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1 Role of control constraints in quantum optimal control

2 Dmitry V. Zhdanoy| and Tamar Seidemar(]
3 Department of Chemistry, Northwestern University, Fvanston, IL 60208 USA

The problems of optimizing the value of an arbitrary observable of the two-level system at both
a fixed time and the shortest possible time is theoretically explored. Complete identification and
classification along with comprehensive analysis of globally optimal control policies and traps (i.e.
policies which are locally but not globally optimal) is presented. The central question addressed
is whether the control landscape remains trap-free if control constraints of the inequality type are
imposed. The answer is astonishingly controversial: Although the traps are proven to always exist
in this case, in practice they become trivially escapable once the control time is fixed and chosen

long enough.

4 PACS numbers:

5 I. INTRODUCTION

s  Within the optimal control paradigm, efficient con-
7 trol of quantum dynamics is based on determination of
s the global maximum of the multidimensional “control
o landscape” with respect to the shapes of driving laser
o pulses or external magnetic fields. In the laboratory, the
1 search usually involves sophisticated genetic algorithms
2 [I]. This is a time-consuming procedure but it guaran-
tees that the optimization will neither get “trapped” in
» the landscape’s sub-optimal local extrema nor faltered in
the vicinity of a saddle point. The existence of “traps”
s is known both experimentally and theoretically [IH3]. At
» the same time, there are strong arguments that a large
s variety of control problems may be treated as trap-free
o from the practical perspective [4H9]. These arguments,
o however, assume the set of controls to be an open mani-
1 fold. In practice, this is not the case: The magnitudes of
applied fields are constrained by a number of competing
s strong-field processes (ionization, dissociation) and to a
lesser extent by technical limitations. The overall effect
s of these constraints on the landscape topology is an open
question. They are known, however, to dramatically in-
fluence the forms of the time-optimal controls (see e.g.
[I0HI2]), which are highly relevant for quantum informa-
o tion applications.

o In this paper we study in detail the constrained control
landscape of the two-level Landau-Zener system repre-
senting the probably most fundamental model of a con-
trolled qubit with a single control parameter, denoted
below u. The corresponding master equation reads as

p(T)=Ur,0(u) p(0)U o (w), (1)

with the unitary transformation U,~ ./ (u) defined as
UT,,’T,(u):eﬁ(—i ::T,(&I-F’LL(T)&z)dT). Here p is the

system’s density matrix, o, and o, are Pauli matrices, 7
s is a dimensionless time T=at, and the control parameter
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is usually proportional to the interaction strength with
an external controlled electric or magnetic field (u=3€ or
u=0£8B). Depending on the physical meaning of the scal-
ing factors a and (3, Eq. can represent the wide va-
riety of modern experiments, including magnetic and\or
optical control of quantum dots [I3], vacancy centers in
crystals [I4], spin states of atoms and molecules [12],
Bose-Einstein condensates [15, [16] and superconducting
circuits [17].
We consider the following optimal control problem:

J="Tr[p(T)0]— max; (2)
_umaXSUSUmax; (3)
T<Tmas, (4)

(

where maximization is with respect to the program (or
control policy) @(7), and possibly also the final time T'.
In the context of qubit design, for instance, the perfor-
mance index with O=[1) (1] can represent the task
of initial preparation of the qubit in a given initial pure
state |1). Provided that the initial state of the system
is |0) ((0|1)=0), the optimal policy will effectively repre-
sent the realization of the SWAP quantum gate (up to
undefined diagonal phase shifts). In this case, the bound
is motivated by the unrecoverable losses of operation
fidelity due to uncontrollable decoherence at long times.

The key question of our study is the extent to which the
restrictions , complicate finding the policy a°P*(7)
that maximizes the functional Ju(t)] (representing the
system’s control landscape) using local search methods.
The Landau-Zener system is special from this perspec-
tive since it is the only system for which the absence of
traps in the unconstrained case (i.e. when umax=00 in
(3)) was formally proven [I8-20]. Moreover, its complete
controllability for any finite value of up,ax (provided that
Tinax is chosen sufficiently long) was also justified [21-
23]. Thus, this system provides opportunity to evaluate
the effect of constraints and on the landscape
complexity in the most pristine form. The existing data
portend that this effect should be nontrivial. For ex-
ample, the unconstrained time-optimal policies @(7) are
shown to be a(7)=c'§(7)+"§(7—T) where ¢’ and ¢’ are
constants and 6(7) is the Dirac delta function [25]. Such
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solutions are evidently inconsistent with any constraints
of the form .

