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We measured the ground-state static electric-dipole polarizabilities of Cs, Rb, and K atoms
using a three-nanograting Mach-Zehnder atom beam interferometer. Our measurements provide
benchmark tests for atomic structure calculations and thus test the underlying theory used to

interpret atomic parity non-conservation experiments. We measured αCs = 4πε0 × 59.39(9)Å
3
,

αRb = 4πε0 × 47.39(8)Å
3
, and αK = 4πε0 × 42.93(7)Å

3
. In atomic units, these measurements

are αCs = 401.2(7), αRb = 320.1(6), and αK = 290.0(5). We report ratios of polarizabilities
αCs/αRb = 1.2532(10), αCs/αK = 1.3834(9), and αRb/αK = 1.1040(9) with smaller fractional un-
certainty because the systematic errors for individual measurements are largely correlated. Since
Cs atom beams have short de Broglie wavelengths, we developed measurement methods that do
not require resolved atom diffraction. Specifically, we used phase choppers to measure atomic beam
velocity distributions, and we used electric field gradients to give the atom interference pattern a
phase shift that depends on atomic polarizability.

PACS numbers: 32.10.Dk,03.75.Dg

I. INTRODUCTION

Measurements of static electric-dipole polarizabilities
serve as benchmark tests for ab initio calculations of
electric-dipole transition matrix elements. These calcu-
lations require understanding quantum many-body sys-
tems with relativistic corrections, and there are many
different methods that attempt to calculate these matrix
elements in a reasonable amount of computing time [1].
Testing these methods is important because these matrix
elements are used to calculate several atomic properties,
such as lifetimes, oscillator strengths, line strengths, van
der Waals interaction potentials and associated cross sec-
tions, Feshbach resonances, and photoassociation rates.
Measuring alkali static polarizabilities as a means of test-
ing atomic structure calculations has been of interest
to the physics community since Stark’s pioneering mea-
surements in 1934 [2]. Static polarizabilities have been
measured using deflection [2–5], an E-H gradient balance
[6, 7], times-of-flight of an atomic fountain [8], and phase
shifts in atomic and molecular interferometers [9–12].

We measured the static electric-dipole polarizabilities
of K, Rb, and Cs atoms with 0.16% uncertainty using
a Mach-Zehnder three-grating atom interferometer [13,
14] with an electric field gradient interaction region. We
used the same apparatus for all three elements, so we can
also report polarizability ratios with 0.08% uncertainty
because the sources of systematic uncertainty are largely
correlated between our measurements of different atoms’
polarizabilities.

We compare our measurements to ab initio calcula-
tions of atomic polarizabilities and to polarizabilities de-
duced from studies of atomic lifetimes, Feshbach reso-
nances, and photoassociation specroscopy. We also use
our measurements to report the Cs 6p1/2 and 6p3/2 state
lifetimes, Rb 5p1/2 and 5p3/2 state lifetimes, and K 4p1/2

and 4p3/2 state lifetimes and the associated principal
electric dipole matrix elements, oscillator strengths, and
line strengths. Then we use our measurements to report
van der Waals C6 coefficients, and we combine our mea-
surements with measurements of transition Stark shifts
to report some excited state polarizabilities with better
than 0.09% uncertainty.

Testing Cs atomic structure calculations by measur-
ing αCs is valuable for atomic parity non-conservation
(PNC) research, which places constraints on beyond-the-
standard-model physics. The PNC amplitude EPNC due
to Z0-mediated interactions between the Cs valence elec-
tron and the neutrons in its nucleus can be written in
terms of electric dipole transition matrix elements and
the nuclear weak charge parameter QW . Atomic struc-
ture calculations are needed to deduce a value of QW
from an EPNC measurement [15–18] to compare to the
QW predicted by the standard model [19, 20]. Our mea-
surement of αCs tests the methods used to calculate the
relevant matrix elements and provides a benchmark for
the

〈
6s1/2 ‖D̂‖ 6p1/2

〉
matrix element, one of the terms

in the expression for EPNC.

This is the first time that atom interferometry
measurements of polarizability have been reported
with smaller fractional uncertainty than the pioneering
sodium polarizability measurement by Ekstrom et al. in
1995 [9]. This is also, to our knowledge, the first time
atom interferometry has been used to measure Cs polar-
izability. Because it is challenging to resolve Cs atomic
diffraction—our nanogratings diffract our Cs atom beams
with only 20 µrad between diffraction orders—we de-
signed an experiment with an electric field gradient in-
stead of a septum electrode, such as was used in [9, 10].
We also developed phase choppers [22–25] to measure our
atom beams’ velocity distributions instead of using atom
diffraction to study velocity distributions, as was done
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FIG. 1. (Color online) Diagram of the Mach-Zehnder atom interferometry apparatus with phase choppers (green) and electrodes
that produce an electric field gradient (blue). Dimensions are shown in red and tabulated in Table I. The supersonic atom beam,
shown in gray, is collimated by two slits s1 and s2 with widths w1 and w2 before entering the first grating. The nanogratings,
g1, g2, and g3, are spaced longitudinally such that L1 = L2, which causes an interference pattern to form at the position of
g3. We consider the four separate interferometers in our data analysis, labeled with k = +2,+1,−1,−2, that form via 0th,
±1st, and ±2nd order diffraction from g1. The atoms are detected by a platinum Langmuir-Taylor detector [21], indicated in
orange. The pair of blue circles represents oppositely-charged cylindrical electrodes (extending perpendicular to the page) that
form a virtual ground plane between them. The electric field from these electrodes polarizes the atoms and thereby shifts the
interference pattern’s phase. The phase choppers are shown in green; each phase chopper is a charged wire next to a grounded
plane. The geometry terms relevant to the pillars and phase choppers are displayed in Fig. 2 and discussed in Section II A. Due
to the rotation of the Earth, the lab has a rotation rate about the vertical axis of Ωlab,y = 38.88 µrad/s that is also relevant to
our analysis.

in [9, 11]. These two innovations enable us to measure
polarizabilities of heavy atoms such as Cs without re-
solving diffraction patterns. Without the need to resolve
diffraction, we can use larger collimating slits and a wider
detector to obtain data more quickly. These innovations
also reduce some systematic errors that are related to
beam alignment imperfections.

