as the integral of the probability over impact parameters:

σf = 2π

∫ ∞
0

pf (b)bdb. (3)

For H2 target structure calculations the Born-
Oppenheimer approximation is utilized with the internu-
clear distance fixed at the ground-state equilibrium value
of d = 1.4487 a.u.. Target pseudostates Φα(r) are ob-
tained via diagonalization of the H2 Hamiltonian in a
set of antisymmetrized two-electron configurations con-
structed from one-electron orbitals. These orbitals are
built using Laguerre functions,

ξkl(r) =

[
λl(k − 1)!

2(k + l)(k + 2l)!

]1/2

(λlr)
l+1

× exp(−λlr/2)L2l+1
k−1 (λlr), (4)

where L2l+1
k−1 (λlr) are the associated Laguerre polynomi-

als, l is the orbital angular momentum and index k ranges
from 1 to Nl, the maximum number of Laguerre func-
tions. The exponential fall-off parameter λl is typically
chosen to be optimal for the ground state. Specific val-
ues of λl used for each target are given below. With this
choice of basis we can model the whole spectrum of the
target molecule. As Nl is increased the negative-energy
pseudostates converge to the true discrete eigenstates,
while the positive-energy pseudostates yield an increas-
ingly dense discretization of the target continuum. In this
work we use a multiconfiguration approach, meaning we
allow several inner electron orbitals in our two-electron
configurations. Specifically, we include the 1s, 2s, 2p,
3s, 3p, and 3d orbitals for the description of the inner
electron. The number of one-electron states of the outer
electron are as large as required to ensure converged re-
sults. For more details refer to Ref. [20].

B. H2O target

For the H2O target we reduce the multi-center prob-
lem to a central one using a neonization method pro-
posed by Montanari and Miraglia [18], whereby the wa-
ter molecule is described as a dressed pseudo-spherical
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atom. With molecular orientation dependence removed
from the problem the probability for transition of the tar-
get from the ground state to some final sate f becomes

pf (b) = |Af (t = +∞, b)|2. (5)

The aforementioned neonization technique has recently
been used in the time-dependent CCC formalism by Ab-
durakhmanov et al. [21]. Embracing the ideas of Ref. [18]
we approximate the multi-center nuclei Coulomb poten-
tial of H2O with the spherical potential

VH2O =− 8

r
− 2(1− η)Θ(RH − r)

RH

− 2(1− ηe1−r/RH)Θ(r −RH)

r
, (6)

where Θ is the Heaviside step function, RH is the distance
between the oxygen atom and either of the two hydrogen
atoms, and η is introduced to account for the deviation of
the target potential from spherical symmetry and is var-
ied to match the experimentally measured value for the
ground state ionization energy of H2O. Now that a multi-
center problem has been reduced to a central one we can
apply the techniques used to determine the structure of
the Ne atom. Therefore the H2O molecule is represented
by the same model that we have previously used for Ne
[17]: six p-shell electrons above a frozen Hartree-Fock
core with only one-electron excitations from the outer p
shell allowed. Additionally, the core wave functions for
the Ne atom are replaced by the appropriate H2O core
wave functions which are taken from the Slater basis rep-
resentation presented in [18].

C. Stopping power

The stopping power is the energy loss per unit path
length and is defined as

− dE

dx
= NS(E0), (7)

where S(E0) is referred to as the stopping cross section
and is related to the stopping power by the number of
target molecules per cubic meter, N . Here E0 is the
incident energy of the projectile. When using the semi-
classical approximation for calculations involving heavy
projectiles the total stopping cross section is the sum of
two contributions, the nuclear and the electronic stopping
cross sections.

The electronic contribution is the energy losses asso-
ciated with all events leading to excitation, ionization
and dissociation of the target. As described in our pre-
vious work [17], the electronic stopping cross section in
the CCC formalism is defined as

Se(E0) ≈
NT∑
f=1

(εf − εi)σf +

N+
T∑

k=1

(εk − ε+i )σ+
k , (8)

where σf is the scattering cross section for transition of
the target electron from the ground state of energy εi to
some final state f of energy εf , and NT (N+

T ) is the total

number of H2 (H+
2 ) pseudostates included in the calcu-

lation. In addition to single non-dissociative ionization
and excitation, the present calculations of the stopping
cross section for H2 include energy losses due to double
ionization and dissociative ionization of the H2 target.
Dissociative ionization takes place through single ioniza-
tion followed by dissociation of the residual H+

2 . These
processes are represented by the second term in Eq. (8),
where ε+i is the ground state energy of H+

2 , and σ+
k is the

cross section for the transition of the inner electron to a
state k of energy εk.