An additional feature of the Landau-Zener system is
its simplicity, which allows us to analytically infer the
topology of J[u]. At the same time, this system consti-
tutes an elementary building block for describing the dy-
namics of a variety of important quantum systems, from
NMR controlled spin chains to laser-driven excitations
in atoms, molecules and quantum dots. These features
make the Landau-Zener system a lovely model whose an-
alytical beauty could help to understand the fundamental
controllability and regularity properties of generic quan-
tum control.

It is worth noting that the restrictions are critical
in the foundation of modern theory of optimal control
since the corresponding problems can not be solved in the
framework of classical calculus of variations and require
special methods, such as the Pontryagin’s maximum prin-
ciple (PMP) [10, II]. For completeness of the presenta-
tion, we provide in Sec.[[Tand Appendix[A]a brief review
of PMP and the known results of first-order analysis of
the controlled Landau-Zener system in the PMP frame-
work. In particular, we clarify why the unconstrained
problem is trap-free, and introduce the primary clas-
sification of the stationary points (i.e. the locally and
globally optimal solutions, traps and saddle points) by
showing that, in the case of time-optimal control, all of
them, and likewise traps and saddle points in the case of
fixed time control, are represented by piecewise-constant
controls 4(7) that can take only 3 values: 0 and tumax.

The rest of the paper is organized as follows. In Sec.[II]]
we derive a comprehensive set of criteria that allow to
outline the landscape profile and distinguish among its
various types of stationary points. The obtained criteria
substantially extend, generalize or specialize a number of
known results [24H27] obtained for related problems using
the index theory [28] or methods of optimal syntheses on
2-D manifolds [29]. In this work we propose the technique
of “sliding” variations, which allows to reduce the high-
order analysis to methodologically simple and intuitively
appealing geometrical arguments.

In sections [[V]and [V]we apply these criteria to identify
and classify the traps and saddle points for the cases
of time-optimal and time-fixed control, respectively. A
brief summary of the obtained results and the general

conclusions that follow from this analysis are given in
the final section [V1l

We recommend readers who are interested primarily
in physical rather than formal mathematical content of
the paper to skip directly to concluding section [VI] after
reviewing Section[[] and Appendix[A] and then, if neces-
sary, refer to sections [[TIHV] for details. For convenience,
the key results of the these sections are compactly for-
mulated in the form of 16 propositions whose proofs are
deferred to Appendices [BHJ}

II. REGULAR AND SINGULAR OPTIMAL

POLICIES

132
133

1 In this section, we review the first-order analysis of
135 problem with constraint in the PMP framework.
136 For completeness, we sketch in more detail the basics of
w7 the Pontryagin theory and outline the derivations of key
138 statements and relations of this section in Appendix [A]
139 For further details, we refer interested readers to the ex-
1o tensive literature on this topic, e.g. [T1], pp.280-286, [24].
11 PMP provides the necessary criterion of local optimality
12 of control u(7) in terms of the Hamilton-type Pontryagin

13 function K (p(7), O(T)u u(7)),

Q>t

(1), u(T))- ()

()= sug maxc K (7).

1us Here the matrix elements of the operator O represent
1s the set of so-called costate (or adjoint) variables (see Ap-
1s pendix . The processes satisfying the PMP are called
wr stationary points, or extremals, and will be denoted by

148 - {ﬂ(T), ,5(7')7 O(T)}

ue  The explicit form of the Pontryagin function of the
150 control problem , is

K (p(r), O(r), u(r))==i Tt {[p(r), O(r)] (0 +u(r)3:.) }
(6)

151 the evolution equation for O(7) coincides with @,
O(")=Uyr 7 (w)O(T UL, (w),

12 and the boundary conditions read as

K(T){zg

153 Since the Pontryagin function @ depends linearly on
15« u(7), the PMP can be satisfied in two ways:

O(T)=0;

if T' is unconstrained;
in the case (4)).

155 1) The switching function
wo g K=—iTr {[p(T), O(T)]&Z} £0, and

157 ﬁ(T):umaxsign(auL(T) K). The corresponding section
of the trajectory is called regular. In this case
the optimal policy a(r) is actively constrained, so
that relaxing the constraints (3) will improve the
optimization result. For this reason, the optimal
trajectory containing the regular sections can not

be kinematically optimal. An optimal process

158
159
160
161
162

163

w  {p(1),0(r),a(r)} for which @(7)=+ tmayx everywhere
except for a finite number of time moments is often

referred to as bang-bang control.