We improved the accuracy of our measurements com-
pared to our previous work [11] by redesigning the elec-
trodes that apply phase shifts to our interferometer. The
new configuration of electrodes, two parallel, oppositely-
charged cylindrical pillars, allows us to determine the dis-
tance between the atom beam and the virtual ground
plane between the pillars with reduced statistical uncer-
tainty. We reduced systematic error by making more
accurate measurements of the width of the gap between
the pillars, the pillars’ radii, the voltages on the pillars,
and the distance between the pillars and the first diffrac-
tion grating. Our measurements also required a sophis-
ticated model of the apparatus, which included interfer-
ence formed by the 0th, ±1st, and ±2nd diffraction or-
ders, the finite thickness and divergence of the beam, and
the finite width of the detector [25]. Because beams of Cs,
Rb, and K had different velocity distributions and diffrac-
tion angles, we developed a more detailed error analysis

in order to understand how those attributes affected the
systematic uncertainties in polarizability measurements
of different atoms. To support our error analysis, we also
developed a method to monitor and adjust the distances
between nanogratings in our interferometer.

II. APPARATUS DESCRIPTION AND ERROR
ANALYSIS

A schematic diagram of the three-grating Mach-
Zehnder atom beam interferometer we use to make our
measurements is shown in Fig. 1. A mixture of He and Ar
gas carries Cs, Rb, or K vapor through a 50 µm nozzle to
generate a supersonic atom beam [26, 27]. We adjust the
carrier gas composition to change the beam’s average ve-
locity: a higher percentage of Ar results in a slower beam.
The atom beam passes through two collimating slits and
diffracts through three silicon nitride nanogratings, each
with period dg = 99.90(0.5) nm [28, 29]. The first two
gratings manipulate the atoms’ de Broglie waves to form
a 99.90 nm period interference pattern at the position of
the third grating. The method of observing interference
fringes is described in detail in [30]: we scan the second
grating in the ±x direction and observe the flux admitted
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TABLE I. List of apparatus dimensions described in Fig. 1
and Fig. 2. Dimensions with no quoted uncertainty have un-
certainty much less than what would be significant to our
analysis. ac1 and ac2 are the closest distances between the
wires and the ground planes for phase choppers 1 and 2, and
apillars is half the width of the gap between the pillars (the
closest distance between the virtual ground plane and either
pillar). L1 −L2 = 0± 30 µm, and the uncertainty in L1 +L2

is insignificant.

zs1,s2 860 mm
zg1,pillars 833.5 ± 0.25 mm
zg1,c1 269.7 mm
zs2,g1 100 mm
zg2,c2 598 mm
zc1,c2 1269.3 ± 0.25 mm
L1 940 mm
L2 940 mm
w1 30 ± 6 µm
w2 40 ± 6 µm
wdet 100 ± 3 µm
apillars 1999.85 ± 0.5 µm
Rpillars 6350 ± 0.5 µm
ac1 986 ± 25 µm
Rc1 785.5 µm
ac2 893 ± 25 µm
Rc2 785.5 µm

through the third grating in order to determine the inter-
ference pattern’s contrast and phase. We measure that
transmitted atomic flux with a 100 µm wide platinum
wire Langmuir-Taylor detector [21].

In the rest of Section II we describe how we measure
the atoms’ velocity distribution and polarizability. We
measure v0, the atoms’ mean velocity, using phase chop-
pers, which are charged wires parallel with the y axis held
parallel to grounded planes, indicated in green in Fig. 1.
We measure static polarizability α with a non-uniform
electric field created by two oppositely charged cylindri-
cal pillars parallel with the y axis and indicated in blue
in Fig. 1. The pillars’ electric field shifts the interference
fringe phase by an amount roughly proportional to α/v2

0 .
Section II A describes how the electric field geoemtry of
both the phase choppers and the pillars causes a differ-
ential phase shift. Section II B describes how we use the
phase choppers to measure the velocity distribution, and
section II C describes how we use the pillars to measure
α. Section II D discusses how we apply our knowledge
of the velocity distribution to analyze the polarizability
data taken with the pillars.

A. Phase shifts with cylindrical electrodes

Both the pillars and the phase choppers are described
by the geometry shown in Fig. 2, and create electric fields
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FIG. 2. (Color online) Diagram showing the dimensions,
shown in red, that describe the static electric fields created by
the pillars and by the phase choppers. The circle represents
the cross-section of a metal pillar or charged wire with radius
R held at voltage V . The GND line represents the ground
plane, which may by physical (in the case of the choppers) or
virtual (in the case of the pillars). a is the closest distance be-
tween the pillar edge and the ground plane. The parameter b
is the distance between the ground plane and the effective line
charge within the pillar. The atom beam center is a distance
xb away from the ground plane. The different interferometer
arms are separated from their neighbors by multiples of θdz0,
where θd is the diffraction angle and z0 is the longitudinal dis-
tance to grating g1 (in the case of the pillars and chopper c1)
or grating g3 (in the case of chopper c2). a and R dimensions
for the pillars and phase choppers are given in Table I.

given by

~E(x, z) =
λ

2πε0

[
x− b

(x− b)2 + z2
− x+ b

(x+ b)2 + z2

]
x̂

+

[
z

(x− b)2 + z2
− z

(x+ b)2 + z2

]
ẑ (1)

where the effective line charge density

λ = 2πε0V ln−1

(
a+R+ b

a+R− b

)
(2)

exists a distance b = a
√

1 + 2R/a away from the ground
plane. The parameter a represents the distance between
the ground plane and the closest cylinder edge, R repre-
sents the pillars’ radius, and the directions x̂ and ẑ are
shown in Fig. 2.