For calculations of double ionization (DbI) and disso-
ciative ionization (DiI) we employ an independent-event
model, where these processes are considered in a two-
step approximation. The first step is single ionization
of H2 and the second is ionization or excitation of H+

2 .
Therefore the cross section is defined by the product of
the total single ionization probability of H2, pH2

ion, and the
probability of H+

2 transitioning from the ground state to
some final state k, i.e

σ+
k = 2π

∫ ∞
0

pH2

ion(b)p
H+

2

k (b)bdb. (9)

Antiproton collisions with H+
2 are modeled in much the

same way as for H2, as described in Sec. II A. How-
ever, in this case H+

2 pseudostates and the appropriate
interaction potential are used. We also use the same in-
ternuclear distance as for H2 calculations, as required by
the independent-event model. The cross sections corre-
sponding to the positive-energy states of H+

2 represent
double ionization, while those corresponding to the neg-
ative energies contribute towards dissociative ionization
due to the repulsive nature of the H+

2 excited states.
The nuclear stopping cross section Sn is the contribu-

tion from momentum transfer to the target during elastic
and inelastic scattering. This contribution is included in
our antiproton-H2 calculations to compare with exper-
iment, which measures all energy loss contributions at
once. To calculate the nuclear stopping cross section we
first construct the angular differential cross section from
the impact parameter amplitudes via the Bessel transfor-
mation,

dσf (d)

dΩ
= (µv)2

∣∣∣∣∫ ∞
0

Af (b,d)Jmf
(2µvb sin 1

2θ)bdb

∣∣∣∣2 ,
(10)

where µ is the reduced mass of the projectile-target sys-
tem, v is the lab-frame incident velocity, J is the Bessel
function of the first kind, mf is the magnetic quantum
number, and θ is the scattering angle. The resulting dif-
ferential cross section is orientation dependent. We use
averaging over three perpendicular orientations to calcu-
late the differential cross section dσf/dΩ independent of
the target orientation. As discussed later averaging over



4

three orientations is sufficiently accurate at energies be-
low 30 keV. The nuclear stopping cross section is then
given by

Sn(E0) =
∑
f

∫
q2
f

2mt

(
dσf
dΩ

)
dΩ, (11)

where mt is the mass of the target and qf is the magni-
tude of momentum transfer to the target which depends
on the scattering angle. Finally, we emphasize that our
amplitude Af entering Eq. (10) contains the information
about the heavy-particle interaction. Though this is not
essential for the electronic part of the stopping power,
it is not possible to get the correct differential cross sec-
tion without including the projectile interaction with the
target nuclei.

Collisions between antiprotons and molecular hydro-
gen also result in changes in vibrational energy levels of
the target. These processes lead to an additional loss of
the projectile’s energy. Their contribution to the stop-
ping cross section can be accounted for if we write the
total scattering wave function in a form where its nuclear
and electronic parts are separated as

Ψ(t, r,R,d)χf,ν(d), (12)

where χf,ν(d) is the molecular vibrational wave function
that depends on the internuclear distance of the target
in the electronic state f . As discussed in [20] this kind of
separation is possible under the assumption that the elec-
trons can almost immediately adjust their positions to a
changed nuclear configuration. The wave functions and
corresponding energies for the vibrational motion of the
molecular target, χf,ν(d) and εf,ν , satisfy the following
Schrödinger equation:

(Hnucl + εf )χf,ν(d) = εf,νχf,ν(d), (13)

where Hnucl is the target Hamiltonian representing nu-
clear motion. The stopping cross section associated with
the vibrational transitions from the electronic ground
state i into all the vibrational levels of the electronic state
f can be calculated as

Svib,f(E0) =
1

4π

Nvib,f∑
ν=0

(εf,ν − εi,0)