165

166

2) It may happen that the switching function remains
equal to zero over a finite interval of time. The corre-
sponding segment of the trajectory is called singular,

167

168

169
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and the associated optimal control can be determined
only from higher-order optimality criteria, such as the
generalized Legendre-Clebsch conditions or Goh con-
dition [ITI, 30} [31].

Substituting and @ into @, one can directly check
that the Pontryagin function for problem is constant
along any extremal,

V7 : K(7)=K>0 on each extremal, (10)

where the strict inequality holds only if the constraint
is active, and

V7 : K(1)=0 for any kinematically optimal solution.

(11)

A. Singular extremals of the problem

Every kinematically optimal solution @%(7) consist of a
single singular subarc. Here we show that in the case of
the Landau-Zener system the converse is also true: every
singular extremal @(7) corresponding to an inactive con-
straint delivers the global kinematic extremum (max-
imum or minimum) to the problem . Indeed, let 7 be
an arbitrary internal point of the singular trajectory. The
PMP states that

B) _ ) N R
MT)K<r>=—m{[pm),o<ﬁ>]U¢,ﬁ<u>azUT,n<u)%;o

for any 7 such that |7 — 71|<e for a sufficiently small e.
In particular,

iy {[p(ﬁ ), O(Tl)]&z} —0.

The two subsequent time derivatives of the equality
at T=m give

(13a)

~iTr {[p(r1), O(m1)]&, | =0;
—ia(r) Tr {[p(ﬁ), O(ﬁ)m} —0.

Equations can be simultaneously satisfied only in
two cases:

[o(7), O(7)]=0; (14a)
[p(7),O(7)]|=iké, and u(r)=0 (k=-const£0). (14b)

The condition is nothing but the criterion of the
global kinematic extremum (maximum or minimum) for
our two-level system. In other words, we showed that all
the extrema of the landscape J(u) for the unconstrained
Landau-Zener system except for the case of u(t)=0 are
its global kinematic maxima and minima. This result
was obtained in [I8], [19].

The condition indicates that the only possible ev-
erywhere singular non-kinematic extremal of the problem
@) is a(7)=0 (7€[0,T]). Eq. (6) implies that K(7)=k in
this case. Thus, in view of (9)), this extremal can appear
only when the constraint (4 is active.

(13b)

(13c)
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B. Regular and mixed extremals of the problem ((1))

According to the PMP and conditions , the generic
non-singular extremal is the piecewise-constant function
with n switchings of either bang (u=zumax) or bang-
singular (u==Umayx,0) type, where the singular arcs
match . For brevity, we will refer to extremals with
(without) singular arcs as of type II (type I). We will
use the subscript ¢ (i.e. 7;, p; etc., 0<i<n+1) for the pa-
rameters related to the i-th control discontinuity (corner
point). The durations of the right (left) adjacent arcs and
the associated values of u will be labeled At; (A~Ti_1) and
@ (@] ). The subscripts i=0 and i=n+1 will be reserved
for the parameters of the trajectory endpoints. We will
also sometimes use the notations °I and °II with index s
denoting the number of times the control changes sign.

Let us first address the properties of type I extremals.
The necessary condition of the i-th corner point is given

by eq. (13a). Combining it with we get

—i[p(7:), O(Fi)|=ci160+Ci26y, cin,ciz €R, (15)
where ¢;1=0(>0) when the constraint is inac-
tive(active) and the case ¢; 1 <0 can result from optimiza-
tion with a fixed T'. Consider the adjacent (i+1)-th bang

arc. The PMP criterion for its interior reads as

12(7 )|T>7~'i— argmax Tr [L 7 (Ci,laz Ci,20Ay)L7— %I.OAZ]U7
u v
(16)

which gives @} =12 up ... If the (i+1)-th arc ends with

t 7 eie]

another corner point 7;41, then it follows from that

Te[Us,, 7 (i1 00tcindy Uz | 2,6:]=0. (17)
Condition can be reduced to
ci,gy/ufnax+1:—ci71ﬂj tan(A}i u2 1) (18)

and resolved relative to A7;+1. Retaining the physically
appropriate solutions consistent with eq. we obtain:

~ (5~’T1 ci1<0;
ATii1= ’ ~ ’ ' 19

Tit {71 cos(a)—oT1;, ¢;1>0, (19)
where a= arctan(umax) and

o C2,i
0T;=arctan ( :

sec(a)) cos(a).  (20)

C1,iUmax

Note that —i[ﬁ(’ﬁ+1), O(’T‘i+1)]2017i6z—ci’26y7 i.e.

