This is the accepted manuscript made available via CHORUS. The article has been published as:

Role of control constraints in quantum optimal control
 Dmitry V. Zhdanov and Tamar Seideman

Phys. Rev. A 92, 052109 - Published 13 November 2015

Within the optimal control paradigm, efficient control of quantum dynamics is based on determination of the global maximum of the multidimensional "control landscape" with respect to the shapes of driving laser pulses or external magnetic fields. In the laboratory, the search usually involves sophisticated genetic algorithms 1]. This is a time-consuming procedure but it guarantees that the optimization will neither get "trapped" in the landscape's sub-optimal local extrema nor faltered in the vicinity of a saddle point. The existence of "traps" is known both experimentally and theoretically [1] 3. At the same time, there are strong arguments that a large variety of control problems may be treated as trap-free from the practical perspective [4]. These arguments, however, assume the set of controls to be an open manifold. In practice, this is not the case: The magnitudes of applied fields are constrained by a number of competing strong-field processes (ionization, dissociation) and to a lesser extent by technical limitations. The overall effect of these constraints on the landscape topology is an open question. They are known, however, to dramatically influence the forms of the time-optimal controls (see e.g. [10-12]), which are highly relevant for quantum information applications.
In this paper we study in detail the constrained control landscape of the two-level Landau-Zener system representing the probably most fundamental model of a controlled qubit with a single control parameter, denoted below u. The corresponding master equation reads as

$$
\begin{equation*}
\rho(\tau)=U_{\tau, 0}(u) \rho(0) U_{\tau, 0}^{\dagger}(u), \tag{1}
\end{equation*}
$$

${ }_{35}$ with the unitary transformation $U_{\tau^{\prime \prime}, \tau^{\prime}}(u)$ defined as $U_{\tau^{\prime \prime}, \tau^{\prime}}(u)=\overrightarrow{\exp }\left(-i \int_{\tau=\tau^{\prime}}^{\tau^{\prime \prime}}\left(\hat{\sigma}_{x}+u(\tau) \hat{\sigma}_{z}\right) d \tau\right)$. Here ρ is the system's density matrix, σ_{x} and σ_{z} are Pauli matrices, τ is a dimensionless time $\tau=\alpha t$, and the control parameter

[^0]is usually proportional to the interaction strength with an external controlled electric or magnetic field ($u=\beta \mathcal{E}$ or $u=\beta \mathcal{B}$). Depending on the physical meaning of the scaling factors α and β, Eq. (11) can represent the wide variety of modern experiments, including magnetic and \backslash or optical control of quantum dots 13, vacancy centers in crystals [14], spin states of atoms and molecules [12], Bose-Einstein condensates [15, 16 and superconducting circuits [17.
We consider the following optimal control problem:
\[

$$
\begin{gather*}
J=\operatorname{Tr}[\rho(T) \hat{O}] \rightarrow \max ; \tag{2}\\
-u_{\max } \leq u \leq u_{\max } ; \tag{3}\\
T<T_{\max }, \tag{4}
\end{gather*}
$$
\]

where maximization is with respect to the program (or control policy) $\tilde{u}(\tau)$, and possibly also the final time T. In the context of qubit design, for instance, the performance index (2) with $\hat{O}=|1\rangle\langle 1|$ can represent the task of initial preparation of the qubit in a given initial pure state $|1\rangle$. Provided that the initial state of the system is $|0\rangle(\langle 0 \mid 1\rangle=0)$, the optimal policy will effectively represent the realization of the SWAP quantum gate (up to undefined diagonal phase shifts). In this case, the bound (4) is motivated by the unrecoverable losses of operation fidelity due to uncontrollable decoherence at long times.
The key question of our study is the extent to which the restrictions (3), (4) complicate finding the policy $\tilde{u}^{\text {opt }}(\tau)$ that maximizes the functional $J[u(t)]$ (representing the system's control landscape) using local search methods. The Landau-Zener system is special from this perspective since it is the only system for which the absence of traps in the unconstrained case (i.e. when $u_{\max }=\infty$ in (3)) was formally proven [18-20]. Moreover, its complete controllability for any finite value of $u_{\text {max }}$ (provided that $T_{\max }$ is chosen sufficiently long) was also justified [2123. Thus, this system provides opportunity to evaluate the effect of constraints (3) and (4) on the landscape complexity in the most pristine form. The existing data portend that this effect should be nontrivial. For example, the unconstrained time-optimal policies $\tilde{u}(\tau)$ are shown to be $\tilde{u}(\tau)=c^{\prime} \delta(\tau)+c^{\prime \prime} \delta(\tau-T)$ where c^{\prime} and $c^{\prime \prime}$ are constants and $\delta(\tau)$ is the Dirac delta function [25]. Such
solutions are evidently inconsistent with any constraints of the form (3).

An additional feature of the Landau-Zener system is its simplicity, which allows us to analytically infer the topology of $J[u]$. At the same time, this system constitutes an elementary building block for describing the dynamics of a variety of important quantum systems, from NMR controlled spin chains to laser-driven excitations in atoms, molecules and quantum dots. These features make the Landau-Zener system a lovely model whose analytical beauty could help to understand the fundamental controllability and regularity properties of generic quantum control.

It is worth noting that the restrictions (3) are critical in the foundation of modern theory of optimal control since the corresponding problems can not be solved in the framework of classical calculus of variations and require special methods, such as the Pontryagin's maximum principle (PMP) [10, 11. For completeness of the presentation, we provide in Sec. II and Appendix A a brief review of PMP and the known results of first-order analysis of the controlled Landau-Zener system in the PMP framework. In particular, we clarify why the unconstrained problem (2) is trap-free, and introduce the primary classification of the stationary points (i.e. the locally and globally optimal solutions, traps and saddle points) by showing that, in the case of time-optimal control, all of them, and likewise traps and saddle points in the case of fixed time control, are represented by piecewise-constant controls $\tilde{u}(\tau)$ that can take only 3 values: 0 and $\pm u_{\max }$.

The rest of the paper is organized as follows. In Sec. III we derive a comprehensive set of criteria that allow to outline the landscape profile and distinguish among its various types of stationary points. The obtained criteria substantially extend, generalize or specialize a number of known results [24-27] obtained for related problems using the index theory [28] or methods of optimal syntheses on 2-D manifolds 29. In this work we propose the technique of "sliding" variations, which allows to reduce the highorder analysis to methodologically simple and intuitively appealing geometrical arguments.
In sections IV and V we apply these criteria to identify and classify the traps and saddle points for the cases of time-optimal and time-fixed control, respectively. A brief summary of the obtained results and the general conclusions that follow from this analysis are given in the final section VI.

We recommend readers who are interested primarily in physical rather than formal mathematical content of the paper to skip directly to concluding section VI after reviewing Section Π and Appendix A, and then, if necessary, refer to sections III V for details. For convenience, the key results of the these sections are compactly formulated in the form of 16 propositions whose proofs are deferred to Appendices B

$$
\begin{equation*}
K(\rho(\tau), \hat{O}(\tau), u(\tau))=-i \operatorname{Tr}\left\{[\rho(\tau), \hat{O}(\tau)]\left(\hat{\sigma}_{x}+u(\tau) \hat{\sigma}_{z}\right)\right\} \tag{6}
\end{equation*}
$$

${ }^{151}$ the evolution equation for $\hat{O}(\tau)$ coincides with (1),

$$
\begin{equation*}
\hat{O}\left(\tau^{\prime \prime}\right)=U_{\tau^{\prime \prime}, \tau^{\prime}}(u) \hat{O}\left(\tau^{\prime}\right) U_{\tau^{\prime \prime}, \tau^{\prime}}^{\dagger}(u) \tag{7}
\end{equation*}
$$

52 and the boundary conditions read as

$$
\begin{gather*}
\hat{O}(T)=\hat{O} \tag{8}\\
K(T) \begin{cases}=0 & \text { if } T \text { is unconstrained; } \\
\geq 0 & \text { in the case (4). }\end{cases} \tag{9}
\end{gather*}
$$

${ }_{53}$ Since the Pontryagin function (6) depends linearly on ${ }_{54} u(\tau)$, the PMP can be satisfied in two ways: 189

190

 191 193$$
\frac{\partial}{\partial u(\tau)} K(\tau)=-i \operatorname{Tr}\left\{\left[\rho\left(\tau_{1}\right), \hat{O}\left(\tau_{1}\right)\right] U_{\tau, \tau_{1}}^{\dagger}(\tilde{u}) \hat{\sigma}_{z} U_{\tau, \tau_{1}}(\tilde{u})\right\} \equiv 0
$$

${ }_{188}$ for any τ such that $\left|\tau-\tau_{1}\right|<\epsilon$ for a sufficiently small ϵ. In particular,

$$
\begin{equation*}
-i \operatorname{Tr}\left\{\left[\rho\left(\tau_{1}\right), \hat{O}\left(\tau_{1}\right)\right] \hat{\sigma}_{z}\right\}=0 \tag{13a}
\end{equation*}
$$

The two subsequent time derivatives of the equality 12 at $\tau=\tau_{1}$ give

$$
\begin{gather*}
-i \operatorname{Tr}\left\{\left[\rho\left(\tau_{1}\right), \hat{O}\left(\tau_{1}\right)\right] \hat{\sigma}_{y}\right\}=0 \tag{13b}\\
-i \tilde{u}\left(\tau_{1}\right) \operatorname{Tr}\left\{\left[\rho\left(\tau_{1}\right), \hat{O}\left(\tau_{1}\right)\right] \hat{\sigma}_{x}\right\}=0 \tag{13c}
\end{gather*}
$$

192 Equations (13) can be simultaneously satisfied only in

$$
\begin{align*}
& {[\rho(\tau), \hat{O}(\tau)]=0} \tag{14a}\\
& {[\rho(\tau), \hat{O}(\tau)]=i \kappa \hat{\sigma}_{x} \quad \text { and } \quad u(\tau)=0 \quad(\kappa=\mathrm{const} \neq 0)} \tag{14b}
\end{align*}
$$

and the associated optimal control can be determined only from higher-order optimality criteria, such as the generalized Legendre-Clebsch conditions or Goh condition 11, 30, 31.
Substituting (1) and (7) into (6), one can directly check that the Pontryagin function for problem (1) is constant along any extremal,

$$
\begin{equation*}
\forall \tau: K(\tau)=\tilde{K} \geq 0 \text { on each extremal, } \tag{10}
\end{equation*}
$$

where the strict inequality holds only if the constraint 4) is active, and

$$
\begin{equation*}
\forall \tau: K(\tau) \equiv 0 \text { for any kinematically optimal solution. } \tag{11}
\end{equation*}
$$

