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Off-diagonal long-range order (ODLRO) in the two-electron reduced density matrix (2-RDM) has
long been recognized as a mathematical characteristic of conventional superconductors. The large
eigenvalue of the 2-RDM has been shown to be a useful measure of this long-range order. The
2-RDM can be represented as a sum of a connected (cumulant) and unconnected piece. In this
work, we show that the cumulant 2-RDM also has a large eigenvalue in the limit of ODLRO. The
largest eigenvalue of the cumulant 2-RDM, we prove, is bounded from above by N . In the limit
of extreme pairing, such as Cooper pairing, the largest eigenvalue and the trace of the cumulant
2-RDM approach their extreme values of N and −N , respectively. While the trace of the cumulant
2-RDM, which is computable from only a knowledge of the 1-RDM, can reflect ODLRO, it alone
does not appear to be a sufficient criterion. The large eigenvalue of the cumulant 2-RDM, we show,
implies the large eigenvalue of the 2-RDM, and hence, is a natural measure of ODLRO that vanishes
in the mean-field limit.

PACS numbers: 31.15.p

I. INTRODUCTION

Superconductivity is an important phenomenon in con-
densed matter physics arising from a pairing of the elec-
trons that exhibits long-range order [1–3]. Both Yang [4]
and Sasaki [5, 6] showed that this long-range order, called
off-diagonal long-range order (ODLRO) by Yang, is asso-
ciated with a large eigenvalue in the two-electron reduced
density matrix (2-RDM). Unlike bosonic long-range or-
der, which is characterized by a large eigenvalue in the
one-electron reduced density matrix (1-RDM), fermionic
ODLRO has no classical analog, since the off-diagonal el-
ements of the 2-RDM are non-zero only in the quantum
description. Coleman [7, 8] showed that the large eigen-
value of the 2-RDM occurs for finite N -electron systems
in the context of N -projected Bardeen-Cooper-Schrieffer
(BCS), or antisymmetric geminal power (AGP), wave
functions. As a result, the magnitude of the large eigen-
value of the 2-RDM can be used as an indicator of phe-
nomena with ODLRO including superconductivity [9–
11].
Because electrons are indistinguishable with pairwise

interactions, the total energy of any molecule or material
is a linear functional of the 2-RDM [8, 12]. In general,
the 2-RDM provides information concerning pair prop-
erties of a fermionic system. Diagonal elements give in-
formation about the populations of fermion pairs, while
off-diagonal elements give information about the corre-
lations between fermion pairs. By unitary transforma-
tion, we can obtain the pair probabilities with respect
to different set of orbitals including points in coordinate
space. Furthermore, the 2-RDM contains the probabil-
ity distributions for not only two fermion particle but
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also one fermion particle and one fermion hole as well as
two fermion holes [8, 12, 13]. Recent work [14] has pro-
posed that the many-body correlations contained in the
2-RDM are accessible by ultrafast pump-probe experi-
ments, as the probability of a system remaining in the
ground state when perturbed in this manner is express-
ible in terms of the 2-RDM or its connected (cumulant)
part.

Cumulants, which were first discussed by Thiele [15]
in the 1800s and connected across different areas of
physics by Kubo in the 1960s [16], are widely applied in
both quantum field theory [17–19] and quantum chem-
istry [12, 20, 21]. The cumulant expansions of reduced
density matrices (RDMs) have been particularly useful in
electronic structure where they have been used to remove
the indeterminacy of the contracted Schrödinger equa-
tion [22–27]. The cumulant 2-RDM has been previously
studied as a quantifier of electron correlation and entan-
glement in both time-independent [14, 28–31] and time-
dependent systems [32]. In this paper we examine the
cumulant part of the 2-RDM as a measure of ODLRO,
which is a special type of correlation and entanglement.
While the full 2-RDM scales quadratically with system
size, the cumulant 2-RDM scales linearly with system
size, making it more appropriate for the study of the ex-
tent of ODLRO in finite systems. We show that like the
2-RDM the cumulant part of the 2-RDM also exhibits
a large positive eigenvalue in the presence of long-range
order. Furthermore, in the limit that the size (rank)
of the one-electron basis set approaches infinity, we also
find that the largest eigenvalue of the cumulant 2-RDM
shares with the largest eigenvalue of the 2-RDM the same
upper bound of N . We also find that the trace of the cu-
mulant 2-RDM can reach its extreme value of −N in
the presence of ODLRO even though this limiting be-
havior does not appear to be exclusively associated with
ODLRO [33, 34]. Unlike the large eigenvalue, the trace
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of the cumulant 2-RDM depends only upon the 1-RDM,
indicating as Coleman [8] had suggested that the 1-RDM
contains an imprint of ODLRO.