C1,i+1=C1,i, C€2i4+1=—C2- (21)

Since egs. (19) and (20) do not depend on the sign
of ¢;2, one obtains that the durations of all inte-

rior bang segments are equal: Vi>1,i<n : Ar;=Ar
(see Fig. ) Moreover, eq. admits the estimate
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0 cee
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AT 0 2 0 ATQ Z 0

FIG. 1. Possible types of extremals u(t) associated with non-
kinematic optimal solutions and traps along with the locally
time-optimal kinematic optimal solutions.

us

5 cosa<AT<mcosa for the case of time-optimal prob-
lem with constraint .

Consider now the extremals of type II. Let 7€(7j_1,7;)
be the singular arc where the relations hold. If
T #T when the time instant 7=7; corresponds to the cor-
ner point between regular and singular arc. Suppose that
there exists another corner point at 7=7;;>7;. Then it

follows from egs. and that A7j=7cosa
and ;Hh;j:—f, so that p(7j+1)=p(7;). Using similar
arguments, it is straightforward to derive the analogous
result for possible corner points prior to 7;. Thus, taking
any 3-segment “anzatz” extremal similar to that shown in
Fig. , one can construct an infinite family F1¥ (a(7)) of
11 extremals (k=ky, k2) by randomly inserting k; and
ko bang segments of length 7 cosa with u=+um.x and
U=—Umax iDtO corner points of &(7) or inside its singular
arcs. It is clear that each family FI(@(7)) constitutes
the connected set of solutions, and all the members have
equal performances J. Thus, the properties of any type
IT extremal can be reduced to the analysis of the equiv-
alent three-segment °II type or 'II type extremal, where
all the positive and negative bang segments are merged
into distinct continuous arcs separated by a singular arc.

The presented first-order analysis outlines the admis-
sible profiles for optimal non-kinematic solutions (see
Fig. . Moreover, by continuity argument (i.e. by con-
sidering the series of solutions with fixed T'—T,p from
below), these profiles should embrace all possible types of
the stationary points of the time-optimal problem ,.
It is worth stressing that the latter include the globally
optimal and everywhere singular kinematic solutions for
which both segments with u= &+ uy.x and u=0 are sin-
gular. With this in mind, it is helpful to introduce the
following terminological convention for the rest of the pa-
per in order to avoid potential confusions: we will reserve
the term “singular” exclusively for segments of extremals
at which u=0 whereas segments with u= 4 umax will be
always referred to as “bang” ones.

The reviewed results have several serious limitations.
First, they do not allow to distinguish the globally time-
optimal solution from a trap or a saddle point. Second,
they do not provide a priori knowledge of the characteris-
tic structural features of these stationary points (e.g. the
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FIG. 2. (a) The case r, 7 >0: The equatorial singular arc
r~—r7 (thick black line) is more time-effective than the bang-
bang extremal »~—r’'—r* (thick orange line). The extremal
r~—r”—r* (thin blue curve) represents a local extremum
(trap). (b) The case r, 7 <0: The equatorial singular arc
r~—rT (thick orange line) is suboptimal relative to the bang-
singular extremal 7~ —r’'—r" (thin black line).

expected type, number of switchings etc.) which is nec-
essary to determine the topology of the landscape J[u].
These tasks require higher-order analysis, which is the
subject of the next section.

III. DETAILED CHARACTERIZATION OF THE

STATIONARY POINTS

In this section we will extensively use geometrical argu-
ments in our reasoning. To make the presentation more
visual, it is useful to expand the states and observables
in the basis of Pauli matrices and identity matrix I:
p=31+ Dicay. "0, O=3 Tr[O]1+ D iay-0i0i. The
dynamics induced by eq. corresponds to rotation of
the 3-dimensional Bloch vector 7 = {r,,ry,r.} about the
axis 7i,oc{1,0,u} (note that the angle between 74y, .y
and 7y is equal to «, see e.g. Fig.[2)), and the optimiza-
tion goal is equivalent to the requirement to arrange
the state vector 7 in parallel to 6. In what follows we will
often refer to the quantum states p as the endpoints r of
vectors 7. Hereafter we will also assume that both r and
o are renormalized such that |r|=|o|=1.

We start by taking a closer look at type II extremals
and their singular arc(s) where @(7)=0. According to cri-
terion , these arcs are always located at the equato-
rial plane z=0. The following proposition indicates that
such arcs may represent the time-optimal solution at any
values of umax (see Appendix [B|for proof):

Proposition 1. The shortest type Il singular trajectory
connecting any two “equatorial” points F*:{O,ry*,r;}
and 7H={0,r},r}} (see Fig. @)
ally) time-optimal solution if Ty
and a saddle point otherwise.

will represent the (glob-
Ty+>0, (rj—r;)r;>0

Since all *II extremals can be reduced to the effective
3-segment, anzatz shown in Fig. (see the end of the
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previous section), Proposition has the evident corollary:

Proposition 2. All singular arcs of the locally optimal
type II extremals are located in the same semi-space y>0
or y<0, and their total duration can not exceed /2.