A. Singular extremals of the problem (1)

Every kinematically optimal solution $\tilde{u}(\tau)$ consist of a single singular subarc. Here we show that in the case of the Landau-Zener system the converse is also true: every singular extremal $\tilde{u}(\tau)$ corresponding to an inactive constraint (4) delivers the global kinematic extremum (maximum or minimum) to the problem (2). Indeed, let τ_{1} be an arbitrary internal point of the singular trajectory. The PMP states that
\qquad 229 another corner point $\tilde{\tau}_{i+1}$, then it follows from 16 that

$$
\begin{equation*}
\operatorname{Tr}\left[U_{\tilde{\tau}_{i+1}, \tilde{\tau}_{i}}\left(c_{i, 1} \hat{\sigma}_{x}+c_{i, 2} \hat{\sigma}_{y}\right) U_{\tilde{\tau}_{i+1}, \tilde{\tau}_{i}}^{-1} \hat{\sigma}_{z}\right]=0 \tag{17}
\end{equation*}
$$

230 Condition 17) can be reduced to

$$
\begin{equation*}
c_{i, 2} \sqrt{u_{\max }^{2}+1}=-c_{i, 1} \tilde{u}_{i}^{+} \tan \left(\tilde{\Delta \tau_{i}} \sqrt{u_{\max }^{2}+1}\right) \tag{18}
\end{equation*}
$$

231 and resolved relative to $\Delta \tau_{i+1}$. Retaining the physically ${ }^{232}$ appropriate solutions consistent with eq. 16) we obtain:

$$
\tilde{\Delta \tau_{i+1}}= \begin{cases}\tilde{\delta}_{i}, & c_{i, 1}<0 \tag{19}\\ \pi \cos (\alpha)-\tilde{\delta \tau}_{i}, & c_{i, 1}>0\end{cases}
$$

233 where $\alpha=\arctan \left(u_{\max }\right)$ and

$$
\begin{equation*}
\tilde{\delta}_{i}=\arctan \left(\left|\frac{c_{2, i}}{c_{1, i} u_{\max }}\right| \sec (\alpha)\right) \cos (\alpha) \tag{20}
\end{equation*}
$$

${ }_{234}$ Note that $-i\left[\tilde{\rho}\left(\tilde{\tau}_{i+1}\right), \tilde{\hat{O}}\left(\tilde{\tau}_{i+1}\right)\right]=c_{1, i} \hat{\sigma}_{x}-c_{i, 2} \hat{\sigma}_{y}$, i.e.

$$
\begin{equation*}
c_{1, i+1}=c_{1, i}, \quad c_{2, i+1}=-c_{2, i} . \tag{21}
\end{equation*}
$$

235 Since eqs. 19) and 20 do not depend on the sign 236 of $c_{i, 2}$, one obtains that the durations of all inte${ }_{237}$ rior bang segments are equal: $\forall i \geq 1, i<n: \tilde{\Delta_{i}}=\tilde{\Delta \tau}$ ${ }_{238}$ (see Fig. 17). Moreover, eq. 19) admits the estimate

FIG. 1. Possible types of extremals $\tilde{u}(t)$ associated with nonkinematic optimal solutions and traps along with the locally time-optimal kinematic optimal solutions.
$\frac{\pi}{2} \cos \alpha \leq \Delta \tau \leq \pi \cos \alpha$ for the case of time-optimal problem with constraint (4).

Consider now the extremals of type II. Let $\tau \in\left(\tilde{\tau}_{j-1}, \tilde{\tau}_{j}\right)$ be the singular arc where the relations 14 b hold. If $\tilde{\tau}_{j} \neq \tilde{T}$ when the time instant $\tau=\tilde{\tau}_{j}$ corresponds to the corner point between regular and singular arc. Suppose that there exists another corner point at $\tau=\tau_{j+1}>\tau_{j}$. Then it follows from eqs. (21) and (17) that $\tilde{\Delta} \tau_{j}=\pi \cos \alpha$ and $U_{\tilde{\tau}_{j+1}, \tilde{\tau}_{j}}=-\hat{I}$, so that $\tilde{\rho}\left(\tilde{\tau}_{j+1}\right)=\tilde{\rho}\left(\tilde{\tau}_{j}\right)$. Using similar arguments, it is straightforward to derive the analogous result for possible corner points prior to τ_{j}. Thus, taking any 3-segment "anzatz" extremal similar to that shown in Fig. 11b, one can construct an infinite family $\mathcal{F}^{[\mathrm{k}]}(\tilde{u}(\tau))$ of $\mathrm{II}^{[\mathrm{k}]}$ extremals $\left(\mathrm{k}=k_{1}, k_{2}\right)$ by randomly inserting k_{1} and k_{2} bang segments of length $\pi \cos \alpha$ with $u=+u_{\max }$ and $u=-u_{\max }$ into corner points of $\tilde{u}(\tau)$ or inside its singular arcs. It is clear that each family $\mathcal{F}^{[\mathrm{k}]}(\tilde{u}(\tau))$ constitutes the connected set of solutions, and all the members have equal performances J. Thus, the properties of any type II extremal can be reduced to the analysis of the equivalent three-segment ${ }^{0}$ II type or ${ }^{1}$ II type extremal, where all the positive and negative bang segments are merged into distinct continuous arcs separated by a singular arc.

The presented first-order analysis outlines the admissible profiles for optimal non-kinematic solutions (see Fig. 11. Moreover, by continuity argument (i.e. by considering the series of solutions with fixed $T \rightarrow T_{\text {opt }}$ from below), these profiles should embrace all possible types of the stationary points of the time-optimal problem (2), (4). It is worth stressing that the latter include the globally optimal and everywhere singular kinematic solutions for which both segments with $u= \pm u_{\max }$ and $u=0$ are singular. With this in mind, it is helpful to introduce the following terminological convention for the rest of the paper in order to avoid potential confusions: we will reserve the term "singular" exclusively for segments of extremals at which $u=0$ whereas segments with $u= \pm u_{\max }$ will be always referred to as "bang" ones.

The reviewed results have several serious limitations. First, they do not allow to distinguish the globally timeoptimal solution from a trap or a saddle point. Second, they do not provide a priori knowledge of the characteristic structural features of these stationary points (e.g. the

FIG. 2. (a) The case $r_{y}^{-} r_{y}^{+}>0$: The equatorial singular arc $r^{-} \rightarrow r^{+}$(thick black line) is more time-effective than the bangbang extremal $r^{-} \rightarrow r^{\prime} \rightarrow r^{+}$(thick orange line). The extremal $r^{-} \rightarrow r^{\prime \prime} \rightarrow r^{+}$(thin blue curve) represents a local extremum (trap). (b) The case $r_{y}^{-} r_{y}^{+}<0$: The equatorial singular arc $r^{-} \rightarrow r^{+}$(thick orange line) is suboptimal relative to the bangsingular extremal $r^{-} \rightarrow r^{\prime} \rightarrow r^{+}$(thin black line).

282 expected type, number of switchings etc.) which is nec${ }_{23}$ essary to determine the topology of the landscape $J[u]$. ${ }^{84}$ These tasks require higher-order analysis, which is the ${ }_{25}$ subject of the next section.

III. DETAILED CHARACTERIZATION OF THE STATIONARY POINTS

In this section we will extensively use geometrical arguments in our reasoning. To make the presentation more visual, it is useful to expand the states and observables in the basis of Pauli matrices and identity matrix \hat{I} : $\rho=\frac{1}{2} \hat{I}+\sum_{i=x, y, z} r_{i} \hat{\sigma}_{i}, \quad \hat{O}=\frac{1}{2} \operatorname{Tr}[\hat{O}] \hat{I}+\sum_{i=x, y, z} o_{i} \hat{\sigma}_{i}$. The dynamics induced by eq. (1) corresponds to rotation of the 3-dimensional Bloch vector $\vec{r}=\left\{r_{x}, r_{y}, r_{z}\right\}$ about the axis $\vec{n}_{u} \propto\{1,0, u\}$ (note that the angle between $\vec{n}_{ \pm u_{\max }}$ and \vec{n}_{0} is equal to α, see e.g. Fig. 2), and the optimization goal (2) is equivalent to the requirement to arrange the state vector \vec{r} in parallel to \vec{o}. In what follows we will often refer to the quantum states ρ as the endpoints r of vectors \vec{r}. Hereafter we will also assume that both r and o are renormalized such that $|r|=|o|=1$.

We start by taking a closer look at type II extremals and their singular $\operatorname{arc}(\mathrm{s})$ where $\tilde{u}(\tau)=0$. According to criterion (14b), these arcs are always located at the equatorial plane $x=0$. The following proposition indicates that such arcs may represent the time-optimal solution at any values of $u_{\max }$ (see Appendix B for proof):

Proposition 1. The shortest type II singular trajectory

 connecting any two "equatorial" points $\vec{r}^{-}=\left\{0, r_{y}^{-}, r_{z}^{-}\right\}$ and $\vec{r}^{+}=\left\{0, r_{y}^{+}, r_{z}^{+}\right\}$(see Fig. (2) will represent the (globally) time-optimal solution if $r_{y}^{-} r_{y}^{+}>0,\left(r_{z}^{+}-r_{z}^{-}\right) r_{y}^{-}>0$ and a saddle point otherwise.Since all ${ }^{s}$ II extremals can be reduced to the effective 14 -segment anzatz shown in Fig. 1p (see the end of the

FIG. 3. The globally time-optimal ${ }^{0}$ II type trajectory $\tilde{u}_{\text {anz }}(\tau)$ (thick bright yellow curve) and the locally time-optimal trapping solution (black curve) of the $\mathcal{F}^{[3]}\left(\tilde{u}^{\text {anz }}(\tau)\right)$ family connecting the points $r_{0} \propto\{1,1,-1\}$ and $o \propto\{-1,1,1\}$.
previous section), Proposition 1 has the evident corollary:
Proposition 2. All singular arcs of the locally optimal type II extremals are located in the same semi-space $y>0$ or $y<0$, and their total duration can not exceed $\pi / 2$.

For further analysis we need the following generic necessary condition for time optimality:

Proposition 3. If the type I extremal $\{\tilde{u}(\tau), \tilde{r}(\tau)\}$ is locally time-optimal then each of its corner points \tilde{r}_{i} satisfies the inequality

$$
\begin{equation*}
\tilde{u}_{i}^{-} \tilde{r}_{i, x} \tilde{r}_{i, y} \geq 0 \tag{22}
\end{equation*}
$$

Qualitatively, Proposition 3 states that the projections of optimal trajectories on the $x z$-plane are always "V"shaped at the corner points \tilde{r}_{i} with $\tilde{r}_{i, x}>0$ and " Λ "shaped otherwise (here we assume that the x-axis is oriented vertically, like in Fig. 2).

This result allows us to substantially narrow down the range of type II candidate trajectories:

Proposition 4. Any type ${ }^{s}$ II extremal with $s>0$ containing an interior bang arc is a saddle point for time-optimal control.