× |〈χf,ν(d)|Af (t, b,d) exp(−iεf t)|χi,0(d)〉|2 ,
(14)

where Nvib,f is the total number of molecular vibrational
eigenstates in the electronic state f . Among all vi-
brational transitions, those within the electronic ground
state give the most dominant contribution to the stop-
ping cross section. Thus, in the present work we consider
vibrational transitions only within the electronic ground
state. To avoid doing averaging over molecular orien-
tations numerically we write Eq. (14) in the following
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FIG. 1. Radial distribution functions |χi,ν(d)|2d2 of the H2

molecular vibrations with ν = 0, 1, and 2, in a.u.. The poten-
tial energy curve and the vibrational energy levels of H2 are
shown in units of eV. Note that the potential energy curve is
shifted up by 31.7007 eV which is the ground state energy of
H2 at the equilibrium internuclear separation of 1.4487 a.u..

approximate form

Svib(E0) ≈
Nvib,i∑
ν=0

(εi,ν − εi,0)〈χi,ν(d)|
√
σav

el (d)|χi,0(d)〉,

(15)

where σav
el (d) is the elastic cross section analytically aver-

aged over molecular orientations. Using
√
σav

el (d) instead
of the scattering amplitude is shown to be a good ap-
proximation in calculations for electron scattering from
H+

2 and D+
2 [22]. The molecular vibrational eigenfunc-

tions χi,ν(d) and eigenenergies εi,ν can be calculated via
diagonalization of the molecular Hamiltonian with the
electronic ground-state potential curve Vpot. In Fig. 1
radial distribution functions, |χi,ν(d)|2d2, for the lowest
vibrational levels (ν = 0, 1 and 2) are given.

III. RESULTS

A. p̄ in H2

For calculations of the electronic stopping cross sec-
tions for antiprotons in H2 we find that the maximum
orbital angular momentum of the target states lmax re-
quired to reach convergence is 5, which is the same for
H+

2 . For both H2 and H+
2 sufficient convergence is ob-

tained for Nl = 20 − l with λl chosen to be 2. A to-
tal of 843 molecular target states are included in our
antiproton-H2 calculations. With this model we obtain
a two-electron ground state ionization energy of 1.16497
a.u., which is close to the accurate value of 1.1745 a.u.
[23]. Calculations were performed for the internuclear
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FIG. 2. Total stopping cross section for antiproton incident
on molecular hydrogen. Included is the experimental data of
Agnello et al. [8], with the shaded region representing the ex-
perimental uncertainty. The CCC results are shown by the
solid line. The electronic stopping cross sections of Lühr and
Saenz [13] and Schiwietz et al. [14, 15] are also shown, along
with the results from Bethe formula. Results previously pre-
sented per atom have been multipled by two.

separation of 1.4487 a.u. The same internuclear separa-
tion was used in the H+

2 calculations as required by the
independent-event model.

In Fig. 2 we present results for the antiproton-H2 stop-
ping cross section together with the theoretical calcula-
tions of Lühr and Saenz [13] and Schiwietz et al. [14, 15],
as well as the experimental results of Agnello et al. [8].
We use an analytic orientation-averaging technique to ac-
count for all possible orientations of the molecule. We
also take into account double ionization and dissociative
ionization via the independent-event model. The nuclear
and vibrational-excitation contributions are also added,
which make a noticeable contribution below about 10
keV, as discussed in more detail later. The CCC results
are in good agreement with those of Lühr and Saenz [13]
above 200 keV. However below 30 keV our calculations
are in better agreement with the experimental measure-
ments. Note that the results of Lühr and Saenz [13] do
not include the nuclear contribution. Adding the latter
would further worsen their disagreement with the exper-
iment below 10 keV. The calculations of Schiwietz et al.
[14, 15] also do not include the nuclear contribution. Ad-
ditionally, both Lühr and Saenz [13] and Schiwietz et al.
[14, 15] use an atomic approximation to molecular hydro-
gen.

It is important to point out that traditionally the p̄-
H2 stopping cross section has been presented per atom
instead of per molecule. In Fig. 2 we present our final
result as per molecule and therefore multiply other per-
atom results by two before plotting.