For further analysis we need the following generic nec-
essary condition for time optimality:

Proposition 3. If the type I extremal {u(7),7(7)} is
locally time-optimal then each of its corner points 7; sat-
isfies the inequality

Uy T4,274,y>0. (22)

Qualitatively, Proposition [3]states that the projections
of optimal trajectories on the zz-plane are always ”V”-
shaped at the corner points 7; with 7; ;>0 and ”"A”-
shaped otherwise (here we assume that the x-axis is ori-
ented vertically, like in Fig. [2)).

This result allows us to substantially narrow down the
range of type II candidate trajectories:

Proposition 4. Any type *II extremal with s>0 contain-
ing an interior bang arc is a saddle point for time-optimal
control.

In other words, all type °II|s~¢ locally time-optimal
solutions reduce to the three-segment anzatz shown
in Fig. [[b, where two regular arcs of duration
ATy, ATo<msec a “wrap” the singular section where u=0.
Accordingly, the number of control switchings is bounded
by ni<2.

The properties of °II type extremals are richer:

Proposition 5. Suppose that the °II type extremal i(T)
is the member of family F!(a2*(7)), and its anzatz
w2 (1) includes opening and closing bang segments of
durations Ato>0 and Ary>0. Then (1) is locally opti-

mal if u*™*(7) is locally optimal.

(for proof see Appendix .

FIG. 4. Illustration of the statement of Proposition [6]
The thick colored curve depicts the band-bang extremal.
Its red and blue segments correspond to u=-+umax and
All interior corner points (red and blue balls)
lie on two circles (associated with switchings umax——umax
and —Umax—Umax, respectively) whose planes Ai1 intersect
along the z-axis.

U=—Umax-

The analysis of type I extremals is somewhat more
s complicated. We begin by determining the loci of corner
w9 points 7; on the Bloch sphere. Denote as 0=2AT sec «
30 the rotation angles on the Bloch sphere associated with
31 the inner bang sections of the type I extremals. Note
32 that it follows from , that 7<6<27 in the case
of a time-optimal control problem.

347

353

s Proposition 6. All the corner points 7; of any locally
s optimal type I solution () of the problem , are
located on the circular intersections of the Bloch sphere
with the two planes Ay1 (see Fig. ,

3!

o

356

357

£, cos(r)}.

7i={sign(a;) sin(v;) sin(g)7 —sin(vy;) cos(2
(23)

s Here {=—2arctan (“182x tan(%) cos(a)) is the dihedral

angle between the planes Ai1, and v;41=71+1in, where
in(2
n=—2 arctan< sin(g) >

u%nax+ cos? ( E)

359

360

s Proposition 7. Denote g;=q(v;)= cot*(v;)— cot*(Z)
s2 (i=1,...,n). The set{q;} associated with any locally time-
se3 optimal extremal 4(t) contains at most one negative entry

w ¢/, and |q|=min(|{g;}).

s The proofs of the above two propositions are given in
s Appendix E

To use Proposition [7] it is convenient to introduce
w0 parameters (; through, Clzfyl—&—%(l—sign(uf)), Civ1
w0 C1+i(m+n). Tt is evident that ¢(v;)=¢({;). The relation
an between the sign of ¢; and the index ¢ of the corner point
s can be illustrated by associating each ¢; with the point on
a3 the unit circle whose position is specified by (;, as shown
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FIG. 5. Signs of the parameters ¢(¢) as function of ¢. Black
dots indicate the values (=(; associated with i-th corner
point.

in Fig. One can see that the maximal number 7.
of sequential parameters ¢; having at most one negative

7T+IVII +1<£ i e.,
)

term can not exceed

Proposition 8. Type I locally optimal extremals can
have at most Z. switchings.

This helpful upper bound was first obtained by Agrachev
and Gamkrelidze [27]. As shown in Appendix [G] we can
further refine this result via more detailed inspection of
the criterion |¢'|=min(|{g;}|) as follows:

Proposition 9. 71 max<2 if Umax>V 1+V2

s8¢ (The latter roughly corresponds to a>1).

s The analysis in this section so far is equally valid for
ss both global and local extrema of optimal control. It is
clear that any globally time-optimal type II solution in-
cludes at most 2 corner points that separate the cen-
tral singular section from the outside regular arcs (see
Fig. ) The case of type I solutions is not as evident.
The following propositions impose more stringent neces-
sary criteria on the globally time-optimal extremals (see
Appendices [H| and [I] for proofs).
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Proposition 10. Any corner point 7y such that q(7;)<0
must be either the first or the last corner point of the
globally time optimal solution, so that the total number
of switchings ny max <55 +1.