In other words, all type $\left.{ }^{s} \mathrm{II}\right|_{s>0}$ locally time-optimal solutions reduce to the three-segment anzatz shown in Fig. 1p, where two regular arcs of duration $\tilde{\Delta} \tau_{0}, \tilde{\Delta} \tau_{2}<\pi \sec \alpha$ "wrap" the singular section where $u=0$. Accordingly, the number of control switchings is bounded by $n_{\mathrm{II}} \leq 2$.

The properties of ${ }^{0}$ II type extremals are richer:
Proposition 5. Suppose that the ${ }^{0}$ II type extremal $\tilde{u}(\tau){ }^{360}$ is the member of family $\mathcal{F}^{[\mathrm{k}]}\left(\tilde{u}^{\mathrm{anz}}(\tau)\right)$, and its anzatz ${ }^{368}$ $\tilde{u}^{\text {anz }}(\tau)$ includes opening and closing bang segments of 369 durations $\tilde{\Delta} \tau_{0}>0$ and $\tilde{\Delta} \tau_{2}>0$. Then $\tilde{u}(\tau)$ is locally optimal iif $\tilde{u}^{\mathrm{anz}}(\tau)$ is locally optimal.
(for proof see Appendix E).

FIG. 4. Illustration of the statement of Proposition 6 The thick colored curve depicts the band-bang extremal. Its red and blue segments correspond to $u=+u_{\max }$ and $u=-u_{\text {max }}$. All interior corner points (red and blue balls) lie on two circles (associated with switchings $u_{\max } \rightarrow-u_{\max }$ and $-u_{\max } \rightarrow u_{\max }$, respectively) whose planes $\lambda_{ \pm 1}$ intersect along the z-axis.

$$
\begin{equation*}
\tilde{r}_{i}=\left\{\operatorname{sign}\left(\tilde{u}_{i}^{+}\right) \sin \left(\gamma_{i}\right) \sin \left(\frac{\xi}{2}\right),-\sin \left(\gamma_{i}\right) \cos \left(\frac{\xi}{2}\right), \cos \left(\gamma_{i}\right)\right\} . \tag{23}
\end{equation*}
$$

Here $\xi=-2 \arctan \left(\frac{u_{\max }}{2} \tan \left(\frac{\theta}{2}\right) \cos (\alpha)\right)$ is the dihedral angle between the planes $\lambda_{ \pm 1}$, and $\gamma_{i+1}=\gamma_{1}+i \eta$, where $\eta=-2 \arctan \left(\frac{\sin \left(\frac{\theta}{2}\right)}{\sqrt{u_{\text {max }}^{2}+\cos ^{2}\left(\frac{\theta}{2}\right)}}\right)$.

Proposition 7. Denote $q_{i}=q\left(\gamma_{i}\right)=\cot ^{2}\left(\gamma_{i}\right)-\cot ^{2}\left(\frac{\eta}{2}\right)$ $(i=1, \ldots, n)$. The set $\left\{q_{i}\right\}$ associated with any locally timeoptimal extremal $\tilde{u}(t)$ contains at most one negative entry ${ }_{364} q^{\prime}$, and $\left|q^{\prime}\right|=\min \left(\left|\left\{q_{i}\right\}\right|\right)$.

The proofs of the above two propositions are given in Appendix F.
To use Proposition 7, it is convenient to introduce parameters ζ_{i} through, $\zeta_{1}=\gamma_{1}+\frac{\pi}{2}\left(1-\operatorname{sign}\left(u_{1}^{+}\right)\right), \zeta_{i+1}=$ $\zeta_{1}+i(\pi+\eta)$. It is evident that $q\left(\gamma_{i}\right)=q\left(\zeta_{i}\right)$. The relation 1 between the sign of q_{i} and the index i of the corner point 32 can be illustrated by associating each q_{i} with the point on ${ }_{37}$ the unit circle whose position is specified by ζ_{i}, as shown

FIG. 5. Signs of the parameters $q(\zeta)$ as function of ζ. Black dots indicate the values $\zeta=\zeta_{i}$ associated with i-th corner point.

384 (The latter roughly corresponds to $\alpha>1$).
385 The analysis in this section so far is equally valid for 386 both global and local extrema of optimal control. It is 387 clear that any globally time-optimal type II solution in388 cludes at most 2 corner points that separate the cen389 tral singular section from the outside regular arcs (see
${ }_{390}$ Fig. 1b). The case of type I solutions is not as evident.
${ }_{391}$ The following propositions impose more stringent neces392 sary criteria on the globally time-optimal extremals (see 393 Appendices H and I for proofs).
${ }_{394}$ Proposition 10. Any corner point $\tilde{r}_{i^{\prime}}$ such that $q\left(\gamma_{i^{\prime}}\right)<0$ ${ }_{395}$ must be either the first or the last corner point of the 396 globally time optimal solution, so that the total number ${ }_{397}$ of switchings $n_{\mathrm{I}, \max } \leq \frac{\pi}{2 \alpha}+1$.

Proposition 11. The corner points \tilde{r}_{i} of any globally

This helpful upper bound was first obtained by Agrachev and Gamkrelidze [27]. As shown in Appendix G, we can further refine this result via more detailed inspection of the criterion $\left|q^{\prime}\right|=\min \left(\left|\left\{q_{i}\right\}\right|\right)$ as follows:

Proposition 9. $n_{\mathrm{I}, \max } \leq 2$ if $u_{\max }>\sqrt{1+\sqrt{2}}$
in Fig. 5. One can see that the maximal number $n_{\max }$ of sequential parameters q_{i} having at most one negative term can not exceed $\frac{\pi+|\eta|}{\pi-|\eta|}+1 \leq \frac{\pi}{\alpha}$, i.e.,

Proposition 8. Type I locally optimal extremals can have at most $\frac{\pi}{\alpha}$ switchings.

399 optimal solution of type I satisfy the inequality

$$
\begin{equation*}
\min \left(0, \tilde{r}_{0, x}, \tilde{r}_{n+1, x}\right)<\tilde{r}_{i, x}<\max \left(0, \tilde{r}_{0, x}, \tilde{r}_{n+1, x}\right) \tag{24}
\end{equation*}
$$

-

401 Proposition 11 can be used to establish the following, ${ }_{02}$ more accurate, upper bound on the number of switchings 403 (see Appendix J for proof).
${ }^{04}$ Proposition 12. The number of corner points of the ${ }_{0} 05$ globally time-optimal type I solution $\tilde{u}(\tau)$ is bounded by 406 the following inequalities:

$$
n_{\mathrm{I}} \leq \begin{cases}\max \left(\frac{\arccos \left(\frac{\tilde{r}_{x}^{-}}{\tilde{r}_{x}^{+}}\right)}{\left|2 \arctan \left(\frac{u_{\max }^{+}}{\tilde{r}_{x}^{+}}\right)\right|}, \frac{\pi}{\left|2 \arctan \left(\frac{u_{\max }}{\tilde{r}_{x}^{-}}\right)\right|}\right)+1 & \text { if } \tilde{r}_{x}^{-} \tilde{r}_{x}^{+}<0 \tag{25a}\\ \min \left(\frac{\arccos \left(\frac{\tilde{r}_{x}^{-}}{\tilde{r}_{x}^{+}}\right)}{\left|2 \arctan \left(\frac{u_{\max }}{\tilde{r}_{x}^{+}}\right)\right|}+3, \frac{\pi}{\left|4 \arctan \left(\frac{u_{\max }^{+}}{\tilde{r}_{x}^{+}}\right)\right|}\right)+1 & \text { if } \tilde{r}_{x}^{-} \tilde{r}_{x}^{+}>0\end{cases}
$$

where \tilde{r}^{+}and \tilde{r}^{-}are new notations for the trajectory 419 imum of J is bounded by the inequalities
09 endpoints \tilde{r}_{0} and \tilde{r}_{n+1}, such that $\left|\tilde{r}_{x}^{+}\right| \geq\left|\tilde{r}_{x}^{-}\right|$.

Denote $\phi_{\xi}=\left|\theta_{r_{0}, \xi}-\theta_{o, \xi}\right|(\xi=x, z)$, where $\theta_{r, \xi}$ is the angle between the axes $\vec{\epsilon}_{\xi}$ and \vec{r}. One can geometrically show that the maximum possible change $\Delta \theta_{r, \xi}^{\max }$ in $\theta_{r, \xi}$ generated by rotation about any of the axes $\vec{n}_{ \pm u_{\max }}$ is $\Delta \theta_{r, x}^{\max }=2 \alpha$ and $\Delta \theta_{r, z}^{\max }=\pi-2 \alpha$ (see Fig. 6). This result allows us to establish the following lower bounds on the number of corner points:
${ }_{17}$ Proposition 13. The minimum number of corner points 418 in locally time-optimal solutions reaching the global max-

$$
\begin{align*}
& n \geq \frac{\left|\arcsin \left(r_{0, x}\right)-\arcsin \left(o_{x}\right)\right|}{2 \arctan \left(u_{\max }\right)}-1 \tag{26a}\\
& n_{\mathrm{I}} \geq \frac{\left|\arcsin \left(r_{0, z}\right)-\arcsin \left(o_{z}\right)\right|}{2 \operatorname{arccot}\left(u_{\max }\right)}-1 \tag{26b}
\end{align*}
$$

${ }_{20}$ It is worth stressing that the bound 26 b is valid only ${ }_{21}$ for type I solutions.

Combination of the upper bounds on n imposed by Propositions 4 and 10 with inequalities (26) leads to the following conclusion:

Proposition 14. The globally time-optimal solution(s) of problem (2) is of type I if

$$
\begin{equation*}
\phi_{x}=\left|\arcsin \left(r_{0, x}\right)-\arcsin \left(o_{x}\right)\right|>4 \alpha \tag{27a}
\end{equation*}
$$

FIG. 6. Geometrical calculation of the value of $\Delta \theta_{r, x}^{\max }$. Rotation $\mathcal{S}_{\vec{n}_{-u} \max }$ about vector $\vec{n}_{-u_{\max }}$ transfers any point r_{i} on the Bloch sphere into a new point on the $A A^{\prime}$ plane. The x-coordinate of this new point is bounded by the planes λ^{\prime} and $\lambda^{\prime \prime}$. Thus, the associated change in $\theta_{r, x}$ is less than $\angle A O B=2 \alpha$.