When atoms enter an electric field, their potential en-

ergy changes by UStark = − 1
2α| ~E|

2. Since UStark ≈ −0.1
µeV and Ekinetic ≈ 1 eV for Cs in our experiment, we can
use the WKB approximation along with the Residue The-
orem to compute the total phase accumulated by an atom
travelling through the field. We can also approximate
that atoms travel parallel to the ground plane regardless
of the angle at which they diffracted and their incident
angle upon grating g1. Even though this approximation
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may be incorrect by up to 10−3 rad, such a discrepancy
would only cause errors in the accumulated phases by
factors of 10−6, which is insignificant for our experiment.
Therefore, we represent the accumulated phase along one
path for a component of an atomic de Broglie wave as

Φ(v, x) =
1

~v

∫ ∞
−∞

1

2
α| ~E|2dz =

λ2α

πε20~v

(
b

b2 − x2
b

)
(3)

where xb is the distance between the atom’s path and the
ground plane.

The atoms in our beam form many interferometers,
but we only need to consider the four interferometers
shown in Fig. 1. Other interferometers are insignificant to
our analysis because they have some combination of low
contrast and low flux. We label the four interferometers
that we do consider with the index k = +2, k = +1,
k = −1, and k = −2. The differential phase shifts for
the four interferometers are

∆Φ~E,+2(v, xb) = Φ(v, xb + 2θdz0)− Φ(v, xb + θdz0)

∆Φ~E,+1(v, xb) = Φ(v, xb + θdz0)− Φ(v, xb)

∆Φ~E,−1(v, xb) = Φ(v, xb)− Φ(v, xb − θdz0)

∆Φ~E,−2(v, xb) = Φ(v, xb − θdz0)− Φ(v, xb − 2θdz0) (4)

In the above equations, θdz0 is the lateral separation be-
tween classical paths in the interferometer, where θd =
λdB/dg is the diffraction angle and z0 the distance to the
first grating (in the case of the pillars and chopper c1) or
the third grating (in the case of chopper c2).

B. Velocity measurement

The atoms in the beam do not all have the same ve-
locity, so the electric fields do not apply the same phase
shifts to each diffracted atom. We observe the average
phase and contrast of an ensemble of atoms with velocity
distribution P (v). We model P (v) as a Gaussian distri-
bution

P (v) =
vr

v0

√
2π
e
− v2

r(v−v0)2

2v2
0 (5)

where v0 is the mean velocity and the velocity ratio
vr = v0/σv is a measure of the distribution’s sharpness.
It is worth noting that the velocity distribution for a su-
personic atom beam is better described by a v3-weighted
Gaussian distribution [13]. However, either distribution
can be used in our analysis to parametrize the typical
high-v0, high-vr velocity distributions of our atom beam
without changing our polarizability result by more than
0.008%. Since v0 is the average velocity in a Gaussian
but not in a v3-weighted Gaussian, we use Eqn. (5) to
simplify our discussion of the error analysis.

To measure v0 and vr, we use phase choppers [24, 25].
Each phase chopper is a charged wire about 1 mm away
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FIG. 3. (Color online) An example of a measurement of con-
trast C vs. phase chopper frequency fc for a Cs beam. We
fit a model to these data that has v0 and vr as fit parameters
in order to measure the velocity distribution.

from a physical ground plane (see Table I for phase chop-
per dimensions). Chopper c1 is between the first two
gratings and chopper c2 is a distance zc1,c2 = 1269.3 ±
0.25 mm downstream of chopper c1, between the last two
gratings (see Fig. 1). The voltages on the choppers’ wires
and the distances between the beam and the choppers’
ground planes are chosen such that chopper c1 shifts the
ensemble’s average phase by +π and chopper c2 shifts it
by −π.

When we pulse the choppers on and off at a frequency
fc, an atom may receive a net phase shift of ±π or 0 de-
pending on its velocity and the time at which it passed
through the first chopper. Holmgren et al. [24] gives an
intuitive explanation of how we measure contrast C vs
fc to determine v0 and vr. Fig. 3 shows an example of
C vs fc data. Hromada et al. [25] later improved upon
Holmgren et al.’s model of C vs fc by considering how
the thickness and divergence of the beam causes some
components of the atoms’ velocity distribution to not be
detected. In the present work, we expanded our analysis
to include the four interferometers shown in Fig. 1, per-
formed a more in-depth error analysis, and added an ad-
ditional calibration step to the measurement procedure,
as we discuss next.

Hromada et al. described how the thickness and diver-
gence of the beam determines the likelihood for atoms of
certain velocities to be detected [25]. The thickness and
divergence is defined by the finite widths of the collimat-
ing slits w1 and w2. The finite width of the detector wdet

and the detector’s offset from the beamline in the x direc-
tion ∆xdet also affect the probability of detecting atoms
as a function of the atoms’ velocities and initial positions
in the apparatus. The phase and contrast we observe
with our detector is that of an ensemble of atoms with
different velocities, different incident positions on grating
g1, and different incident angles on grating g1.

Uncertainties in w1, w2, wdet, and ∆xdet are more sig-
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nificant for beams that are physically wider. In K beams,
which have larger θd of ≈ 50 µrad and wider velocity
distributions (v0 ≈ 2100 m/s, vr ≈ 14, and therefore
σv ≈ 150 m/s), more of the lower-velocity atoms in the
distribution miss the detector. Therefore, uncertainties
in the aforementioned quantities have a higher bearing
on how we model the average velocity of detected atoms.
Ignoring this component of the analysis would cause a
systematic increase in measured v0 by 0.5% and vr by
10% for a typical K beam.

Modeling the four interferometers shown in Fig. 1,
rather than only the k = ±1 interferometers, also im-
proved our understanding of how likely it is for certain
velocities to be detected. For K beams with wide veloc-
ity distributions, we would report v0 too high by about
0.5% and vr too low by about 5% if we included only
the k = ±1 interferometers. This is because, for such
beams, a much higher proportion of atoms in the k = ±2
interferometers miss the detector than in the k = ±1 in-
terferometers. Ignoring the k = ±2 interferometers has a
significant effect on the model of the detected P (v) when
the detected velocity distributions for the k = ±1 and
k = ±2 interferometers are significantly different. Con-
versely, for Cs and Rb beams, we found no significant
difference in results between models because most of the
atoms in all interferometers were detected regardless of
velocity.