394
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397

Proposition 11. The corner points 7; of any globally
optimal solution of type I satisfy the inequality

398
399

min(O, 7:072, fn+1,w)<7:i,m< max(O, 7:072, 7:”4_1@)7 (24)

w0 where T 4 and Tr41,4 are the trajectory endpoints.

Proposition [11] can be used to establish the following,
more accurate, upper bound on the number of switchings
(see Appendix |J| for proof).
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Proposition 12. The number of corner points of the
globally time-optimal type I solution @(7) is bounded by

aws the following inequalities:

arccos j) - P—
ma: , +1 if 77 <0; 25a
" | I2arctan (2] 2arctan (2mex)] xla (252)
nr< _
arccos(;—i) . .
i : 3, 1 if 70, 25b
i |2 arctan(“’infx)|+ |4 arctan(max )| + SERE (25b)
T T
[
where 7+ and T~ are mew notations for the trajectory we imum of J is bounded by the inequalities
endpoints To and Tpy1, such that |7} |>|F].
| arcsin(r ) — arcsin(oy )|
> : —1; (26a)
2 arctan (tmax)
| arcsin(rg, ,)— arcsin(o,)|
Denote ¢e= |0y c—0o¢| (6 = x,2), where 6, is the Z 2arcCot (tma) —L (26b)

angle between the axes € and 7. One can geometrically
show that the maximum possible change Aemax in 0,¢
generated by rotation about any of the axes niumax is
A0 =2a and A0 =1—2a (see Fig. |6). This result
allows us to establish the following lower bounds on the
number of corner points:

Proposition 13. The minimum number of corner points
in locally time-optimal solutions reaching the global max-

o0 It is worth stressing that the bound is valid only
a1 for type I solutions.
w22 Combination of the upper bounds on n imposed by
23 Propositions {| and [10| with inequalities leads to the
s following conclusion:

w5 Proposition 14. The globally time-optimal solution(s)
w6 of problem is of type I if

= |arcsin(rg ;) — arcsin(o, )| >4 (27a)
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FIG. 6. Geometrical calculation of the value of A#72*. Ro-
tation Sz, about vector M_upyax transfers any point 7;
on the Bloch sphere into a new point on the AA’ plane. The
z-coordinate of this new point is bounded by the planes )\
and )\’. Thus, the associated change in 0, , is less than

ZLAOB=2a.

/ lg Umax

type 11

type I
4
7/

" both types

FIG. 7. Distribution of types of globally optimal solutions
according to Proposition Note that the admissible values
of ¢ and ¢, are restricted by inequality ¢.+¢.<m.

and of type II if
T

o +2} (1—2a). (27b)

¢,= |arcsin(rg ,)— arcsin(o,)| > [
Note that this estimate can be further refined if com-
bined with the upper bounds stated in Proposition
The statement of Proposition [14]is illustrated graphically
in Fig. [7] which clearly shows that type I and type II so-
lutions dominate in the opposite limits of tight and loose
control restriction umax—0 and upax—>00, respectively.
Neither type, however, completely suppresses the other
one at any finite positive value of uy.x. This coexistence
sets the origin for the generic structure of suboptimal so-
lutions (traps), whose analysis will be the subject of next
two sections.

IV. TRAPS IN TIME-OPTIMAL CONTROL

The globally time-optimal solution (hereafter denoted
as @°P*) of the problem can be supplemented by a
number of trapping suboptimal solutions @ (character-
ized by J<JP* and/or T>T°P") that are, however, op-
timal with respect to any infinitesimal variation of @(7)
and T. In particular, Proposition (2)) implies that each
locally optimal solution of type °II gives rise to the infi-
nite family of traps of the form shown in Fig. |3l In what
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follows, we will call such traps “perfect loops”. Proposi-
tion [T indicates that perfect loops may exist at any value
of umax. Nevertheless, their presence does not stipulate
sufficient additional complications in finding the glob-
ally optimal solution by gradient search methods. In-
deed, these “simple” traps can be identified at no cost
by the presence of the continuous bang arc of the dura-
tion A7;>msec(a). Moreover, one can easily escape any
such trap by inverting the sign of the control u(7) at any
continuous subsegment of this arc of duration 7 sec(a) or
by removing the respective time interval from the control
policy.