Individual contributions to the total stopping cross sec-
tion are presented in Fig. 3. First, the figure shows
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FIG. 3. Individual contributions to the antiproton-H2 to-
tal stopping cross section. The solid curve labeled Se: H2 is
the stopping cross section for the primary electron analyti-
cally averaged over all possible molecular orientations with
lmax = 5. The dots are the same but with lmax = 4. Simi-
larly Se: H2 (3 or.av.) is for an average over just three per-
pendicular orientations. Se: DbI and Se: DiI are the stopping
cross sections associated with double ionization and dissocia-
tive ionization (obtained using analytic orientation averaging
technique). Sn is the nuclear stopping cross section and Svib

is the vibrational-excitation contribution.

the level of convergence when the maximum orbital an-
gular momentum of the target states lmax reaches 5.
Second, the figure shows that energy losses associated
with double ionization and dissociative ionization pro-
cesses make a small but important contribution, as does
the nuclear stopping cross section. Energy loss to vibra-
tional excitation is shown to make a small contribution
at low energies. All these components are multiplied by
a factor of 5 to make them visible in comparison with
the dominant electronic contribution. The nuclear and
vibrational-excitation stopping cross sections make neg-
ligible contribution above 10 keV. For the nuclear stop-
ping cross section we increase the number of the final
states of the target until a convergent result is obtained.
Interestingly, as the number of states are increased the
contribution to the total nuclear stopping cross section
for elastic scattering is reduced and distributed into other
channels. Nevertheless, the elastic contribution remains
dominant.

Fig. 3 also demonstrates the improvement an analytic
orientation averaging technique for the target molecule
provides over averaging using three orientations. When
compared to averaging over three perpendicular orienta-
tions, analytic averaging over all possible target orien-
tations significantly increases the stopping cross section
near and above the stopping maximum, and slightly re-
duces it below about 10 keV. The stopping cross section
for each of the three orientations used in Fig. 3 are pre-
sented in Fig. 4. These three perpendicular orientations
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FIG. 4. Electronic stopping cross section for one electron
excitations from three main orientations of the H2 molecule
for antiprotons.

of the target molecule are shown in the key of Fig. 4.
In Fig. 5 we compare the electronic part of the

antiproton-H2 stopping cross section obtained in the
present CCC method with those obtained in various ap-
proximate theoretical treatments of the molecular target.
We show results we have obtained using a H-like (single
active electron) structure model for H2. In this model we
choose the atomic number Zeff of the hydrogen atom to
reproduce the correct one-electron ground state energy
of H2. These results are then multiplied by two to ac-
count for both electrons of the molecule. These results
are in good agreement with our full calculations above
150 keV. In this figure we also show the results of Lühr
and Saenz [13]. Their calculations were also performed
using a H-like H2 structure model, however they intro-
duced a model potential instead of simply varying Zeff .
After multiplication by two there is good agreement with
our calculations above 200 keV. The disagreement at low
energies between our full CCC calculations and those us-
ing a H-like structure model is attributed to the lack of
electron-electron correlation effects in the latter which
demonstrates the importance of using a proper molecu-
lar structure model. Additionally, in Fig. 5 we show our
previous calculations for atomic hydrogen [17] multiplied
by 1.8. This factor is determined by fitting to our H2

results at high energies and demonstrates a slight devi-
ation from Bragg’s additivity rule [12] due to bonding
effects. With this factor there is agreement with our full
molecular calculations above 150 keV.

B. p̄ in H2O

We have also performed electronic stopping cross sec-
tion calculations for antiprotons in H2O using a frozen-
core neonization treatment proposed in [18] with Nl =
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FIG. 5. Comparison of the electronic stopping cross sections
obtained using the full molecular approach and various H-like
approximations.

20− l and λl chosen to be 2. The maximum orbital an-
gular momentum of target states used in calculations was
4. This resulted in the total number of coupled differen-
tial equations being 1112.