Hromada et al. [25] also described how inequality
between inter-grating distances L1 and L2 (see Fig. 1)
causes systematic errors. When ∆L = L2−L1 is nonzero,
the interference fringes formed at the third grating be-
come magnified or demagnified. We summarize this geo-
metric magnification with the separation phase shift:

∆Φsep,k =
2π

dg

(
θinc +

k

2
θd

)
∆L (6)

where k is the interferometer index (see Fig. 1) and θinc

is the incident angle on grating g1. To reduce systematic
error in our v0 and vr measurements, we measure ∆L
and set it equal to zero.

Eqn. (6) implies that uncertainty in ∆L is more signif-
icant for beams with larger θd, such as K beams. Also,
because ∆Φsep,k has a component proportional to θinc,
uncertainty in ∆L is more significant for more divergent
beams. As |∆L| increases, uncertainties in w1, w2, wdet,
and ∆xdet become more significant. Accordingly, we de-
veloped a method to set ∆L = 0 to reduce those un-
certainty contributions. Eqn. (6) implies that interfer-
ometers on either side of the beamline receive opposite
phase shifts. Therefore, by moving the detector in the
±x direction, we observe linear changes in Φ as a func-
tion of ∆xdet with slope dΦ/dxdet that is proportional
to ∆L. Fig. 4 shows data that demonstrates this effect.
We set ∆L to 0 ± 30 µm by finding the ∆L for which
dΦ/dxdet = 0.

Since we recalibrate ∆L every day, the 30 µm uncer-
tainty in ∆L represents a systematic error for one day’s
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FIG. 4. (Color online) Two data plots showing how the phase
Φ of the interference fringes changes linearly as a function of
∆xdet and ∆L. In plot (a), the black dots represent coordi-
nates at which data was acquired, and the colors represent
contours inferred from the data. These figures show how Φ
vs ∆xdet is a line with slope proportional to ∆L.

measurements and a statistical error for many days’ mea-
surements averaged together. That error will contribute
toward the statistical uncertainty of α measurements.
The same is true for ∆xdet = 0 ± 30 µm, which also
fluctuates from day to day as we set up the apparatus.

If the interferometer grating bars are significantly non-
vertical, it becomes necessary to consider the phase shift
induced by the component of gravitational acceleration
in the plane of the interferometer. That phase shift is
given by

∆Φaccel =
πg sin(θg)(L1 + L2)2

2dgv2
(7)

where θg is the tilt of the grating bars with respect to
vertical [31, 32]. See [31] for an explanation of how we
measured θg. Our interferometer’s |θg| never exceeded
2.3 mrad. If we were to neglect this portion of the anal-
ysis, we would report v0 incorrectly by up to 0.015% and
vr incorrectly by up to 0.25%.

The uncertainty budget for v0 and vr measurements
is displayed in Fig. 5. The total statistical uncertainty
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FIG. 5. (Color online) Systematic uncertainty budget for
measurements of v0 and vr for our Cs, Rb, and K beams.
The total systematic error in v0 and vr in turn contributes
toward the total systematic uncertainty in α measurements
(shown in Fig. 7). A nominal value for θg is not listed be-
cause θg changed from −2.37±1.39 mrad to 1.73±0.59 mrad
toward the end of the experiment.

in measured v0 and vr is roughly 10 times larger than
the total systematic uncertainty after about 15 minutes
of data acquisition with the phase choppers. Because v0

and vr drift over time, typically 3% over the course of
several hours, we measure the velocity distribution twice
every hour.

Gaseous alkali atoms in an atomic beam nozzle have a
probability of forming homonuclear dimers that depends
on the gas pressure [33] and the diameter of the nozzle
hole [34]. It is important for us to quantify the dimer
mole fraction in our beam because the dimers’ spatially
averaged (tensor) polarizabilities are approximately 1.75
times the monomer polarizabilities [35]. In our nozzle,
the vapor pressure of alkali atoms is on the order of 1
torr at our typical running temperatures of 160◦ C for
Cs, 220◦ C for Rb, and 350◦ C for K. According to data
acquired by Gordon et al. (1971) [33] and Bergmann et
al. (1978) [34], our alkali gas pressures of 1 torr should
result in a dimer mole fraction well below 1%. Addition-
ally, Holmgren et al. [11, 36] demonstrated how to place
an upper limit on the dimer mole fraction by analyzing
resolved diffraction patterns through a single nanograting
and looking for peaks associated with dimer diffraction.
In this work, we used very similar nozzle temperatures in
our experiment as Holmgren et al. did in 2010. For all
these reasons, we conclude that the dimer mole fraction
in our beam must be less than 1%. Fig. 7 shows how a
4% dimer mole fraction would lead to a significant (0.1%)
error in measured polarizability.

C. Polarizability measurement

To measure the Cs, Rb, and K polarizability, we
use two parallel, oppositely charged, 1/2-inch-diameter,

stainless-steel pillars. The pillars are mounted to a sin-
gle, rigid support structure so that a 3999.7 ± 1.0 µm gap
exists between them. A motor moves the support struc-
ture in the ±x direction, and a length gauge monitors
the structure’s x position. The length gauge measures
displacements of the structure with 30 nm accuracy. We
begin a polarizability measurement with the assembly
positioned such that the beam passes through the gap
between the pillars near one of the edges. We take 25 sec
of data with the electric field on and 25 sec with it off. We
then move the pillars in nine 400 µm increments so that
the beam approaches the other edge of the gap, taking 50
sec of data at each location. In doing so, we observe the
phase shift ∆Φ = Φpillars,on − Φref applied by the pillars
as a function of xb (see an example in Fig. 6). We then
repeat this sequence, moving the pillars in the opposite
direction in order to minimize possible systematic errors
associated with travelling in a certain direction. When
the electric field is off, we observe the reference phase
Φref and reference contrast Cref given by

Crefe
iΦref = C0e

iΦ0
1

2

∑
k

∫ ∞
v=0

P (v)ei∆Φsag(v)dv (8)

The Sagnac phase, ∆Φsag, is a phase shift caused by the
Earth’s rotation and is described in [11, 37, 38]. C0 is
the contrast that would be observed in the absence of
∆Φsag(v), and Φ0 is an arbitrary phase constant. When
the field is on, we instead observe

Cpillars,one
iΦpillars,on =

C0e
iΦ0

1

2

∑
k

∫ ∞
v=0

P (v)ei∆Φ~E,j(v,xb)+i∆Φsag(v)dv (9)

We fit a model to ∆Φ vs xb, as shown in Fig. 6. The fit
parameters of that model are the polarizability and the
pillars position xb0 for which the phase shift is zero (i.e.
the location of the virtual ground plane).