For this reason, the primary objective of this section
is to investigate the other, “less simple” types of traps
which can be represented by type I and °II|s~¢ subopti-
mal extremals. Propositions and [13] show that
the number of switchings n in such extremals is always
bounded (at least by 7/a). Thus, the maximal number
of such traps is also finite and decreases with increasing
Umax- 1t will be convenient to loosely classify the traps
into the “deadlock”, “loop” and “topological” ones as
follows. The first two kinds of traps are represented by
type I extremals. The deadlock traps are defined by in-
equalities J<JOP' T'<T°P', They usually also satisfy the
inequalities n<n°Pt. Their existence is mainly related
to the fact that the distance to the destination point o
for most extremals non-monotonically changes with time.
The trajectory of the loop trap has the intersection with
itself other than the perfect loop. These solutions require
longer times T>T°P* and typically also larger numbers
of switchings n>n°P* in order to reach the kinematic ex-
tremum J=J°P*. Finally, the topological traps are asso-
ciated with extremals of the type distinct from the type
of the globally optimal solution. Of course, real traps can
combine the features of all these three kinds.

Examples of the deadlock and loop traps are shown
in Fig 8]l In this case the globally time optimal solution
with n°P*=4 is accompanied by two deadlock traps and
two degenerate loop traps corresponding to n=>5 (only
one is shown; the remaining solution can be obtained via
subsequent reflections of the black trajectory relative to
the yz and zy-planes). At the same time, no traps exist
for n=1,3 and n>5.

The bang-bang extremal represented by blue curve
r~—r"”"—rT in Fig. [2a provides another example of the
loop trap that is also the topological trap relative to type
IT optimal trajectory r~—rT (the specific parameters
used in this example are: umaX:%, r*:rou{o,l,f%},
r*t=00c{0,1,1}). In general, once the endpoints r~ and
rT satisfy the conditions of Proposition the time-
optimal solution remains the same type II trajectory even
in the limit upyax—0, where the time optimal trajecto-
ries are mostly of type I (see Proposition [14] and Fig. .
Moreover the traps of the shown form will exist for any

value of Upax< 4—(7“z_+7“j)2/|7“2 -l

Another generic example of the traps of all three types
can be straightforwardly constructed in the case tya>>1
(see Fig.[9) by selecting 0o<{1, 0, umax} and choosing the



FIG. 8. Globally optimal solution (blue line), deadlock traps
(light-red and green lines) and loop trap (black line) for
the time-optimal control problem ,, with Umax:%,
r(O):{%7 %, 0}, (big emerald dot) and o:{%7 —%, 0} (big
black-yellow dot). Small dots indicate the positions of corner
points. The parameters of extremals are listed in the table:

extremal |sign(ay ) | n | At | AT | ATpqa
red + 0(0.23] - -
green — 210.88(1.52| 0.88
blue + 410.33(1.78| 0.33
black — 511.15(1.72| 0.57

initial state in vicinity of z=1: roox{c1, €2, Umax }, Where
0<ci<1 and cy is any sufficiently small number. Al-
though the vast majority of time-optimal solutions are
of type II in the limit uya.x—00 (see Proposition , for
this special choice the optimal solution is of type I for
any finite value of uy,.x whereas the complementary type
IT extremal represents the topological trap. In the case
c2<0, there also exist a deadlock trap structurally similar
to the ones shown in Fig. [§

These observations lead to the following key proposi-
tion:
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sis Proposition 15. For any value of umax there exist ini-
tial states py and observables O, such that the time opti-
mal control problem , has locally time-optimal so-

lutions a(T) representing non-simple traps.
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V. TRAPS IN FIXED-TIME OPTIMAL
CONTROL
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Consider the problem , (3) where the control time
T is fixed. Specifically, we will be interested in the case
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2
T:const>>g (28)
s26 when the kinematically optimal solutions exist for any
so7 given pg and O. We again will exclude the class of perfect
s loop traps from the analysis for the same reasons as in
s20 the previous section. Intuitively one can expect that the
s probability of trapping in the local extrema (other than
su perfect loops) should be small at large T'. However, it is
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FIG. 9.
tory ro—ri—re—o0), topological trap (thin trajectory
ro—r~ —rtT—0) and deadlock trap (thick trajectory ro—r’)
for the time-optimal control problem ,, with umax=8,
r(0)oc{%, 3, umax}, 0x{1,0,umax}. The segments colored
blue\black\red correspond to u(7)=—umax\0\+umax and are
associated with rotations about the axes —uax \€x \T—umax -
The durations A7; of the consequent bang arcs are summa-

The optimal solution (medium-thick trajec-

rized in the table:
extremal type n | Arq | ATy | ATs
deadlock trap | I |0[0.020| - -
optimal solution| I |2]0.0327)0.262|0.017
topological trap| II | 2{0.075]0.031|0.324

not clear if there exists such value of T that the functional
(2) will become completely free of such traps.