FIG. 7. Distribution of types of globally optimal solutions according to Proposition 14 Note that the admissible values of ϕ_{x} and ϕ_{z} are restricted by inequality $\phi_{x}+\phi_{z} \leq \pi$.

$$
446
$$

and of type II if

$$
\begin{equation*}
\phi_{z}=\left|\arcsin \left(r_{0, z}\right)-\arcsin \left(o_{z}\right)\right|>\left[\frac{\pi}{2 \alpha}+2\right](\pi-2 \alpha) . \tag{27b}
\end{equation*}
$$

Note that this estimate can be further refined if com- ${ }^{48}$ bined with the upper bounds stated in Proposition 12. The statement of Proposition 14 is illustrated graphically in Fig. 7 which clearly shows that type I and type II solutions dominate in the opposite limits of tight and loose control restriction $u_{\max } \rightarrow 0$ and $u_{\max } \rightarrow \infty$, respectively. Neither type, however, completely suppresses the other one at any finite positive value of $u_{\max }$. This coexistence sets the origin for the generic structure of suboptimal solutions (traps), whose analysis will be the subject of next two sections.

IV. TRAPS IN TIME-OPTIMAL CONTROL

The globally time-optimal solution (hereafter denoted as $\tilde{u}^{\text {opt }}$) of the problem (2) can be supplemented by a number of trapping suboptimal solutions \tilde{u} (characterized by $\tilde{J}<\tilde{J}^{\text {opt }}$ and/or $\tilde{T}>\tilde{T}^{\text {opt }}$) that are, however, optimal with respect to any infinitesimal variation of $\tilde{u}(\tau)$ and T. In particular, Proposition (2) implies that each 6 locally optimal solution of type ${ }^{0}$ II gives rise to the infi${ }_{47}$ nite family of traps of the form shown in Fig. 33 In what

$$
450
$$

follows, we will call such traps "perfect loops". Proposition 1 indicates that perfect loops may exist at any value of $u_{\max }$. Nevertheless, their presence does not stipulate sufficient additional complications in finding the globally optimal solution by gradient search methods. Indeed, these "simple" traps can be identified at no cost by the presence of the continuous bang arc of the duration $\tilde{\Delta \tau_{i}} \geq \pi \sec (\alpha)$. Moreover, one can easily escape any such trap by inverting the sign of the control $u(\tau)$ at any continuous subsegment of this arc of duration $\pi \sec (\alpha)$ or by removing the respective time interval from the control policy.

For this reason, the primary objective of this section is to investigate the other, "less simple" types of traps which can be represented by type I and $\left.{ }^{s} \mathrm{II}\right|_{s>0}$ suboptimal extremals. Propositions $8,10,12$, and 13 show that the number of switchings n in such extremals is always bounded (at least by π / α). Thus, the maximal number of such traps is also finite and decreases with increasing $u_{\max }$. It will be convenient to loosely classify the traps into the "deadlock", "loop" and "topological" ones as follows. The first two kinds of traps are represented by type I extremals. The deadlock traps are defined by inequalities $\tilde{J}<\tilde{J}^{\text {opt }} \tilde{T}<\tilde{T}^{\text {opt }}$. They usually also satisfy the inequalities $n<n^{\mathrm{opt}}$. Their existence is mainly related to the fact that the distance to the destination point o for most extremals non-monotonically changes with time. The trajectory of the loop trap has the intersection with itself other than the perfect loop. These solutions require longer times $\tilde{T}>\tilde{T}^{\text {opt }}$ and typically also larger numbers of switchings $n>n^{\text {opt }}$ in order to reach the kinematic extremum $\tilde{J}=\tilde{J}^{\text {opt }}$. Finally, the topological traps are associated with extremals of the type distinct from the type of the globally optimal solution. Of course, real traps can combine the features of all these three kinds.

Examples of the deadlock and loop traps are shown in Fig 8. In this case the globally time optimal solution with $n^{\text {opt }}=4$ is accompanied by two deadlock traps and two degenerate loop traps corresponding to $n=5$ (only one is shown; the remaining solution can be obtained via subsequent reflections of the black trajectory relative to the $y z$ and $x y$-planes). At the same time, no traps exist for $n=1,3$ and $n>5$.

The bang-bang extremal represented by blue curve $r^{-} \rightarrow r^{\prime \prime} \rightarrow r^{+}$in Fig. 2a provides another example of the loop trap that is also the topological trap relative to type II optimal trajectory $r^{-} \rightarrow r^{+}$(the specific parameters used in this example are: $u_{\max }=\frac{1}{2}, r^{-}=r_{0} \propto\left\{0,1,-\frac{1}{2}\right\}$, $\left.r^{+}=o \propto\{0,1,1\}\right)$. In general, once the endpoints r^{-}and r^{+}satisfy the conditions of Proposition 1. the timeoptimal solution remains the same type II trajectory even in the limit $u_{\max } \rightarrow 0$, where the time optimal trajectories are mostly of type I (see Proposition 14 and Fig. 77). Moreover the traps of the shown form will exist for any value of $u_{\max }<\sqrt{4-\left(r_{z}^{-}+r_{z}^{+}\right)^{2}} /\left|r_{z}^{-}-r_{z}^{+}\right|$.
Another generic example of the traps of all three types can be straightforwardly constructed in the case $u_{\max } \gg 1$ (see Fig. 9) by selecting $o \propto\left\{1,0, u_{\max }\right\}$ and choosing the

FIG. 8. Globally optimal solution (blue line), deadlock traps (light-red and green lines) and loop trap (black line) for the time-optimal control problem (2), (3), (4) with $u_{\max }=\frac{1}{4}$, $r(0)=\left\{\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right\}$, (big emerald dot) and $o=\left\{\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}, 0\right\}$ (big black-yellow dot). Small dots indicate the positions of corner points. The parameters of extremals are listed in the table:

extremal	$\operatorname{sign}\left(\tilde{u}_{1}^{-}\right)$	n	$\Delta \tau_{1}$	$\tilde{\Delta} \tau$	$\Delta \tau_{n+1}$
red	+	0	0.23	-	-
green	-	2	0.88	1.52	0.88
blue	+	4	0.33	1.78	0.33
black	-	5	1.15	1.72	0.57

${ }_{518}$ Proposition 15. For any value of $u_{\max }$ there exist ini519 tial states ρ_{0} and observables \hat{O}, such that the time opti520 mal control problem (2), (3) has locally time-optimal so${ }_{521}$ lutions $\tilde{u}(\tau)$ representing non-simple traps.

V. TRAPS IN FIXED-TIME OPTIMAL CONTROL

Consider the problem (2), (3) where the control time ${ }_{525} T$ is fixed. Specifically, we will be interested in the case

$$
\begin{equation*}
T=\mathrm{const} \gg \frac{\pi^{2}}{\alpha} \tag{28}
\end{equation*}
$$

526 when the kinematically optimal solutions exist for any ${ }_{527}$ given ρ_{0} and \hat{O}. We again will exclude the class of perfect ${ }_{528}$ loop traps from the analysis for the same reasons as in 529 the previous section. Intuitively one can expect that the 530 probability of trapping in the local extrema (other than ${ }_{531}$ perfect loops) should be small at large T. However, it is

533

FIG. 9. The optimal solution (medium-thick trajectory $r_{0} \rightarrow r_{1} \rightarrow r_{2} \rightarrow o$), topological trap (thin trajectory $r_{0} \rightarrow r^{-} \rightarrow r^{+} \rightarrow o$) and deadlock trap (thick trajectory $r_{0} \rightarrow r^{\prime}$) for the time-optimal control problem (2), (3), (4) with $u_{\max }=8$, $r(0) \propto\left\{\frac{1}{2}, \frac{1}{2}, u_{\max }\right\}, o \propto\left\{1,0, u_{\max }\right\}$. The segments colored blue \backslash black \backslash red correspond to $u(\tau)=-u_{\max } \backslash 0 \backslash+u_{\text {max }}$ and are associated with rotations about the axes $\vec{n}_{-u_{\max }} \backslash \vec{\epsilon}_{x} \backslash \vec{n}_{-u_{\text {max }}}$. The durations $\Delta \tau_{i}$ of the consequent bang arcs are summarized in the table:

extremal	type	n	$\tilde{\Delta} \tau_{1}$	$\tilde{\Delta} \tau_{2}$	$\tilde{\Delta} \tau_{3}$
deadlock trap	I	0	0.020	-	-
optimal solution	I	2	0.0327	0.262	0.017
topological trap	II	2	0.075	0.031	0.324

not clear if there exists such value of T that the functional (2) will become completely free of such traps.

To answer this question, note that in line with the analysis given in Sec. II any trap should be represented by either type I or type II extremal. However, the maximal number of switchings is not limited by inequalities similar to Proposition 8. At the same time, Proposition 6 remains applicable (see Remark 1 in Appendix F). Recall that its proof is based on introduction of the "sliding" variations $\delta \gamma_{i}$ which shift the angular positions of the "images" of corner points on the diagram of Fig. 5 (see Appendix F). The explicit expression for the "sliding" variation around the i-th corner point up to the third order in the associated control time change $\delta \tau_{i}$ is given by eq. (F4). By definition, if the trajectory $\tilde{u}(\tau)$ is type I trap, then no admissible control variation δu can improve the performance index (2). Consider the subset Ω of such variations composed of infinitesimal sliding variations $\delta \gamma_{i}$ that preserve the total control time T. Then, the necessary condition of $\operatorname{trap} \tilde{u}(\tau)$ is absence of the non-uniform sliding variation $\delta u(\tau) \in \Omega$ that leaves the trajectory endpoint r_{n+1} intact. Indeed, the trajectory associated with varied control $\tilde{u}+\delta u$ would deliver the same value of the performance index but at the same time is not the locally optimal solution (since it is no longer the type I extremal) which implies that \tilde{u} is not locally optimal.

Using (F4) the stated necessary condition can be
rewritten as the requirement of definite signature of the ${ }_{613}$ quadratic form (F6), where the parameters q_{i} were in- ${ }_{61}$ troduced in Proposition (7). The necessary condition of the sign definiteness is that all (probably except one) parameters q_{i} are either non-positive or non-negative. Us- ${ }_{617}$ ing Fig. 5 one can see that in the case of long T only the second option can be realized with $\eta \simeq 0, \eta \simeq-\frac{\pi}{2}$ and $\eta \simeq-\frac{\pi}{3}$ (the case $\eta \simeq-\pi$ must be eliminated because it implies $u_{\max }=0$). One can show that the last two variants lead to saddle points rather that to the local extrema. The remaining case $\eta \simeq 0$ leaves the two options $\theta \simeq 0$ and $\theta \simeq 2 \pi$. The last option corresponds to positive constant ${ }^{6}$ $c_{i, 1}$ in 15, which indicates the possibility of increasing J via monotonic "stretching" the time: $T \rightarrow T+\delta T(T)$, $u(\tau) \rightarrow u(\tau-\delta T(\tau))$, where $\delta T(\tau)$ is an infinitesimal positive monotonically increasing function. At the same time, the associated parameters q_{i} are all negative, so there ex- ${ }_{62}$ ists the combination of variations $\delta \tau$ of arcs durations $\Delta \tau{ }^{63}$ which will result in achieving the same value of the performance index at shorter time. Thus, we can conclude that it is also possible to increase J at fixed time T via proper combination of these two variations, so the variant $\theta \simeq 2 \pi$ should be dismissed as a saddle point. Only the remaining choice $\theta \simeq 0$ is consistent with an arbitrary number of q_{i} of the same sign. However, in this case the length of each bang arc also reduces to zero. As result, the maximal duration of such optimal trajectories is limited by the inequality $T \lesssim \pi$.