II. THEORY

The ensemble N -particle density matrix
D(123..N ; 1̄2̄3̄..N̄) can be expressed in terms of a
set of N -particle wave functions {Ψi(123..N)} and
nonnegative weights {wi}

D(123..N ; 1̄2̄3̄..N̄) =
∑
i

wiΨi(123..N)Ψ∗
i (1̄2̄3̄..N̄), (1)

where the roman numbers represent the spatial and spin
coordinates of each particle. Integrating the N -particle
density matrix over all particles save two yields the 2-
RDM

2D(1, 2; 1̄, 2̄) =

∫
D(123..N ; 1̄2̄3..N)d3..dN. (2)

Importantly, the coordinates of the 2-RDM can be ex-
panded in terms of a set of one-particle functions (spin
orbitals) {φi(1)}

2D(12; 1̄2̄) =
∑
i,j,k,l

2Dij
klφi(1)φj(2)φ

∗
k(1̄)φ

∗
l (2̄), (3)

where 2Dij
kl are the elements of the 2-RDM. Consider the

cumulant expansion of the 2-RDM

2Dij
kl = 2 1Di

k ∧
1Dj

l +
2∆ij

kl, (4)

where the Grassmann wedge product [20, 35, 36] is an
antisymmetric tensor product

2 1Di
k ∧

1Dj
l = 1Di

k
1Dj

l −
1Di

l
1Dj

k. (5)

The cumulant (or connected) part of the 2-RDM cannot
be written as a wedge product of lower RDMs. We nor-
malize the 2-RDM to have a trace of N(N − 1). With
these definitions we consider three theorems and two
corollaries regarding the large eigenvalue and the trace
of the cumulant 2-RDM.
Both Yang [4] and Sasaki [5] showed that the 2-RDM

can have an eigenvalue (geminal occupation number) as
large as the number N of electrons in the system which is
a signature of ODLRO. This maximum occupation occurs
for ODLRO in a one-electron basis set of infinite size.
Yang and Sasaki’s result can be extended to show that
the cumulant 2-RDM can have a large eigenvalue, also
bounded by N .
Theorem 1: The largest eigenvalue of the cumulant 2-
RDM is bounded by N .
Proof: Consider the eigenvector v associated with the
largest eigenvalue of the 2-RDM where the number of
one-electron basis functions, also known as the rank of

the basis set, equals r. Yang and Sasaki [4, 5] showed
that

λD = v† 2Dv ≤ N. (6)

It can be shown that the cumulant 2-RDM has the fol-
lowing eigenvalue bound

λ∆ = v† 2∆ v (7)

λ∆ = v† (2D − 2 1D ∧ 1D) v (8)

= v† 2Dv − 2v†(1D ∧ 1D)v (9)

= λD − 2v†(1D ∧ 1D)v (10)

≤ λD (11)

≤ N, (12)

where we have employed the positive semidefiniteness of
1D ∧ 1D, that is

v†(1D ∧ 1D)v ≥ 0, (13)

for all v.
Pairing wave functions, known as extreme anti-

symmetrized geminal power (AGP) [6–8] or projected
Bardeen-Cooper-Schrieffer (BCS) wave functions, that
exhibit a large eigenvalue in the 2-RDM also exhibit a
large eigenvalue in the cumulant part of the 2-RDM that
is indicative of long-range order.
Theorem 2: For the extreme AGP the eigenvalue λD

of the 2-RDM and the eigenvalue λ∆ of its cumulant are
related as follows:

λ∆ = λD −
N2

r2
.