The present results for H2O are shown in Fig. 6. There
is no experiment and to our best knowledge there have
been no other calculations for the antiproton-H2O sys-
tem. However, the demand for calculations of antipro-
tons stopping in biologically important molecules such as
water is rapidly increasing due to current research such as
the Antiproton Cell Experiment (ACE) [5, 6] at CERN.
The ACE aims to fully assess the suitability and effec-
tiveness of antiprotons for cancer therapy. While our
calculations for H2O using a neonization approximation
can not be considered highly accurate, they should still
provide a guideline to future experiments on antiproton
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FIG. 6. Electronic stopping cross sections for antiproton in
H2O.
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stopping in this target. We note that the presented curve
is the stopping cross section associated with the energy
losses due to single electron transitions from the outer p-
shell only. It represents the dominant contribution to the
stopping cross section. The present Born approximation
results are also shown.

IV. DISCUSSION

We have developed the most comprehensive approach
to calculating the stopping cross section of antiprotons
in H2 to date. Nevertheless, as can be seen from Fig. 2
there is still some disagreement between the experi-
ment and calculations. In order to better understand
the reason for the disagreement we analyze the situa-
tion from the theoretical point of view. We start by
mentioning that our theory uses the independent-event
model to include the double-ionization and dissociative-
ionization channels. This model tends to overestimate
the double-ionization and dissociative ionization cross
sections. However since the contribution of these pro-
cesses to the total stopping cross section is small they
should not have a significant effect on the presented final
results.

Secondly, we do not include direct homolytic dissoci-
ation of the target. To our best knowledge there are no
calculations of this process induced by antiprotons that
could be used to estimate its contribution to the energy
loss. However, according to Khayrallah [24] electron-
impact direct dissociation of H2 takes place through
doubly-excited states of the target. This in turn means
that the process is a two-electron one and its probabil-
ity is significantly smaller than the probability of the
single-electron processes. If we assume that antiproton-
induced direct dissociation of H2 also goes via doubly-
excited states, then one can expect that its contribution
to the total stopping cross section will be small, possibly
similar to the contribution of the dissociative ionization
(see Fig. 3). As far as direct heterolytic dissociation
is concerned, the probability of this happening is even
smaller.

It is also important to emphasize that the main reason
behind the small stopping power cross section obtained
in the present calculations at low energies is the strong
suppression of the ionization cross section. This target
structure-induced suppression of ionization has a well-
understood theoretical basis [4, 19].

As a cross test of the present results we note that when
the internuclear distance of the computer code for H2 is
set to zero our previous He calculations [17], which are in
better agreement with experiment at low energies than
for H2, are perfectly reproduced. All the above gives
us a certain degree of confidence in the reliability of the
presented results.

Finally, we would like to make a comment about the
experimental method, which we believe may also con-
tribute to the disagreement between the experiment and

calculations. The experiment of Agnello et al. [8] mea-
sures the mean annihilation time 〈ta〉 and path length
R for antiprotons traveling through a H2 gas chamber.
Both measured quantities are expressed as integrals over
functions of the total stopping cross section S. These two
relationships are solved simultaneously by making use
of a parameterized function for S presented by Ander-
sen and Ziegler [25] for atomic targets. At high energies
the function is based on Bethe’s formula and is given by
Sh = [(243−0.375Zt)Zt/E0] ln(1+γ/E0 +4meE0/mp̄Ē),
where Zt is the atomic number of the target taken to be
1, me and mp̄ is the electron and antiproton mass respec-
tively, and Ē is the mean excitation energy of the target.

At low energies it is given by Sl = αEβ0 which is based on
the Thomas-Fermi statistical model. In the intermediate
energy range the interpolation formula 1/S = 1/Sl+1/Sh
is used, which was originally proposed by Varelas and
Biersack [26]. The variables α, β, and γ are varied to fit
the experimentally measured data for 〈ta〉 and R. Ag-
nello et al. [8] found these variables to be 1.25, 0.30, and
4× 105 respectively. The use of such a method for deter-
mining the stopping cross section is likely to introduce
additional uncertainties on top of the shaded region in
Fig. 2, which is the uncertainty in the experimental mea-
surements. According to Andersen and Ziegler [25] the
fitting function described above has an estimated accu-
racy of 10% at 10 keV and 5% at 500 keV. However in
the intermediate energy range the accuracy of the inter-
polation method is said to be approximately 20%. The
restrictions of using a fitting function may be one possi-
ble explanation for the disagreement between our calcu-
lations and the experimental data.