This analysis leads us to remarkable conclusion:
Proposition 16. The fixed-time optimal control problem (2) is free of non-simple traps for sufficiently long control times T.

The spirit of this conclusion is in line with the results of numerical simulations performed in [19]. With this, ${ }_{645}$ it is worth recalling that the general time-fixed problem 64 may have a variety of perfect loop traps for any value of $u_{\max }$ and, thus, is not trap-free in the strict sense. These traps were missed in the simulations in [19] due to the specifics of numerical optimization procedure.

VI. SUMMARY AND CONCLUSION

All stationary points of the time optimal control problem and all saddles and local extrema of the fixed-time optimal control problem are represented by the piecewiseconstant controls of types I and II sketched in Fig. 1 (the associated characteristic trajectories $\rho(\tau)$ on the Bloch sphere are shown in Figs. 4 and 3, correspondingly). We systematically explored the anatomy of stationary points of each type. Specifically, we identified the locations and relative arrangements of corner points on the Bloch sphere (propositions 2, 3, 6, 7, 10, 11) and estimated their total number (propositions $8,9,10,12,13$. These characteristics, together with propositions 1, 4,5 and 14, allow to determine whether the given extremal is a saddle point or a locally optimal solution, and also to
predict the shape of globally optimal solution. The presented results (except Proposition 8) substantially generalize and refine the estimates obtained in previous studies [25, 26]. Moreover, this study, to our knowledge, is the first example of a systematic analytic exploration of the overall topology of the quantum landscape $J[u]$ in the presence of constraints on the control u and for the arbitrary initial quantum state ρ_{0} and observable \hat{O}. In particular, we distinguished 4 categories of traps tentatively called deadlock, topological, loop and perfect loop traps. The landscape can contain an infinite number of perfect loops whereas the number of traps of other types is always finite. Among them, the number of deadlock traps and loops decreases with increasing value of the constraint $u_{\max }$ in eq. (4). Nevertheless, we have shown by an explicit example that the traps of all categories can simultaneously complicate the landscape $J[u]$ of the time-optimal control problem regardless of the value of $u_{\text {max }}$. So, this is the case where the intuitive attempt to "extrapolate" the conclusions based on analysis of the case of unconstrained controls totally fails.

The fixed-time control problem is more intriguing. On one hand we formally showed that it is impossible to completely eliminate all the traps in this case by increasing the value of $u_{\max }$. This result is in line with generic experience concerning the optimal control in technical applications. However, if the control time is long enough 40 (specifically, if $T \gg \pi^{2} / \arctan u_{\max }$) the only traps which ${ }^{541}$ can survive are perfect loops. Remarkably, these traps ${ }^{642}$ can be easily avoided at virtually no computational cost.

Appendix A: Review of the Pontryagin maximum principle

In this appendix we briefly overview the concepts of the ${ }_{671}$ Pontryagin theory and outline the derivations of the key ${ }_{672}$ statements and relations of Sec.II. Consider the following ${ }_{673}$ canonical optimal control problem [10, 11]:

$$
\begin{gather*}
\frac{\partial}{\partial t} x_{i}=f_{i}(\mathbf{x}, \mathbf{u}, t) \quad(i=1, \ldots, n) \tag{A1a}\\
g_{j}\left(\mathbf{x}\left(t_{0}\right), \mathbf{x}(T), t_{0}, T\right)=0 \quad(j=1, \ldots, q<2 n+2) \tag{A1b}\\
\mathbf{u} \in \mathcal{U} \tag{A1c}\\
J \rightarrow \max \tag{A1~d}
\end{gather*}
$$

674 Here $\mathbf{x}=\left\{x_{1}, \ldots, x_{n}\right\}$ and $\mathbf{u}=\left\{u_{1}, \ldots, u_{m}\right\}$ are the vectors 675 of phase variables and the available controls, correspond676 ingly. The functions g_{j} introduce the boundary con677 straints on the admissible values of \mathbf{x} whereas eq. (A1c) 678 describes the control constrains, which are the general${ }_{679}$ ization of eq. (3). The most general (Bolza) form of the ${ }_{680}$ performance index J in A1d is

$$
\begin{equation*}
J=g_{0}\left(\mathbf{x}\left(t_{0}\right), \mathbf{x}(T), t_{0}, T\right)+\int_{t_{0}}^{T} f_{0}(\mathbf{x}, \mathbf{u}, t) d t \tag{A1e}
\end{equation*}
$$

${ }_{681}$ The task is to find the control policy $\tilde{u}(t)$ and, maybe, 682 the final time T together with the initial and terminal ${ }_{683}$ phase variables $\mathbf{x}\left(t_{0}\right)$ and $\mathbf{x}(T)$ which maximize J.
${ }_{684}$ Let us introduce the following auxiliary functions:

$$
\begin{align*}
& K=\sum_{i=0}^{N} \Psi_{i} f_{i} \tag{A2}\\
&- \text { Pontryagin function; } \tag{A3}\\
& G=\sum_{j=0}^{q} \nu_{j} g_{j}
\end{align*} \quad \text { - terminant }, ~ \$
$$

685 where $\nu_{0}, \Psi_{0}=$ const ≥ 0 and the $\Psi(t)$ stands for the set 686 of so-called costate (or adjoint) variables. By definition,

$$
\begin{align*}
\frac{\partial}{\partial t} x_{i} & =\frac{\partial K}{\partial \Psi_{i}} \quad(c f . \quad \text { A1a }) \tag{A4a}\\
\frac{\partial}{\partial t} \Psi_{i} & =-\frac{\partial K}{\partial x_{i}} \tag{A4b}
\end{align*}
$$

$$
\begin{equation*}
\tilde{\mathbf{u}}(t)=\arg \max _{\mathbf{u}(t) \in \mathcal{U}} K(\tilde{\mathbf{x}}(t), \tilde{\Psi}(t), \mathbf{u}(t), t) \tag{A5}
\end{equation*}
$$

696 Besides that, the following transversality conditions hold:

$$
\begin{align*}
\tilde{\Psi}_{i}\left(t_{0}\right) & =-\frac{\partial G}{\partial x_{i}\left(t_{0}\right)} ; & \tilde{\Psi}_{i}(T) & =\frac{\partial G}{\partial x_{i}(T)} \tag{A6}\\
\left.\tilde{K}\right|_{t=t_{0}} & =\frac{\partial G}{\partial t_{0}} ; & \left.\tilde{K}\right|_{t=T} & =-\frac{\partial G}{\partial T} \tag{A7}
\end{align*}
$$ 699 verse is not true since PMP provides only the first-order 700 necessary optimality condition. To identify the solutions, 101 the Legendre-Clebsch condition and its generalizations ${ }_{02}$ [32], or other higher-order extensions of PMP should be ${ }^{203}$ used 31 .

In the general case, the optimal controls $\tilde{u}_{k}(t)$ are the 705 piecewise-smooth curves composed of regular and singu706 lar (or degenerate) subarcs and having any number of 707 discontinuities of the first kind (corner points). The val708 ues of $\tilde{u}_{k}(t)$ on regular subarcs can be directly obtained 709 from A5 whereas the singular subarcs where $\frac{\partial \tilde{K}}{\partial u_{k}}=0$ re${ }_{710}$ quire an extra investigation. The following Weierstrass${ }_{11}$ Erdmann conditions must hold at each corner point:

$$
\begin{equation*}
\left.\Psi\right|_{t-0}=\left.\Psi\right|_{t+0} ;\left.\quad K\right|_{t-0}=\left.K\right|_{t+0} \tag{A8}
\end{equation*}
$$

712 Let us now outline the application of PMP to the quan713 tum optimal control problem (1)-(4). In this case, the 714 state vector $\mathbf{x}(t)$ is composed of matrix elements of the 715 density matrix $\rho(t)$ and the control $\mathbf{u}(t)$ reduces to a 716 scalar function $u(t)$. The performance index (2) is a 17 special case of A1d), where $f_{0}=0$ (a so-called Mayer 718 problem). Using the definition (A2), one straightfor726 erty (11). Finally, note that the Pontryagin function (6) ${ }^{227}$ does not explicitly depend on time t. Hence, eqs. (A4) ${ }^{728}$ imply the relation 10 since $\frac{d}{d t} \tilde{K}=\frac{\partial \tilde{K}}{\partial \rho} \frac{d \tilde{\rho}}{d t}+\frac{\partial \tilde{K}}{\partial \hat{O}} \frac{d \tilde{\hat{O}}}{d t}=0$.

Appendix B: Proof of Proposition 1

Here we consider the case $r_{y}^{-}>0, r_{y}^{+}>0$. The case $731 r_{y}^{-}<0, r_{y}^{+}<0$ can be treated similarly. Simple geomet732 rical analysis leads to the following expression for the ${ }_{733}$ travel time difference δT between bang-bang (orange)

734 and "equatorial" (black) trajectories shown in Fig. 2a:

$$
\begin{gather*}
\delta T_{\mathrm{a}}=\cos (\alpha)\left(\arcsin \left(\frac{\frac{\delta_{z}}{2} \sec (\alpha)-\cos (\alpha) r_{z}^{+}}{\sqrt{1-\sin ^{2}(\alpha) r_{z}^{+2}}}\right)+\right. \\
\arcsin \left(\frac{\cos (\alpha) r_{z}^{+}}{\sqrt{1-\sin ^{2}(\alpha) r_{z}^{+2}}}\right)-\arcsin \left(\frac{\cos (\alpha) r_{z}^{-}}{\sqrt{1-\sin ^{2}(\alpha) r_{z}^{-2}}}\right)+ \\
\left.\arcsin \left(\frac{\frac{\delta_{z}}{2} \sec (\alpha)+\cos (\alpha) r_{z}^{-}}{\sqrt{1-\sin ^{2}(\alpha) r_{z}^{-2}}}\right)\right)-\arcsin \left(r_{z}^{+}\right)+\arcsin \left(r_{z}^{-}\right), \tag{B1}
\end{gather*}
$$