Proof: When the 2-RDM and its cumulant are from an
extreme AGP, the 1-RDM is a scalar multiple of the iden-
tity matrix with a scalar factor equal to the number of
electrons divided by the rank N/r

1D =
N

r
1I. (14)

Therefore, for the extreme AGP we have

λ∆ = λD − 2
N2

r2
v†(1I ∧ 1I)v, (15)

λ∆ = λD −
N2

r2
. (16)

Corollary 1: In the limit that the size of the one-
electron basis set approaches infinity, the 2-RDM and
the cumulant 2-RDM from an extreme AGP wave func-
tion share the same large eigenvalue equal to N .
Proof: The corollary follows immediately from Theorem 2
and Yang and Sasaki’s theorem. The contribution of the
unconnected part of the 2-RDM to the large eigenvalue
of either the 2-RDM or its cumulant part vanishes in the
limit that the rank r (or size) of the one-electron basis
set approaches infinity.
The large eigenvalue in the cumulant (connected) 2-RDM
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occurs if the order of the system extends overN electrons,
which we refer to as long-range order. Because the cu-
mulant part of the 2-RDM is connected, it scales linearly
with the size of the system, and hence, its largest eigen-
value cannot scale faster than linear in the number of N
electrons.
Even though the trace of the cumulant 2-RDM is com-

putable from only a knowledge of the 1-RDM (in fact,
just the 1-RDM’s eigenvalues), it can reflect the emer-
gence of ODLRO in the 2-RDM.
Theorem 3: The trace of the cumulant 2-RDM becomes
increasingly negative with the emergence of long-range
order. The trace of the cumulant 2-RDM is always non-
positive with a lower bound of −N

−N ≤ Tr(2∆) ≤ 0,

in the mean-field limit the trace of the cumulant 2-RDM
is zero

Tr(2∆mf) = 0,

and in the extreme-AGP limit the trace of the cumulant
2-RDM is

Tr(2∆ext) = −N(1−
N

r
).

Proof: In general,

Tr(2∆) = Tr(2Dij
kl)− 2Tr(1Di

k ∧
1Dj

l ), (17)

Tr(2∆) = Tr(1D2)−N. (18)

Because the eigenvalues of the 1-RDM lie between 0 and
1, we have

0 ≤ Tr(1D(1−1 D)) (19)

Tr(1D2) ≤ Tr(1D) (20)

Tr(1D2) ≤ N. (21)

Furthermore, the trace of the 1-RDM squared is nonneg-
ative

Tr(1D2) ≥ 0. (22)

Combining Eq. (18) with Eqs. (21) and (22) proves that
the trace of the cumulant 2-RDM has a lower bound of
−N and an upper bound of 0. Because the trace of the 1-
RDM squared can be written as the sum of the 1-RDM’s
eigenvalues, the trace of the cumulant 2-RDM can also
be expressed in terms of the 1-RDM’s eigenvalues ni

Tr(2∆) =
∑
i

n2

i −N. (23)

In the mean-field limit the trace of the cumulant 2-RDM
is zero because the cumulant 2-RDM itself vanishes since
the electrons (orbitals) are not correlated, that is they
are not statistically dependent. For extreme AGP the

trace of the cumulant is given by

Tr(2∆ext) = N(N − 1)− 2
N2

r2
Tr(1Iik ∧ 1Ijl ), (24)

Tr(2∆ext) = N(N − 1)−
N2

r2
r(r − 1), (25)

Tr(2∆ext) = −N(1−
N

r
). (26)

Corollary 2: In the limit that the size of the one-
electron basis set approaches infinity, the trace of the
cumulant 2-RDM from an extreme AGP wave function
approaches −N
Proof: In the limit that the rank r approaches infinity, it
follows from Theorem 3 that the trace of the cumulant
approaches −N .

III. APPLICATIONS

We explore the large eigenvalue in the cumulant part
of the 2-RDM by considering the family of Hamiltonian
operators [8]

Ĥ = N − (N − 2)
∑
i

ηi(a
†
iαaiα + a†iβaiβ)

−
∑
ij

ξiξ
∗
j a

†
iαa

†
iβajβajα,

(27)

where the ηi are defined in terms of the ξi

ηi = |ξi|
2 (28)

and the ξi are the expansion coefficients in the two-
electron function (geminal) g(12)

g(12) = 2
∑
i

ξiφiα(1) ∧ φiβ(2). (29)

For even N each Hamiltonian in the family has a unique
N -electron ground-state AGP wave function