V. CONCLUSION

In conclusion we have applied the CCC method to the
calculation of stopping cross sections for antiprotons in
the H2 and H2O molecules. For H2 we fully account
for the electron-electron correlation and average over all
possible orientations of the target using an analytic ori-
entation averaging technique. Double ionization and dis-
sociative ionization contributions are also included via
an independent-event model. Energy losses through vi-
brational excitation as well as the nuclear stopping cross
section have been included. The presented theoretical
results are the most comprehensive and the most accu-
rate to date. We also presented the stopping cross section
for antiprotons in H2O. For the latter we used a neon-like
model of six p-shell electrons above a frozen Hartree-Fock
core with only one-electron excitations from the outer p
shell allowed.

As a next step we plan to apply the CCC method
to calculations of stopping cross sections for protons in
atomic hydrogen. Due to the possibility of rearrange-
ment, whereby the proton can grab an electron and form
H, the aforementioned problem is significantly more dif-
ficult than its antiproton counterpart because it requires
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a two-center expansion of the scattering wave function.
Not only is the proton problem more complicated due to
the need for a two-center expansion, one must also take
into account all possible charged states of the projec-
tile. This will ultimately require additional calculations
of H/H− scattering from H. With our current research
in this direction our ultimate goal is to provide accu-
rate calculations for radiation dose simulations in hadron
therapy.
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S. De Castro, A. Donzella, A. Feliciello, L. Ferrero, A. Fil-
ippi, V. Filippini, A. Fontana, D. Galli, R. Garfagnini,
B. Giacobbe, P. Gianotti, A. Grasso, C. Guaraldo,
F. Iazzi, A. Lanaro, E. Rizzini, V. Lucherini, S. Mar-

cello, U. Marconi, A. Masoni, B. Minetti, P. Mon-
tagna, M. Morando, F. Nichitiu, D. Panzieri, G. Pauli,
M. Piccinini, G. Puddu, E. Rossetto, A. Rotondi,
A. Rozhdestvensky, A. Saino, P. Salvini, L. Santi,
M. Sapozhnikov, N. Cesari, S. Serci, R. Spighi, P. Tem-
nikov, S. Tessaro, F. Tosello, V. Tretyak, G. Usai, S. Vec-
chi, L. Venturelli, M. Villa, A. Vitale, A. Zenoni, and
A. Zoccoli, Phys. Rev. Lett. 74, 371 (1995).

[9] E. Lodi Rizzini, A. Bianconi, M. P. Bussa, M. Corra-
dini, A. Donzella, L. Venturelli, M. Bargiotti, A. Bertin,
M. Bruschi, M. Capponi, S. De Castro, L. Fabbri, P. Fac-
cioli, D. Galli, B. Giacobbe, U. Marconi, I. Massa,
M. Piccinini, M. Poli, N. Semprini Cesari, R. Spighi,
V. Vagnoni, S. Vecchi, M. Villa, A. Vitale, A. Zoccoli,
O. E. Gorchakov, G. B. Pontecorvo, A. M. Rozhdestven-
sky, V. I. Tretyak, C. Guaraldo, C. Petrascu, F. Balestra,
L. Busso, O. Y. Denisov, L. Ferrero, R. Garfagnini,
A. Grasso, A. Maggiora, G. Piragino, F. Tosello, G. Zosi,
G. Margagliotti, L. Santi, and S. Tessaro, Phys. Rev.
Lett. 89, 183201 (2002).

[10] W. H. Barkas, J. N. Dyer, and H. H. Heckman, Phys.
Rev. Lett. 11, 26 (1963).

[11] H. Bethe, Ann. Phys. 397, 325 (1930).
[12] W. H. Bragg and R. Kleeman, Philos. Mag. 10, 318

(1905).
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mens, Phys. Rev. A 71, 012901 (2005).

[17] J. J. Bailey, A. S. Kadyrov, I. B. Abdurakhmanov, D. V.
Fursa, and I. Bray, Phys. Rev. A 92, 022707 (2015).

[18] C. C. Montanari and J. E. Miraglia, J. Phys. B 47,
015201 (2014).

[19] I. B. Abdurakhmanov, A. S. Kadyrov, D. V. Fursa, and
I. Bray, Phys. Rev. Lett. 111, 173201 (2013).