${ }^{735}$ where $\delta_{z}=r_{z}^{+}-r_{z}^{-}$. Let us fix one of the endpoints $r^{ \pm}$and 76 ${ }_{736}$ vary the position of another one. Note that $\left.\delta T_{\mathrm{a}}\right|_{\delta_{z}=0}=0$ ${ }_{737}$ for any admissible value of $r_{z}^{ \pm}$. Furthermore,

$$
\begin{equation*}
\left.\left.\pm \frac{d \delta T_{\mathrm{a}}}{d r_{z}^{ \pm}}=\frac{\left(1-r_{z}^{ \pm}{ }^{2}\right)\left(\sqrt{1-\frac{r_{z}^{ \pm} \delta_{z}}{1-r_{z}^{ \pm 2}}}-\sqrt{1-\frac{r_{z}^{ \pm} \delta_{z}+\frac{\delta_{z}^{2}}{4} \sec ^{2} \alpha}{1-r_{z}^{ \pm}}}\right)}{\left(\csc ^{2} \alpha-r_{z}^{ \pm}\right.}\right) \sqrt{1-r_{z}^{ \pm} \delta_{z}-r_{z}^{ \pm}-\frac{\delta_{z}^{2}}{4} \sec ^{2} \alpha}\right) \tag{B2}
\end{equation*}
$$ ${ }^{741}$ assume that $r_{y}^{-}>0 r_{z}^{-}<r_{z}^{+}$(see Fig. 2b). The remain742 ing cases can be analyzed similarly. The time difference ${ }_{743} \delta T_{\mathrm{b}}$ between "equatorial" (black) and the green trajecto744 ries and its derivative with respect to the position of the 745 endpoint r_{z}^{+}read as

$$
\begin{equation*}
\delta T_{\mathrm{b}}=\arccos \left(r_{z}^{+}\right)-\cos (\alpha) \arccos \left(\frac{r_{z}^{+} \cos (\alpha)}{\sqrt{1-r_{z}^{+2} \sin ^{2}(\alpha)}}\right) \tag{B3}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial}{\partial r_{z}^{+}} \delta T_{\mathrm{b}}=-\frac{2 \sqrt{1-r_{z}^{+2}} \sin ^{2}(\alpha)}{r_{z}^{+{ }^{2}} \cos (2 \alpha)-r_{z}^{+2}+2} \tag{B4}
\end{equation*}
$$

Appendix C: Proof of Proposition 3

757 vector $r_{i}^{+}=\tilde{r}\left(\tilde{\tau}_{i}+\delta \tau^{+}\right)$obeys the equality: $r_{i, x}^{-}=r_{i, x}^{+}$. It is ${ }_{758}$ evident that the Bloch vector $r_{i, x}^{-}$can also reach $r_{i, x}^{+}$in ${ }_{59}$ the course of free evolution with $u=0$ after certain time ${ }_{760} \delta \tau^{0}$. If we require that $\delta \tau_{i}^{+},\left.\delta \tau_{i}^{0}\right|_{\delta \tau_{i}^{-} \rightarrow 0}=0$ then both τ_{i}^{+} 761 and τ_{i}^{0} are uniquely defined by $\delta \tau_{i}^{-}$,

$$
\begin{align*}
\delta \tau_{i}^{+} & =\frac{\delta \tau_{i}^{-}\left(\tilde{r}_{i, y}+2 \delta \tau_{i}^{-} \tilde{r}_{i, z}\right)}{\tilde{r}_{i, y}}+o\left(\delta \tau_{i}^{-2}\right) \\
\delta \tau_{i}^{0} & =\frac{2 \delta \tau_{i}^{-}\left(\delta \tau_{i}^{-}\left(\tilde{u}_{i}^{-} \tilde{r}_{i, x}+\tilde{r}_{i, z}\right)+\tilde{r}_{i, y}\right)}{\tilde{r}_{i, y}} \tag{C1}
\end{align*}
$$

762 and thus, $\delta \tau_{i}^{0}-\delta \tau^{+}-\delta \tau^{-}=2 \tilde{u}_{i}^{-}\left(\delta \tau_{i}^{-}\right)^{2} \tilde{r}_{i, x} / \tilde{r}_{i, y}$. The lat${ }^{6} 3$ ter quantity should be nonnegative for the locally timeoptimal solution which leads to eq. 22).

765 at least one interior bang segment $\tau \in\left[\tilde{\tau}_{i}, \tilde{\tau}_{i+1}\right]$ of length $\tilde{\Delta} \tau_{i}=m \pi \cos (\alpha) \quad\left(m \in \mathbb{N}, 0<\tilde{\tau}_{i}, \tilde{\tau}_{i+1}<T\right) . \quad$ Since $\quad \tilde{r}_{i}=\tilde{r}_{i+1}$ both the value of the performance index J and duration T will not change if this segment will be "translated" in arbitrary new point $\tilde{r}\left(\tau_{i}^{\prime}(\kappa)\right)$ of extremal via the following continuous variation $\tilde{u}(\tau) \rightarrow u(\kappa, \tau)$ $\left(-\tau_{i}<\kappa<T-m \pi \cos \alpha\right):$

$$
u(\kappa, \tau)= \begin{cases}\tilde{u}(\tau), & \tau<\tilde{\tau}_{i}+\frac{\kappa-|\kappa|}{2} \vee \tau>\tilde{\tau}_{i+1}+\frac{\kappa+|\kappa|}{2} ; \tag{D1}\\ \tilde{u}_{i}^{+}, & \tilde{\tau}_{i}+\kappa<\tau<\tilde{\tau}_{i+1}+\kappa \\ u\left(\tau-\Delta \tau_{i}\right) & \text { otherwise }\end{cases}
$$

${ }_{4}$ where $\tau^{\prime}(\kappa)=\tilde{\tau}_{i}+\kappa+\frac{1}{2}\left(1+\frac{\kappa}{|\kappa|}\right) \tilde{\Delta} \tau_{i}$.
775 Suppose that $\tilde{u}(\tau)$ is locally time-optimal solu776 tion. Then the entire family of control policies $\{u(\kappa, \tau), r(\kappa, \tau)\}$ should be locally time-optimal too. 778 Since $s>0$ it is always possible to select the value $\kappa=\kappa_{0}$ 79 such that $\tilde{r}\left(\tau^{\prime}\left(\kappa_{0}\right)\right)$ is interior point of the bang arc with ${ }_{\text {so }} \tilde{u}\left(\tau^{\prime}\left(\kappa_{0}\right)\right)=-\tilde{u}_{i}^{+}$and $\tilde{r}_{x}\left(\tau^{\prime}\left(\kappa_{0}\right)\right) \neq 0$. However, the result$7_{81}$ ing trajectory $r\left(\kappa_{0}, \tau\right)$ is both Λ - and V-shaped in the 782 neighborhood of point $r\left(\tilde{\tau}_{i}+\kappa_{0}\right)=r\left(\tilde{\tau}_{i+1}+\kappa_{0}\right)$. According to Proposition (3) such trajectory can not be timeoptimal. The obtained contradiction finishes the proof.

Appendix E: Proof of Proposition 5

FIG. 10. Projections of the characteristic pieces of the original, varied and reduced trajectories $\tilde{r}(\tau), r^{\prime}(\tau)$ and $r^{\prime \prime}(\tau)$ on the $x z$ plane (it is assumed that y-components of all shown parts of trajectories are greater than zero). The color associations are indicated in the inset.
$\mathcal{1}_{1}$ of the trajectory $r(\tau)$ with the segment $C_{1} A_{3}$.
${ }_{831}$ conclusion that the part of trajectory $r^{\prime}(\tau)$ between the ${ }_{832}$ points A_{0} and A_{5} is less time efficient than the corre833 sponding segment of $u^{\prime \prime}(\tau)$. Applying the same reasoning ${ }_{834}$ to the entire trajectory $r^{\prime}(\tau)$ we will reduce the original

$$
\begin{align*}
& \widehat{\delta \tau}\left(r_{x}^{-}, r_{z}^{\prime}\right)=\frac{1}{2} \sum_{s= \pm 1}\left(\arcsin \left(\frac{s r_{z}^{\prime}-r_{x}^{-} \cot (\alpha)}{\sqrt{1-r_{x}^{-2}}}\right)+\right. \\
&\left.\frac{\arcsin \left(\frac{r_{x}^{-} \csc (\alpha)-s r_{z}^{\prime} \cos (\alpha)}{\sqrt{1-r_{z}^{\prime 2} \sin ^{2}(\alpha)}}\right)}{\sqrt{\tan ^{2}(\alpha)+1}}\right) \tag{E1}
\end{align*}
$$

${ }_{355}$ By differentiating (E1) we find that $\frac{\partial}{\partial r_{x}^{-}} \widehat{\delta \tau}\left(r_{x}^{-}, r_{z}^{\prime}=0\right)=-\frac{x^{2} \sin (2 \alpha) \sqrt{1-x^{2} \csc ^{2}(\alpha)}}{\left(x^{2}-1\right)\left(\cos (2 \alpha)+2 x^{2}-1\right)}<0 \quad$ for any ${ }_{857}$ admissible $r_{x}^{-}>0$. Similarly, one can show that ${ }_{58} \widehat{\delta \tau}\left(r_{x}^{-}=0, r_{z}^{\prime}\right)=0$ and $r_{z}^{\prime} \frac{\partial}{\partial r_{z}^{\prime}} \widehat{\delta \tau}\left(r_{x}^{-}, r_{z}^{\prime}\right)<0$ for any ad${ }_{859}$ missible $r_{z}^{\prime} \neq 0$. Taken together, these relations lead to 860 conclusion that $\widehat{\delta \tau}\left(r_{x}^{-}, r_{z}^{\prime}\right)<0$ for any admissible $r_{x}^{-}>0$ 861 which completes the proof for the case $r_{y}^{\prime}>0, r_{x}^{-}>0$. ${ }_{62}$ Other cases can be analyzed in the same way.