Ψ(123...N) = g(12) ∧ g(34) ∧ ... ∧ g((N − 1)N), (30)

that is generated from wedge products of the geminal
g(12). When all of the ηi equal one, the ground-state
solution is an extreme AGP wave function with maximum
ODLRO.
Varying the geminal’s expansion coefficients in the

above Hamiltonian allows us to examine the onset of pair-
ing and long-range order in a quantum system through
the large eigenvalues of both the 2-RDM and its cumu-
lant part. We approximate the mean-field case using a
geminal in which N/2 of the ηi,mf values approach one
and N/2 approach zero. The extreme case has all of the
ηi,ext equal to one. We tune between the mean-field case
and the extreme case using an expression for ηi of the
form

ηi = αηi,ext+(1− α)ηi,mf (31)
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FIG. 1. The largest eigenvalue of the cumulant part of the
2-RDM is given as a function of α, the tuning parameter,
for a general 50-electron, 100-orbital quantum system. As α

increases, the eigenvalue captures the emergence of ODLRO.

where α is a real value between zero and one. When α
is set to zero, we create a pure mean-field geminal, while
setting it to one creates an extreme AGP, allowing us to
show how the large eigenvalue detects long-range order
by tuning α between these two values.

The maximum possible eigenvalue λ∆ (= N) of the
cumulant 2-RDM occurs when the rank r of the one-
electron basis set approaches infinity. In a finite basis
set with rank r the maximum λ∆, strictly less than N ,
occurs at half filling when N = r/2. When N < r/2,
there are not enough particles to support the ODLRO at
half filling, and whenN > r/2, there are not enough holes
to support the ODLRO at half filling. In the following
examples, to make comparisons of the large eigenvalues
and traces of the 2-RDM and its cumulant part in a finite
basis set, we use half filling to maximize the possible
ODLRO.

As a general quantum system of 50 electrons in 100
orbitals is modulated between a mean-field geminal and
an extreme AGP, the large eigenvalue λ∆ of the both the
2-RDM and its cumulant increase sharply with the ini-
tial onset of long-range order and begin to plateau when
α is approximately 0.3. While only the large eigenvalue
λ∆ of the cumulant is shown in Fig. 1, the large eigen-
value λD of the full 2-RDM follows essentially the same
curve, its values slightly above those of λ∆. As α ap-
proaches one, the large eigenvalues gradually approach
their maximum. The largest eigenvalue λ∆ can detect
even a small amount of long-range order, and thereby,
measure the difference between an extreme AGP and a
non-extreme AGP system, even a non-extreme AGP sys-
tem with some degree of long-range order. As the system
is tuned from a mean-field case to an extreme AGP, the
difference between the large eigenvalue of the 2-RDM and
its cumulant is reduced from a relatively large value to

TABLE I. Relationships among the large eigenvalue λD of the
2-RDM, the large eigenvalue λ∆ of the cumulant 2-RDM, and
the trace of the cumulant 2-RDM are shown as functions of
the tuning parameter α for a 50-electron, 100-orbital quan-
tum system. As α increases, all three quantities capture the
emergence of ODLRO. The cumulant-derived quantities also
vanish in the mean-field limit in the absence of ODLRO.

α λD λ∆ Tr(1D) Tr(2D) Tr(2∆)
0.0 1.00 0.00 50 4950 0.00
0.1 18.69 18.37 50 4950 -18.12
0.2 21.82 21.53 50 4950 -21.28
0.5 24.76 24.50 50 4950 -24.25
1.0 25.50 25.25 50 4950 -25.00

a smaller, limiting value. For an extreme AGP where
N = r/2, the large eigenvalue of the cumulant part λ∆ is
exactly less than the large eigenvalue λD of the 2-RDM
by 1/4

λ∆ = λD −
1

4
. (32)

In addition to the large eigenvalues λD and λ∆, the in-
creases of this difference λ∆ − λD can also be a useful
measure of ODLRO with the difference being −1 in the
mean-field limit in the absence of ODLRO.
In addition to the large eigenvalue of the cumulant 2-

RDM, we show in Table I, for a general quantum system
of 50 electrons, that the trace of the cumulant can also
reflect the presence of long-range order. Unlike the trace
of the 2-RDM, which is constant for a given system of
N electrons, the trace of the cumulant decreases with
the onset of long-range order, as the geminal is tuned
between a mean-field case and an extreme AGP, reaching
a minimum value when α is equal to 1. For an extreme
AGP when N = r/2, the trace of the cumulant part is
equal to

Tr(2∆) =
1

2
− λD. (33)

The absolute value of the trace follows the same trend as
the large eigenvalue of the 2-RDM and the large eigen-
value of the cumulant.