In our earlier work, we used one pillar next to a
grounded plate instead of two pillars forming a virtual
ground plane [11]. We measured xb by blocking the beam
with the pillar. There were significant statistical errors
of a few µm associated with this procedure, and a 1 µm
error would lead to a 0.1% error in polarizability. Our
new pillars assembly greatly reduces those statistical er-
rors. Measuring ∆Φ vs xb on both sides of the ground
plane makes our typical 5 µm uncertainties in xb0 add
an insignificant amount of statistical uncertainty to the
determined α.

The systematic uncertainty budget for our polarizabil-
ity measurements is shown in Fig. 7. In the next few
paragraphs, we discuss how we measured some of the
quantities in the error budget.

We reduced the uncertainty in Vpillars to 0.05% by in-
dependently calibrating our voltage supplies. To measure
Vpillars, which ranged from 5 kV to 7 kV, we used a Fluke
80K-40 high voltage probe. We measured the probe’s
voltage divider constant, which itself depended on input
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FIG. 6. (Color online) An example of a measurement of phase
shift vs x position of the pillars for a Rb beam. The two fit
parameters used to fit the model to these data are polariz-
ability αRb and the pillars’ position at which the phase shift
is null xb0.

1.20.80.40.0

δα/α x1000

wdet = 100 ± 3 µm
dg = 99.90 ± 0.5 nm

Vpillars: δV/V = 0.0005
apillars = 1999.9 ± 0.5 µm

Rpillars = 6350 ± 0.5 µm
v0: δv0/v0 given in Fig. 5
vr: δvr/vr given in Fig. 5

zg1,pillars = 833.50 ± 0.25 mm

dimer fraction < 0.01
total sys. error x1000

 K  Rb  Cs

FIG. 7. (Color online) Systematic uncertainty budget for po-
larizability measurements for our Cs, Rb, and K beams. The
uncertainties in knowledge of v0 and vr are propagated for-
ward from Fig. 5. Values of Vpillars ranged from 5 kV to 7 kV,
always with 0.05% uncertainty.

voltage, using two Fluke 287 digital multimeters.
We measured zg1,pillars to 1/4 mm accuracy. We placed

rulers in the apparatus, after which three of us would read
the rulers both live and from photographs. We repeated
this process for many longitudinal positions of the rulers
to further reduce statistical error in the measurement. Fi-
nally, we compared the rulers we used with other rulers
to verify that the ones we used were printed without sig-
nificant systematic error. The value of zg1,pillars we use
in this analysis is the average of all those measurements.

We measured the width of the gap between the pil-
lars, 2apillars, to 1 µm accuracy by repeatedly scanning
the pillars assembly across the beam and recording the
positions at which each pillar blocked half of the atom

TABLE II. A typical sequence of measurements during a day
of data acquisition. The +x direction is arbitrarily chosen—
the important aspect is that we spend an equal amount of
time scanning the pillars in each direction so as to minimize
possible systematic errors. This sequence of eight measure-
ments is repeated once per hour for anywhere between 8 and
36 hours. We end the data acquisition by repeating the first
four measurements.

Type of data acquired Duration
contrast vs chopping freq. 7m 5s
chopper c1 phase 3m 45s
chopper c2 phase 3m 45s
contrast vs chopping freq. 7m 5s
∆Φ vs pillars position (+x direction) 8m 45s
∆Φ vs pillars position (−x direction) 8m 45s
∆Φ vs pillars position (+x direction) 8m 45s
∆Φ vs pillars position (−x direction) 8m 45s

beam. To verify that apillars did not change over time,
we repeated this procedure many times throughout the
months during which we acquired our data.

Our θg was always close enough to zero such that we
did not need to consider ∆Φaccel in our polarizability
data analysis. We would only need to consider ∆Φaccel if
|θg| exceeded 23 mrad. We also find that uncertainties in
w1 and w2 each do not correspond to more than 0.004%
uncertainty in α.

D. Determining the velocity distribution during
polarizability measurements

A typical sequence of measurements is shown in Table
II. We measure the velocity distribution twice between
every four scans of the pillars across the beam, and cal-
ibrate the phase choppers between each pair of velocity
measurements.

We linearly interpolate between v0 and vr measure-
ments before and after each pillars scan to estimate those
quantities at the time of that scan. Using cubic spline
interpolation and Gaussian Process Regression to inter-
polate between v0 and vr measurements changes our re-
ported polarizabilities by no more than 0.001%, which is
small compared to our other uncertainties.

III. RESULTS AND DISCUSSION

Table VII shows our measurement results for the K,
Rb, and Cs atomic polarizabilities, αK, αRb, and αCs.
The tabulated statistical uncertainties are the standard
error of the mean for each result. To get this statistical
precision, we acquired over 90 hours of data, including
150 data sets similar to Fig. 6 and 60 data sets similar to
Fig. 3. The total systematic uncertainty for each mea-



8

TABLE III. Direct measurements of Cs, Rb, and K static,
ground-state polarizabilities.

Atom α(stat.)(sys.) (Å
3
)

Cs 59.39(3)(9)
Rb 47.39(3)(8)
K 42.93(2)(7)

TABLE IV. Measured ratios of Cs, Rb, and K static, ground-
state polarizabilities. The systematic uncertainties in each
ratio, which arise from the fact that the systematic errors
in different measurements are not perfectly correlated, are
negligible compared to the statistical uncertainties.

Ratio Value(stat.) Sys. Err.
αCs/αK 1.3834(9) 3 · 10−5

αCs/αRb 1.2532(10) 7 · 10−7

αRb/αK 1.1040(9) 2 · 10−5

surement is also stated in Table VII, and a breakdown
of the systematic uncertainty budget is summarized in
Fig. 7. While the statistical uncertainties are typically
0.05% for our measurements of polarizabilities, the sys-
tematic uncertainties are three to four times larger, and
cause a total uncertainty of typically 0.16% for each mea-
surement.