Appendix F: Proof of Proposition 6 and 7

One can directly check that the transformation ${ }_{65} \mathcal{S}_{ \pm}=\exp \left(\Delta \tau \mathcal{L}\left(\pm u_{\text {max }}\right)\right)$ is equivalent to the composition 866 of rotation $\mathcal{S}_{\vec{\epsilon}_{z}}(\mp \xi)$ around axis $\vec{\epsilon}_{z}$ by angle $\mp \xi$ with rotation $\mathcal{S}_{\vec{n}_{ \pm u} \max }(\eta)$ around the normal vector $\vec{n}_{ \pm u_{\max }}$ to the plane $\lambda_{ \pm u_{\text {max }}}$ by η,

$$
\begin{equation*}
\mathcal{S}_{ \pm}=\mathcal{S}_{\vec{n}_{ \pm 1}}(\eta) \mathcal{S}_{\vec{\epsilon}_{z}}(\mp \xi) \quad(-\pi<\eta<0 ; \quad 0<\xi<\pi) \tag{F1}
\end{equation*}
$$

869 where the domain restrictions on the values of η and ξ 870 result from (19). Thus, the state transformation induced 871 by any two subsequent bang arcs is equivalent to rota${ }_{872}$ tion around $\vec{n}_{ \pm u_{\max }}$ by angle 2η. This proofs that the all ${ }_{873}$ odd (even) corner points are located in the same plane 874 orthogonal to $\vec{n}_{u_{1}^{-}}\left(\vec{n}_{u_{1}^{+}}\right)$and parallel to $\vec{\epsilon}_{z}$. More specif${ }_{875}$ ically, they are located on the circles $\vec{r} \vec{n}_{ \pm u_{\max }}=c_{0}$ which 876 are mirror images of each other in $x z$ plane.

$$
\begin{equation*}
\forall i, j: \frac{d \delta \gamma_{i}}{d \delta \tau_{i}}=\frac{d \delta \gamma_{j}}{d \delta \tau_{j}} \tag{F2}
\end{equation*}
$$

$$
\begin{equation*}
\frac{d \delta \gamma_{i}}{d \delta \tau_{i}}=\frac{2 \sqrt{\cos ^{2}\left(\frac{\theta}{2}\right)+u_{\max }^{2}}}{\frac{\tilde{r}_{i, x}}{\tilde{r}_{i, y}} \tilde{u}_{i}^{-} \sin \left(\frac{\theta}{2}\right)-\sqrt{1+u_{\max }^{2}} \cos \left(\frac{\theta}{2}\right)} \tag{F3}
\end{equation*}
$$

expression:

$$
\begin{equation*}
\delta \gamma_{i}=2 \cos \left(\frac{\xi}{2}\right) \delta \tau_{i}-\left|\frac{\sin ^{3}\left(\frac{\xi}{2}\right)}{u_{\max }}\right| q_{i} \delta \tau_{i}^{2}+q_{i}^{(3)} \delta \tau_{i}^{3}+o\left(\delta \tau_{i}^{3}\right), \tag{F4}
\end{equation*}
$$

914 where

$$
\begin{align*}
q_{i}^{(3)}= & \frac{1}{3} u_{\max }^{2} \cos \left(\frac{\xi}{2}\right)\left[2 \sec ^{2}\left(\frac{\eta}{2}\right)-3 q_{i}^{2} \tan ^{4}\left(\frac{\eta}{2}\right)-\right. \\
& \left.6 \cot \left(\gamma_{i}\right)\left(\tan \left(\frac{\eta}{2}\right)+\left(q_{i}+1\right) \tan ^{3}\left(\frac{\eta}{2}\right)\right)\right] \tag{F5}
\end{align*}
$$

915 The necessary condition of the local optimality is thus 916 the inequality $\sum_{i=1}^{n} q_{i} \delta \tau_{i}^{2} \geq 0$ in which the variations $\delta \tau_{i}$ ${ }_{17}$ are subject to constraint $\sum_{i=1}^{n} \delta \tau_{i}=0$. The power of slid${ }_{18}$ ing variation is in the fact that the quadratic form in the ${ }_{919}$ left-hand side of this inequality is diagonal (i.e. the con20 tributions of the sliding variations $\delta \gamma_{i}$ are independent ${ }_{21}$ up to the second order in $\delta \tau_{i}$). Thus, optimality implies 922 non-negativity of the following simple quadratic form:

$$
\begin{equation*}
Q_{k j}=\delta_{k j} q_{k}+q_{n} \quad(k, j=1, \ldots, n-1) \tag{F6}
\end{equation*}
$$

${ }_{923}$ which can be easily rewritten in the form of statement of ${ }_{24}$ Proposition 7.

Appendix G: Proof of Proposition 9

Let $q^{\prime}=q_{i^{\prime}}<0$ be the smallest term in the set $\left\{q_{i}\right\}$. By applying Proposition 7 to the corner points adjacent to ${ }_{28} i^{\prime}$-th we have: $q_{i^{\prime} \pm 1}+q_{i^{\prime}}<0$. These inequalities can be ${ }_{29}$ rewritten after some algebra as

$$
\begin{align*}
& \delta \gamma_{i^{\prime}}>-\frac{\eta}{2}-\arccos \left(\sqrt{\sin ^{2}\left(\frac{\eta}{2}\right)(\cos (\eta)+2)}\right) \\
& \delta \gamma_{i^{\prime}}<\frac{\eta}{2}+\cos ^{-1}\left(\sqrt{\sin ^{2}\left(\frac{\eta}{2}\right),(\cos (\eta)+2)}\right) \tag{G1}
\end{align*}
$$

${ }_{30}$ where $\delta \gamma_{i^{\prime}}=\left(\gamma_{i^{\prime}} \bmod \pi\right)-\frac{\pi}{2}\left(\left|\delta \gamma_{i^{\prime}}\right|<\frac{\pi+\eta}{2}\right)$. One can show 31 that at least one of the inequalities (G1) holds if ${ }_{32}|\eta|<\arccos (\sqrt{2}-1)$. From the definition of η it follows ${ }_{33}$ that the latter inequality holds for any $u_{\max }>\sqrt{1+\sqrt{2}}$. ${ }_{34}$ This means that for this range of controls the i^{\prime}-th ${ }_{935}$ corner point can be only either the left-most or the 936 right-most corner point of time-optimal extremal. Us${ }_{37}$ ing Fig. 5 one can accordingly improve the estimate for ${ }_{938} n_{\max }: n_{\max } \leq\left[\frac{|\eta|}{\pi-|\eta|}+2\right] \leq 2$ for $u_{\max }>\sqrt{1+\sqrt{2}}$ Q.E.D.

Appendix H: Proof of Proposition 10

Suppose that $\tilde{r}_{i^{\prime}}$ is interior corner point of the globally time-optimal solution. From 23 it follows that 42 $\tilde{r}_{i, x}=\frac{\left|\tilde{u}_{1}^{+}\right|}{\tilde{u}_{1}^{+}} \sin \left(\zeta_{i}\right) \sin \left(\frac{\xi}{2}\right) \propto c \sin \left(\zeta_{i}\right)$. where c is some real ${ }_{943}$ constant. Since $\left|\sin \left(\zeta_{i^{\prime}}\right)\right|<\sin \left(\frac{\pi+\eta}{2}\right)$ and $\left|\zeta_{i^{\prime}}-\zeta_{i^{\prime} \pm 1}\right|=\frac{\pi+\eta}{2}$ 944 the following inequality holds:

$$
\begin{equation*}
\frac{\tilde{r}_{i^{\prime}, x}-\tilde{r}_{i^{\prime} \pm 1, x}}{\tilde{r}_{i^{\prime}, x}}>0 \tag{H1}
\end{equation*}
$$

${ }_{945}$ Proposition 3 states that the trajectory curve in vicin- ity of $\tilde{r}_{i^{\prime}, x}$ should be Λ-shaped (V-shaped) in the case of $\tilde{r}_{i^{\prime}, x}<0\left(\tilde{r}_{i^{\prime}, x}>0\right)$, as shown in Fig. 11. Together with (H1) this means that both left and right adjacent arcs intersect the plane $x=\tilde{r}_{i^{\prime}, x}$ twice and have the second common point $\left\{\tilde{r}_{i^{\prime}, x},-\tilde{r}_{i^{\prime}, y}, \tilde{r}_{i^{\prime}, z}\right\}$. However, the globally time optimal trajectories can not have intersections with themselves. This contradiction proves the statement of Proposition. The associated maximal number of switch${ }_{954}$ ings can be directly counted using Fig. 5.

FIG. 11. Projection of the extremal on $x z$-plane in vicinity of the corner point $\tilde{r}_{i^{\prime}}$ in the case $\tilde{r}_{i^{\prime}, x}<0$. Orange dashed ellipse is the projection of intersection of the Bloch sphere with the planes $\lambda_{ \pm 1}$. Arrows indicates the admissible routes of passing the point $\tilde{r}_{i^{\prime}}$ according to Proposition 3 .

4 where $\phi=\frac{1}{\sin \left(\frac{\xi}{2}\right)}$. Eq. J1 can be rewritten as

$$
\begin{equation*}
n_{\mathrm{I}}=\frac{\int_{0}^{\phi}\left|\frac{\tilde{r}_{+, x}}{\sqrt{11 \phi^{2} \tilde{r}_{+, x}^{2}}}-\frac{\tilde{r}_{-x, x}}{\sqrt{1-\phi^{2} \tilde{r}_{-, x}^{2}}}\right| d \phi}{\int_{0}^{\phi}\left(\frac{u_{\max }}{1+u_{\max } \phi^{2}}\right) d \phi}+1 . \tag{J2}
\end{equation*}
$$

Appendix J: Proof of Proposition 12

Similarly to \tilde{r}^{+}and \tilde{r}^{-}, let us introduce the new notations $r_{ \pm}=\frac{\tilde{r}_{1}+\tilde{r}_{n}}{2} \pm \operatorname{sign}\left(\left|\tilde{r}_{1, x}\right|-\left|\tilde{r}_{n, x}\right|\right) \frac{\tilde{r}_{1}-\tilde{r}_{n}}{2}$ for the first and the last corner points \tilde{r}_{1} and \tilde{r}_{n} of trajectory $\tilde{r}(\tau)$, so that $\left|\tilde{r}_{+, x}\right| \geq\left|\tilde{r}_{-, x}\right|$. Using Fig. 5 we find that

$$
\begin{equation*}
n_{\mathrm{I}}=\left|\frac{\zeta_{+}-\zeta_{-}}{\pi+\eta}\right|+1=\left|\frac{\arcsin \left(\tilde{r}_{+, x} \phi\right)-\arcsin \left(\tilde{r}_{-, x} \phi\right)}{2 \arctan \left(u_{\max } \phi\right)}\right|+1 \tag{J1}
\end{equation*}
$$

\qquad 1005 1007 1008 100 1010 101 1012 1013

$$
977
$$

The integrands in the numerator and denominator of (J2) are monotonically increasing and decreasing functions of ϕ in the range of interest. Since $\sin \left(\frac{\xi}{2}\right) \geq\left|\tilde{r}_{+, x}\right|$ one obtains 8 the upper estimate $n_{\mathrm{I}} \leq n_{\mathrm{I}, \text { max }}$, where

$$
\begin{equation*}
n_{\mathrm{I}, \max }=\left.n\right|_{\phi=\frac{1}{\left|\tilde{r}_{+, x}\right|}}=\frac{\arccos \left(\frac{\tilde{r}_{-, x}}{\tilde{r}_{+, x}}\right)}{2 \arctan \left(\frac{u_{\max }}{\left|\tilde{r}_{+, x}\right|}\right)}+1 . \tag{J3}
\end{equation*}
$$

In order to make this result constructive, we will find the upper estimate for $n_{\mathrm{I}, \max }$ by replacing $\tilde{r}_{+, x}$ and $\tilde{r}_{-, x}$ in (J3) with their upper and lower estimates given in Proposition 11. $\left|\tilde{r}_{-, x}\right|<\left|\tilde{r}_{+, x}\right|<\left|\tilde{r}_{x}^{+}\right|$, and $0<\left|\tilde{r}_{-, x}\right|<\left|\tilde{r}_{x}^{-}\right|$. Elementary analysis shows that $n_{\mathrm{I}, \max }\left(\tilde{r}_{+, x}, \tilde{r}_{-, x}\right)$ is a monotonic function of $\tilde{r}_{-, x}$ and reaches a maximum when $\operatorname{sign}\left(\tilde{r}_{+, x}\right) \tilde{r}_{-, x}$ is minimal. At the same time, $n_{\mathrm{I}, \max }\left(\tilde{r}_{+, x}, \tilde{r}_{-, x}\right)$ is a concave function of $\tilde{r}_{+, x}$ when $\tilde{r}_{+, x} \tilde{r}_{-, x}<0$ and monotonically increasing function of $\left|\tilde{r}_{+, x}\right|$ in the range $\tilde{r}_{+, x} \tilde{r}_{-, x}>0$. Using these properties, we obtain inequality (25a) for the case $\tilde{r}_{x}^{+} \tilde{r}_{x}^{-}<0$ and the second of the estimates 25 b for the case $\tilde{r}_{x}^{+} \tilde{r}_{x}^{-}>0$.