[20] I. B. Abdurakhmanov, A. S. Kadyrov, D. V. Fursa, S. K.
Avazbaev, and I. Bray, Phys. Rev. A 89, 042706 (2014).

[21] I. B. Abdurakhmanov, A. S. Kadyrov, D. V. Fursa, S. K.
Avazbaev, J. J. Bailey, and I. Bray, Phys. Rev. A 91,
022712 (2015).

[22] M. O. Abdellahi El Ghazaly, J. Jureta, X. Urbain, and
P. Defrance, J. Phys. B 37, 2467 (2004).

[23] T. E. Sharp, At. Data Nucl. Data Tables 2, 119 (1970).
[24] G. A. Khayrallah, Phys. Rev. A 13, 1989 (1976).
[25] H. Andersen and J. Ziegler, Hydrogen stopping powers

https://books.google.com.au/books?id=3hQEGB4RnfcC
https://books.google.com.au/books?id=3hQEGB4RnfcC
https://books.google.com.au/books?id=uMYhAQAAIAAJ
https://books.google.com.au/books?id=uMYhAQAAIAAJ
http://dx.doi.org/ http://dx.doi.org/10.1016/j.physletb.2004.01.082
http://stacks.iop.org/0953-4075/44/i=12/a=122001
http://stacks.iop.org/0953-4075/44/i=12/a=122001
http://dx.doi.org/ http://dx.doi.org/10.1016/j.radonc.2006.09.012
http://dx.doi.org/ http://dx.doi.org/10.1016/j.radonc.2007.11.028
http://dx.doi.org/ http://dx.doi.org/10.1016/j.radonc.2007.11.028
http://dx.doi.org/10.1103/PhysRevA.47.4517
http://dx.doi.org/10.1103/PhysRevA.47.4517
http://dx.doi.org/ 10.1103/PhysRevLett.74.371
http://dx.doi.org/10.1103/PhysRevLett.89.183201
http://dx.doi.org/10.1103/PhysRevLett.89.183201
http://dx.doi.org/10.1103/PhysRevLett.11.26
http://dx.doi.org/10.1103/PhysRevLett.11.26
http://dx.doi.org/10.1002/andp.19303970303
http://dx.doi.org/10.1080/14786440509463378
http://dx.doi.org/10.1080/14786440509463378
http://dx.doi.org/10.1103/PhysRevA.79.042901
http://dx.doi.org/ http://dx.doi.org/10.1016/0168-583X(95)01521-3
http://dx.doi.org/ http://dx.doi.org/10.1016/0168-583X(95)01521-3
http://stacks.iop.org/0953-4075/29/i=2/a=018
http://dx.doi.org/10.1103/PhysRevA.71.012901
http://dx.doi.org/ 10.1103/PhysRevA.92.022707
http://stacks.iop.org/0953-4075/47/i=1/a=015201
http://stacks.iop.org/0953-4075/47/i=1/a=015201
http://dx.doi.org/10.1103/PhysRevLett.111.173201
http://dx.doi.org/ 10.1103/PhysRevA.89.042706
http://dx.doi.org/ 10.1103/PhysRevA.91.022712
http://dx.doi.org/ 10.1103/PhysRevA.91.022712
http://stacks.iop.org/0953-4075/37/i=12/a=003
http://dx.doi.org/10.1103/PhysRevA.13.1989
https://books.google.com.au/books?id=nCNRAAAAMAAJ


9

and ranges in all elements, Stopping and ranges of ions
in matter (Pergamon Press, 1977).

[26] C. Varelas and J. Biersack, Nucl. Instrum. Methods 79,
213 (1970).

https://books.google.com.au/books?id=nCNRAAAAMAAJ
http://dx.doi.org/ http://dx.doi.org/10.1016/0029-554X(70)90141-2
http://dx.doi.org/ http://dx.doi.org/10.1016/0029-554X(70)90141-2

	 Antiproton stopping in H2 and H2O 
	Abstract
	Introduction
	Time-dependent convergent close-coupling method in impact-parameter representation
	H2 target
	H2O target
	Stopping power

	Results
	p in H2
	p in H2O

	Discussion
	Conclusion
	Acknowledgments
	References