We report the ratios of polarizabilities αCs/αK,
αCs/αRb, and αRb/αK in Table IV. These ratios have
uncertainties smaller than 0.08% because we used the
same apparatus for each direct measurement. For many
of the sources of systematic uncertainty summarized in
Fig. 7, an error in one of those quantities would scale each
direct polarizability measurement by the same amount.
These correlated uncertainties, such as electrode geom-
etry or grating pitch, do not contribute significantly to
systematic errors in our measured polarizability ratios.
However, uncertainties in w1, w2, wdet, and ∆L affect our
αK, αRb, and αCs measurements differently and therefore
contribute a small amount to the final systematic uncer-
tainties in the ratios. Even so, the ratios’ systematic
errors are much smaller than the statistical uncertain-
ties. We discuss the value of high-precision ratios for
testing atomic theories in Section III A, and we discuss
the possibility of using such ratios to improve individual
measurements of polarizability in Section IV).

A. Comparisons with other experimental and
theoretical polarizabilities

Fig. 8 and Table VIII compare our polarizability mea-
surements with ab initio calculations, semi-empirical cal-
culations, and experimental measurements subsequent to
and including Molof et al.’s and Hall et al.’s 1974 mea-

surements [4, 7]. First, we will discuss the comparison
to previous direct measurements. Our K and Rb polar-
izability measurements have 3 times smaller uncertainty
than our group’s previously published direct measure-
ments of αK and αRb [11], and 10 times smaller uncer-
tainty than the only other direct measurements of αK

and αRb, which were made using the E-H gradient bal-
ance technique [7] and the E gradient deflection technique
[4]. We emphasize that our new measurements are inde-
pendent of the results in [11] because although we used
the same atom interferometer machine, we used a dif-
ferent material nanograting g1, different electrodes with
different geometry, a different atom beam velocity mea-
surement technique, a different atom beam source noz-
zle, and a detector with a different width. Hence, the
fact that our new and more precise measurements are
consistent with the measurements in [4, 7, 11] should be
regarded as an independent validation of each of these
previous results.

There is one other direct measurement of αCs with un-
certainty similar to (and slightly smaller than) ours. Our
direct αCs measurement is 11 times more precise than
the result reported using the E-H balance technique [7],
but 1.1 times less precise than Amini and Gould’s 2003
measurement [8] that was made using an atomic foun-
tain apparatus. To our knowledge, Amini and Gould’s
work is the only polarizability measurement to date that
has been accomplished using an atomic fountain, and
it produced a remarkable improvement in precision by
a factor of 15 as compared to the only previous direct
measurements of αCs [4, 7]. Furthermore, αCs measure-
ments can test some of the atomic structure theory that
is used to interpret atomic parity non-conservation ex-
periments as a way of constraining physics beyond the
standard model [15–18]. Thus, it is particularly impor-
tant to validate this αCs result in [8]. We find that our
αCs measurement is consistent with Amini and Gould’s.

Our result αCs = 59.39(9)Å
3

deviates from their result

of αCs = 59.42(8)Å
3

by 0.03 Å
3
, which is insignificant.

Comparing our atom interferometer result with their
fountain result serves as a cross-check for both methods.
Both measurements also agree with αCs values inferred
from the atomic structure calculations by Derevianko and
Porsev (2002) [17] and Derevianko et al. (1999) [50] for
PNC analysis.

Most theoretical predictions for αK, αRb, and αCs de-
viate from each other and from our measurements signifi-
cantly. Out of 28 sets of theoretical predictions shown in
Fig. 8, only ten sets of predictions [17, 50, 55–62] are
consistent with our results within 3σ (where σ is the
standard deviation of our measurement). Furthermore,
the semi-empirical αK, αRb, and αCs values calculated
in 1999 by Derevianko et al. [50] are the only predic-
tions that match all three of our own αK, αRb, and αCs

measurements to within 3σ. These predictions [50] were
made using measured lifetimes and energies, and Dere-
vianko and Porsev’s later αCs prediction [17] was made
using a measured van der Waals C6 coefficient. This
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FIG. 8. (Color online) Our direct measurements (a) and measured ratios (b) compared with other measurements, ab initio
calculations, and semi-empirical calculations [4, 7, 8, 11, 17, 39–63]. The references are represented on the x-axis by the
first three letters of the first author’s last name followed by the year of publication. For the semi-empirical calculations:
Reference Fue82 used semi-empirical pseudopotentials [42], Pat97 used experimentally-determined energy levels [48], Der99
used experimentally-determined electric dipole transition matrix elements [50], and Mit03 and Yon14 used semi-empirical core
polarization potentials [52, 63]. Values in this plot from 1999 and later are also reported in Table VIII at the end of this paper.

is an important point because there are now additional
data on lifetimes, van der Waals C6 measurements, and
line strength ratios that can inform new semi-empirical
predictions for polarizabilities that we discuss in Section
III B and Fig. 9.

Fig. 8 (b) compares our measurements of atomic polar-
izability ratios to other theoretical, semi-empirical, and
experimental reports for these ratios. The values we
measured for αCs/αK, αCs/αRb, and αRb/αK are consis-
tent with all of the previous experimental measurements
of these ratios, given the larger uncertainties associated
with previous measurements. Comparing theoretical pre-
dictions to our measured polarizability ratios serves as a
different way to test the theoretical predictions. Since
the fractional uncertainties on our measured ratios are
smaller than those of our absolute measurements, our
ratios serve as a more precise test for theoretical works
that predict α values for multiple alkali atoms.

TABLE V. We use the following residual polarizabilities αr
and matrix element ratios R = D2

3/2/D
2
1/2. The sources for

each quantity are cited next to the values in the table.