Note that the latter estimate directly accounts for the location of only one trajectory endpoint and can be further refined. Namely, due to (24) the corner points in the case $\tilde{r}_{+, x} \tilde{r}_{-, x}>0$ are located in the range $\tilde{r}_{i, x} \in\left[0, \tilde{r}_{x}^{+}\right]$. Since the x-coordinates of the corner points are monotonic functions of the index i (see Proposition 10 and Fig. 5), the trajectory can be split into two continuous parts R_{1} and R_{2} such that all $n_{R_{1}}\left(n_{R_{2}}\right)$ corner points in the segment $R_{1}\left(R_{2}\right)$ belong to the range $\tilde{r}_{i, x} \in\left(\tilde{r}_{x}^{-}, \tilde{r}_{x}^{+}\right]\left(\tilde{r}_{i, x}=\left[0, \tilde{r}_{x}^{-}\right]\right)$, and their junction point \tilde{r}_{c} is chosen such that $\tilde{r}_{c, x}=\tilde{r}_{x}^{-}$. Using these range estimates and the extremal properties of function (J3) we obtain $n_{R_{1}} \leq \frac{\arccos \left(\frac{\tilde{r}_{x}^{-}}{\tilde{r}_{x}^{x}}\right)}{\left|2 \arctan \left(\frac{\tilde{u}_{x}^{x}}{\tilde{r}_{x}^{+}}\right)\right|}+1$. Let us show that $n_{R_{2}} \leq 3$ (which will prove the first estimate in 25 b). Indeed, 5 the duration $\tilde{\Delta} \tau_{R_{2}}$ of this segment can not exceed π (the maximal duration of the trajectory with $\tilde{u}(\tau)=0$ connecting \tilde{r}^{-}and \tilde{r}_{c}). At the same time, according to eq. (19) the minimal duration of each arc of the bang-bang trajectory is $\frac{\pi}{2} \cos \alpha$. Thus, the number of the interior bang segments of duration $\tilde{\Delta} \tau$ in the case $u_{\max } \leq 1$ can not exceed $[2 \sqrt{2}]=2$, i.e. $n_{R_{2}} \leq 3$ (the same restriction for the case $u_{\max }>1$ trivially follows from Proposition (8)). Hence, Proposition is completely proven.
[1] P. von den Hoff, S. Thallmair, M. Kowalewski, R. Siemer- 1016 ing, and R. de Vivie-Riedle, "Optimal Control Theory - 1017

Closing the Gap between Theory and Experiment," Phys. Chem. Chem. Phys. 14, 14460 (2012).
[2] P. De Fouquieres and S. G. Schirmer, "A Closer Look 1070 at Quantum Control Landscapes and Their Implication 1071 for Control Optimization," Infin. Dimens. Anal. Qu. 16, 1072 1350021 (2013).

1073
[3] A. N. Pechen and D. J. Tannor, "Are There Traps in 1074 Quantum Control Landscapes?," Phys. Rev. Lett. 106, 1075 120402 (2011).

1076
[4] H. A. Rabitz, M. M. Hsieh, and C. M. Rosenthal, "Quan- 1077 tum Optimally Controlled Transition Landscapes," Sci- 1078 ence 303, 1998 (2004).

1079
[5] R. Wu, A. Pechen, H. Rabitz, M. Hsieh, and B. Tsou, 1080 "Control Landscapes for Observable Preparation with 1081 Open Quantum Systems," J. Math. Phys. 49, 0221081082 (2008).
[6] A. Pechen, D. Prokhorenko, R. Wu, and H. Rabitz, "Con- 1084 trol Landscapes for Two-Level Open Quantum Systems," ${ }^{1085}$ J. Phys. A: Math. Gen. 41, 045205 (2008).
[7] K. W. Moore, A. Pechen, X.-J. Feng, J. Dominy, V. J. ${ }^{1087}$ Beltrani, and H. Rabitz, "Why Is Chemical Synthesis and 1088 Property Optimization Easier than Expected?" Phys. 1089 Chem. Chem. Phys. 13, 10048 (2011),.

1090
[8] C. Brif, R. Chakrabarti, and H. Rabitz, "Control of 1091 Quantum Phenomena: Past, Present, and Future," New 1092 J. Phys. 12, 075008 (2009).

1093
[9] T.-S. Ho and H. Rabitz, "Why Do Effective Quantum 1094 Controls Appear Easy to Find?," J. Photochemistry Pho- 1095 tobiology 180, 226 (2006).

1096
[10] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, 1097 and E. F. Mishchenko, The mathematical theory of opti- 1098 mal processes (John Wiley and Sons, New York, 1962). 1099
[11] A. A. Agrachev, and Y. Sachkov Control theory from the 1100 geometric viewpoint (Springer Berlin Heidelberg, 2004), 1101 Encyclopaedia of Mathematical Sciences, Vol. 87.

1102
[12] M. Lapert, Y. Zhang, M. Braun, S. J. Glaser, and D. ${ }_{103}$ Sugny, "Singular Extremals for the Time-Optimal Con- 1104 trol of Dissipative Spin 1/2 Particles," Phys. Rev. Lett. 1105 104, 083001 (2010).
13] K. D. Greve, D. Press, P. L. McMahon, and Y. Yamamoto, "Ultrafast Optical Control of Individual Quan- 1108 tum Dot Spin Qubits," Rep. Prog. Phys. 76, 0925011109 (2013).
[14] Y. Kodriano, I. Schwartz, E. Poem, Y. Benny, R. Pres- 1111 man, T. A. Truong, P. M. Petroff, and D. Gershoni, 1112 "Complete Control of a Matter Qubit Using a Single Pi- 1113 cosecond Laser Pulse," Phys. Rev. B 85, 241304 (2012). 1114
[15] F. Schäfer, I. Herrera, S. Cherukattil, C. Lovecchio, F. 1115 S. Cataliotti, F. Caruso, and A. Smerzi, "Experimental ${ }_{1116}$ Realization of Quantum Zeno Dynamics," Nature Com- 1117 munications 5, 3194 (2014).

1118
16] N. Malossi, M. G. Bason, M. Viteau, E. Arimondo, D. 1119 Ciampini, R. Mannella, and O. Morsch, "Quantum Driv- 1120 ing of a Two Level System: Quantum Speed Limit and 1121

Superadiabatic Protocols - an Experimental Investigation," J. Phys.: Conf. Ser. 442, 012062 (2013).
[17] S. N. Shevchenko, S. Ashhab, and F. Nori, "Landau-Zener-Stückelberg Interferometry," Phys. Rep. 492, 1 (2010).
[18] N. Khaneja, R. Brockett, and S. J. Glaser, "Time Optimal Control in Spin Systems," Phys. Rev. A 63, 032308 (2001).
[19] A. Pechen and N. Il'in, "Trap-free Manipulation in the Landau-Zener System," Phys. Rev. A 86, 052117 (2012).
[20] A. N. Pechen and N. B. Ilin, "Existence of Traps in the Problem of Maximizing Quantum Observable Averages for a Qubit at Short Times," Proc. Steklov Inst. Math. 289, 213 (2015).
[21] V. Jurdjevic and H. J. Sussmann, "Control Systems on Lie Groups" J. Differ. Equ. Appl. 12, 313 (1972).
[22] D. DAlessandro, "Topological Properties of Reachable Sets and the Control of Quantum Bits," Syst. Control Lett. 41, 213 (2000).
[23] R. B. Wu, C. W. Li, and Y. Z. Wang, "Explicitly Solvable Extremals of Time Optimal Control for 2-Level Quantum Systems," Phys. Lett. A 295, 20 (2002).
[24] U. Boscain and Y. Chitour, "Time-Optimal Synthesis for Left-Invariant Control Systems on $S O(3)$," SIAM J. Control 44, 111 (2005).
[25] G. C. Hegerfeldt, "Driving at the Quantum Speed Limit: Optimal Control of a Two-Level System," Phys. Rev. Lett. 111, 260501 (2013).
[26] U. Boscain and P. Mason, "Time Minimal Trajectories for a Spin 1/2 Particle in a Magnetic Field," J. Math. Phys. 47, 062101 (2006).
[27] A. A. Agrachev and R. V. Gamkrelidze, "Symplectic Geometry for Optimal Control," in Nonlinear Controllability and Optimal Control, edited by H. J. Sussmann (Taylor \& Francis, 1990) Chapman \& Hall/CRC Pure and Applied Mathematics, Vol. 133.
[28] A. Agrachev and R. Gamkrelidze, "Symplectic methods for optimization and control," in Geometry of Feedback and Optimal Control, edited by B. Jakubczyk and W. Respondek (Marcel Dekker, New York, 1998), Pure And Applied Mathematics, Vol. 207, p. 19.
[29] U. Boscain and B. Piccoli Optimal Synthesis for Control Systems on 2-D Manifolds, (Springer, 2004), Mathématiques et Applications, Vol. 43.
[30] B. Goh, "Necessary Conditions for Singular Extremals Involving Multiple Control Variables," SIAM J. Control 4, 716 (1966).
[31] A. A. Milyutin and N. P. Osmolovskii, Calculus of Variations and Optimal Control (American Mathematical Society, Providence, 1998).
[32] A. J. Krener, "The High Order Maximal Principle and Its Application to Singular Extremals," SIAM J. Control 15, 256 (1977).

[^0]: * dm.zhdanov@gmail.com
 \dagger t-seideman@northwestern.edu