IV. DISCUSSION AND CONCLUSIONS

The largest eigenvalue of the cumulant 2-RDM was
shown to provide effective measures of off-diagonal long-
range order (ODLRO) in quantum many-fermion sys-
tems. While Yang and Sasaki [4, 5] previously proved
that the largest eigenvalue of the 2-RDM approaches an
upper bound of N in the limit of maximum ODLRO, we
proved that the largest eigenvalue the cumulant 2-RDM
(1) implies the large eigenvalue of the 2-RDM and (2) ap-
proaches the same upper bound of N . Unlike the largest
eigenvalue of the 2-RDM, the largest eigenvalue of the
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cumulant 2-RDM vanishes in the absence of ODLRO in
the mean-field limit [37]. Furthermore, while the 2-RDM
has a fixed trace for any system with a fixed number
of particles, the variable trace of the cumulant 2-RDM
can also reflect the emergence of long-range order. For
an extreme AGP wave function in the infinite basis-set
limit, the trace of the cumulant 2-RDM reaches its lower
bound of −N and thereby reveals maximum ODLRO.
While the large eigenvalue of the cumulant 2-RDM im-
plies the large eigenvalue of the 2-RDM, it is also im-
portant to note that the trace of the cumulant 2-RDM
can also reach its extreme −N value in cases that are
not typically associated with ODLRO (see, for example,
recent calculations on pairing Hamiltonians [11] and the
harmonium model [38, 39]).
Since the development of density functional the-

ory [40], there has been significant interest in how much
information is contained within the 1-RDM. The 1-RDM
contains significant information about a quantum sys-
tem’s correlation, entanglement, and openness. Recently,
a formally complete set of pure N -representability con-
ditions for the 1-RDM, also known as generalized Pauli
conditions, have been derived [41, 42] and studied com-
putationally in atoms and molecules [43–47]. The prox-
imity of the 1-RDM to the boundary of its pure N -
representable set, or its quasi-pinning to the boundary, is
conjectured to place significant restrictions on the corre-
lation and complexity of the wave function. Chakraborty
and one of the authors (DAM) [48] have also recently
shown that the violation of these conditions by the 1-
RDM provides a sufficient condition for the openness of
an N -fermion quantum system. In this paper we found
that through the trace of the cumulant 2-RDM, which
depends quadratically upon the 1-RDM, the 1-RDM con-
tains an imprint of ODLRO. This result may be useful in
improving 1-RDM-based (or geminal-based) energy func-
tionals in electronic structure theory [49–52]. As recent
work [53] has experimentally determined the 1-RDM for
ultracold fermionic atoms in a double-well potential, the
examination of the 1-RDM with respect to ODLRO has
the potential to be applied to experimental systems.
Molecules and materials have a plethora of possi-

ble energies and properties from the arrangement of

atoms in chemical bonds. Special arrangements such as
copper-oxide planes have been shown to exhibit extraor-
dinary properties such as high-temperature superconduc-
tivity [54]. Recent work [55] suggests that ODLRO arises
in cuprate and iron-based high temperature supercon-
ductors as a result of short-range Coulomb repulsion and
long-range attraction between electron pairs in alternat-
ing lattice structures. Pairing phenomena in ultracold
fermi gases [56], especially in the BCS-BEC limit, are of
experimental interest [57–60] as a method of explaining
high temperature superconductivity. The large eigen-
value of the cumulant 2-RDM provides a useful quan-
tity for both quantifying and understanding the presence
of ODLRO in quantum molecular systems. While the
present results are directly applicable to theoretical and
computational studies of long-range order in phenomena
like superconductivity, they are also applicable to the
study of more general materials with long-range order
behavior. Copper oxide compounds, for example, have a
high temperature state referred to as a pseudogap metal
which has both simple metallic character and long-range
quantum entanglement [61]. The model Hamiltonians,
studied in this paper, show that a continuous curve of
largest cumulant 2-RDM eigenvalues can be generated in
the range from 0 to N with zero being the mean-field
limit and N being the extreme AGP (superconducting)
limit. Similarly, materials can have large cumulant 2-
RDM eigenvalues that indicate a degree of long-range
order between that of a typical insulating material and
that of a superconductor. The indicators for ODLRO, de-
veloped here, provide new tools for exploring more fully
the spectrum of quantum long-range order in molecular
systems and materials.
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