Atom αr (Å
3
) R

Cs 2.481(16) [17] 1.9809(9) [73]
Rb 1.562(89) [79] 1.996(4) [65]
K 0.925(45) [79] 2.000(4) [80]

B. Comparisons with polarizabilities derived from
other quantities

Static polarizabilities can be related to electric dipole
transition matrix elements, state lifetimes, oscillator
strengths, and van der Waals coefficients. We will de-
scribe those relations and compare our α measurements
to α values derived from recent calculations and high-
precision measurements of those quantities. Those com-
parisons are shown in Fig. 9 and Table VIII.

The polarizability (in volume units) of an atom in state
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FIG. 9. (Color online) Comparisons of our lab’s polarizabil-
ity measurements (this work as well as [11]) and Amini and
Gould’s αCs measurement [8] to polarizabilities derived from
measured lifetimes and lifetime ratios, [64–73], lifetimes in-
ferred from photo-association data [74, 75], theoretical D2

values [76], and van der Waals C6 measurements [17, 77, 78].
Values in this plot from 1999 and later are also reported in
Table VIII at the end of this paper.

i can be written in terms of Einstein A coefficients Aij
as

αi =
c3

2

∑
j 6=i

Aij
ω4
ij

gj
gi

+ αr (10)

where ωik is the transition frequency between states i
and k, and gn = 2Jn + 1 is the degeneracy factor for
state n. In our case, state i is the ground state. The
residual polarizability αr includes terms not explicitly in-
cluded in the sum, the polarizability of the core electrons,

and a correction accounting for correlations between core
and valence electrons as described in several references
[17, 50, 79]. We will explicitly sum over the principal
transitions from ns1/2 to np1/2 and np3/2, where n = 6
for Cs, n = 5 for Rb, and n = 4 for K, and we will
include the other transitions in αr. We abbreviate the
lifetimes associated with the principal transitions to τ1/2
and τ3/2. In our calculations, we use the transition wave-
lengths ωik from references [81–84] and the αr values indi-
cated in Table V. Fig. 9 shows polarizabilities calculated
using measurements of τ1/2 and τ3/2 [64–66, 68–70, 72].
Fig. 9 also shows αCs calculated from values of τ1/2,Rb

and τ3/2,Rb inferred in 2002 by Gutterres et al. from
photo-association data taken in 2000 by Gabbanini et al.
[74, 75].

We can use Patterson et al.’s 2015 measurement of
τ3/2,Cs [85] along with a measurement of the ratio of prin-
cipal transition matrix elements to report αCs. Rafac and
Tanner measured the ratio of Cs electric dipole transition
matrix elements [73]

RCs =

∣∣∣〈6s1/2 ‖D̂‖ 6p3/2

〉∣∣∣2∣∣∣〈6s1/2 ‖D̂‖ 6p1/2

〉∣∣∣2 (11)

which is related to the ratio of lifetimes

τ1/2

τ3/2
=
RCs

2

(
ω3/2

ω1/2

)3

(12)

We can also report a polarizability using RCs [73]
in conjunction with Porsev et al.’s 2010 calculation of
D2

1/2,Cs = 20.334 (in atomic units) [76]. We can write αi
in terms of the electric dipole transition matrix elements
as

αi =
e2

12πε0a4
0

∑
j 6=i

∣∣∣ 〈i ‖D̂‖ j〉 ∣∣∣2
~ωij

+ αr (13)

where a0 is the Bohr radius. As before, we only explic-
itly consider the ns1/2 − np1/2 and ns1/2 − np3/2 matrix
elements, where ns1/2 is the ground state. We abbre-
viate the matrix elements associated with the principal
transitions to D1/2 and D3/2.

In 2002, Derevianko and Porsev demonstrated a
method for obtaining values of D2

1/2,Cs and D2
3/2,Cs from

Cs van der Waals C6 coefficients [17] and RCs [73]. Fig. 9
includes α values derived using experimental Cs C6 mea-
surements in conjunction with that method [77, 78].

C. Other atomic properties derived from our
polarizability measurements

Finally, we use our polarizability measurements to re-
port matrix elements, lifetimes, oscillator strengths, line
strengths, and van der Waals C6 coefficients. In these
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TABLE VI. Matrix elements, lifetimes, oscillator strengths,
line strengths, and van der Waals C6 coefficients calculated
from our polarizability measurements. We used R values from
Table V. The matrix elements, line strengths, and C6 coef-
ficient are expressed in atomic units, while the lifetimes are
expressed in SI units. δα, δR, and δαr represent the uncer-
tainties in the values due to uncertainty in α, R, and αr,
respectively. δtot is the total uncertainty in the value. (-)
represents a nonzero uncertainty of less than 0.5.

Quantity Atom Value δα δR δαr
δtot

D1/2 Cs 4.508 (4) (1) (1) (4)
Rb 4.239 (4) (3) (4) (6)
K 4.101 (3) (3) (2) (5)

D3/2 Cs 6.345 (5) (-) (1) (5)
Rb 5.989 (5) (2) (6) (8)
K 5.800 (5) (2) (3) (6)

τ1/2 (ns) Cs 34.77 (5) (1) (1) (6)
Rb 27.60 (5) (4) (5) (8)
K 26.81 (4) (4) (3) (6)

τ3/2 (ns) Cs 30.37 (5) (-) (1) (5)
Rb 26.14 (5) (2) (5) (7)
K 26.45 (4) (2) (3) (6)

f1/2 Cs 0.3450 (5) (1) (1) (6)
Rb 0.3433 (6) (5) (7) (10)
K 0.3317 (6) (4) (4) (8)

f3/2 Cs 0.7174 (11) (1) (2) (12)
Rb 0.6982 (12) (5) (14) (19)
K 0.6665 (11) (4) (7) (14)

S1/2 Cs 20.32 (3) (1) (1) (3)
Rb 17.97 (3) (3) (3) (5)
K 16.82 (3) (2) (2) (4)

S3/2 Cs 40.26 (6) (1) (1) (6)
Rb 35.87 (6) (3) (7) (10)
K 33.64 (6) (2) (4) (7)

C6 Cs 6879 (20) (-) (7) (21)
Rb 4719 (15) (-) (26) (30)
K 3884 (13) (-) (14) (19)

calculations, we use residual polarizabilities αr and ma-
trix element ratios R from Table V. To report matrix
elements and lifetimes, we use Eqn. (13) and Eqn. (11).
αi is given in terms of oscillator strengths fij as

αi =
e2

4πε0m

∑
j 6=i

fij
w2
ij

+ αr (14)

where m is the electron mass. αi is also given in terms
of line strengths Sji as

αi =
1

6πε0~
∑
j 6=i

Sji
giωij

+ αr (15)

C6 can be expressed in terms of dynamic polarizability

TABLE VII. Excited state polarizabilities αnp1/2 , where n =
6 for Cs, n = 5 for Rb, and n = 4 for K. The values were
calculated using our measurements and αnp1/2 −αns1/2 mea-

surements [86, 87].

Atom αnp1/2 (Å
3
)

Cs 196.81(9)
Rb 120.33(8)
K 89.92(7)

as

C6 =
3

π

∫ ∞
0

α(iω)2dω (16)

Derevianko et al.’s 2010 work tabulates values of α(iω)
for Cs, Rb, and K atoms among others [88]. To derive
C6 values from our α(0) measurements, we modify Dere-
vianko et al.’s values of α(iω) to get

αnew(iω) = α̃(iω)− [αthis work(0)− α̃(0)]
αp(iω)

αp(0)
(17)

where α̃(iω) and α̃(0) refer to values tabulated by Dere-
vianko et al. In the above equation (17), αp(iω) is the
contribution to α(iω) by the principle transitions. The
ratio αp(iω)/αp(0) is given by

αp(iω)

αp(0)
=

1
ω2

1/2
+ω2 +

R
ω1/2
ω3/2

ω2
3/2

+ω2

1
ω2

1/2

+R
ω1/2

ω3
3/2

(18)

Predictions of the parity-non-conserving amplitude,
EPNC, in Cs depends heavily on D1/2. We note that
our Cs D1/2 value is consistent with the theoretical Cs
D1/2 calculated by Porsev et al. in 2010 for the purpose
of interpreting PNC data as a test of the standard model
[76].

Finally, we use our measurements together with recent
measurements of Cs, Rb, and K αnp1/2 − αns1/2 [86, 87]
to report excited state polarizabilities αnp1/2 with better

than 0.08% uncertainty. These results are shown in Table
?? and serve as benchmark tests for calculations of dipole
transition matrix elements for p− d transitions.

IV. OUTLOOK

We are currently exploring ways to measure the po-
larizability of Li and metastable He, the polarizabilities
of which can be accurately calculated. By measuring
αCs/αHe∗ or αCs/αLi, we could report αCs with preci-
sion comparable to that of the ratios reported here for
the benefit of PNC research. Such a measurement would
also act as a calibration of the measurements presented in
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TABLE VIII. Comparisons of directly measured, semi-empirical, and ab initio polarizabilities from 1999 and later. These values
are also plotted in Fig. 8 and Fig. 9. Lines with αr in the Method column were calculated using residual polarizabilities αr
in Table V [17, 79]. Ratios of polarizabilities αRb/αK = 1.097(5) from [11] and αCs/αRb = 1.2532(10), αCs/αK = 1.3834(9),

αRb/αK = 1.1040(9)ḟrom this work have been reported with smaller fractional uncertainties than the direct measurements
listed in this table. For the ab initio method acronyms: CCSD indicates the coupled-cluster approach with single and double
excitations of the wavefunctions. The prefix R stands for “relativistic” and the prefix L stands for “linearized”. The suffix T
indicates that the authors used perturbative triple excitations of the wavefunctions. See [1] for explanations of these various
theoretical methods.

Reference(s) Method αCs (Å
3
) αRb (Å

3
) αK (Å

3
)

Raf99 [17, 69] τ1/2, τ3/2 meas. + αr 58.97(22)
Der99 [50] ab initio, RLCCSD 59.50 46.89 42.84
Der99 [50] semi-empirical 59.26(28) 47.21(9) 43.00(12)
Leo00 [17, 73, 77] C6 meas. + RCs meas. + thry + αr 59.49(25)
Gut02 [74, 75, 79] τ1/2, τ3/2 from PA data + αr 47.18(22)
Der02 [17] semi-empirical 59.35(12)
Mag02 [51] ab initio 64.31 49.64 44.75
Ami03 [8] direct αCs meas. 59.42(8)
Mit03 [52] semi-empirical 46.78 42.97
Chi04 [17, 73, 78] C6 meas. + RCs meas. + thry + αr 59.35(22)
Saf04 [53] ab initio 59.00(13)
Lim05 [54] ab initio, RCCSDT 58.55 47.29 43.08
Fal06 [70, 79] τ1/2, τ3/2 meas. + αr 43.02(8)
Bou07 [17, 72] τ1/2, τ3/2 meas. + αr 59.31(82)
Isk07 [55] ab initio, RLCCSDT 59.04(10)
Saf08 [56] ab initio, RLCCSDT 42.87
Hol10 [11] direct αRb and αK meas. 47.24(44) 43.06(36)
Hol10 [9, 11] ratio calibrated with αNa 47.24(21) 43.06(21)
Por10 [17, 73, 76] ab initioD2

1/2 + RCs meas. + αr 59.42(3)

Saf11 [57] ab initio, RCCSD 47.72(59)
Nan12 [58] ab initio, RCCSDT 43.05(15)
Bor13 [59] ab initio, RCCSDT 59.13
Saf13 [60] ab initio, RLCCSDT 43.03(9)
Sah13 [61] ab initio, RCCSDT 42.94(9)
Jai13 [62] semi-empirical 42.98
Yon14 [63] semi-empirical 58.72 47.07 42.94
Pat15 [17, 73, 85] τ3/2 meas. + RCs meas. + αr 59.21(13)
This work direct meas. 59.39(9) 47.39(8) 42.93(7)

this work, because it would be independent of systematic
errors that may affect our direct measurements.

We are also exploring electron-impact ionization
schemes for atom detection, which would allow us to de-
tect most atoms and molecules. Our Langmuir-Taylor
detector only allows us to detect alkali metals and some

alkaline-Earth metals [21]. Installing an electron-impact
ionization detector would allow us to broaden the scope
of atom interferometry as a precision measurement tool.
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