To answer this question, note that in line with the anal-
ysis given in Sec. [[I] any trap should be represented by
either type I or type II extremal. However, the maximal
number of switchings is not limited by inequalities sim-
ilar to Proposition [8] At the same time, Proposition [f]
remains applicable (see Remark 1 in Appendix. Recall
that its proof is based on introduction of the “sliding”
variations dv; which shift the angular positions of the
“images” of corner points on the diagram of Fig. [5| (see
Appendix . The explicit expression for the “sliding”
variation around the i-th corner point up to the third
order in the associated control time change d7; is given
by eq. . By definition, if the trajectory a(7) is type I
trap, then no admissible control variation du can improve
the performance index . Consider the subset €2 of such
variations composed of infinitesimal sliding variations d-;
that preserve the total control time T'. Then, the neces-
sary condition of trap @(7) is absence of the non-uniform
sliding variation du(7)€€) that leaves the trajectory end-
point r,41 intact. Indeed, the trajectory associated with
varied control 4+dJdu would deliver the same value of the
performance index but at the same time is not the lo-
cally optimal solution (since it is no longer the type I
extremal) which implies that @ is not locally optimal.

Using the stated necessary condition can be



ss0 rewritten as the requirement of definite signature of the
se0 quadratic form , where the parameters ¢; were in-
se1 troduced in Proposition . The necessary condition of
ss2 the sign definiteness is that all (probably except one) pa-
s63 rameters ¢; are either non-positive or non-negative. Us-
ses ing Fig. [5] one can see that in the case of long T only
ses the second option can be realized with n~0, n~—7% and
se 7)~— 7 (the case n~—m must be eliminated because it im-
se7 plies Umax=0). One can show that the last two variants
ses lead to saddle points rather that to the local extrema.
ss0 The remaining case n~0 leaves the two options §~0 and
s @~27. The last option corresponds to positive constant
s Ci1 in , which indicates the possibility of increasing
s2 J via monotonic “stretching” the time: T—T+6T(T),
si3 u(7)—=u(7—0T (7)), where 6T (7) is an infinitesimal posi-
s tive monotonically increasing function. At the same time,
s the associated parameters g; are all negative, so there ex-
s76 ists the combination of variations §7 of arcs durations At
sr7 which will result in achieving the same value of the per-
s formance index at shorter time. Thus, we can conclude
s that it is also possible to increase J at fixed time T via
ss0 proper combination of these two variations, so the vari-
se1 ant ~27 should be dismissed as a saddle point. Only
se2 the remaining choice 6~0 is consistent with an arbitrary
se3 number of ¢; of the same sign. However, in this case
the length of each bang arc also reduces to zero. As re-
sult, the maximal duration of such optimal trajectories
is limited by the inequality T'<w.
This analysis leads us to remarkable conclusion:
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sss Proposition 16. The fized-time optimal control problem
18 free of non-simple traps for sufficiently long control

times T.
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The spirit of this conclusion is in line with the results
of numerical simulations performed in [I9]. With this,
it is worth recalling that the general time-fixed problem
may have a variety of perfect loop traps for any value of
Umax and, thus, is not trap-free in the strict sense. These
traps were missed in the simulations in [I9] due to the
specifics of numerical optimization procedure.
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VI. SUMMARY AND CONCLUSION

598

All stationary points of the time optimal control prob-
lem and all saddles and local extrema of the fixed-time
optimal control problem are represented by the piecewise-
constant controls of types I and II sketched in Fig. [1f (the
associated characteristic trajectories p(7) on the Bloch
sphere are shown in Figs. [4| and correspondingly).
ss We systematically explored the anatomy of stationary
ss points of each type. Specifically, we identified the loca-
07 tions and relative arrangements of corner points on the

s0s Bloch sphere (propositions 6 11) and esti-
@mqm.
L) 4 o]
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00 mated their total number (propositions (8]
s10 These characteristics, together with propositions

e and [14] allow to determine whether the given extremal is
612 a saddle point or a locally optimal solution, and also to

13 predict the shape of globally optimal solution. The pre-
sented results (except Proposition substantially gener-
alize and refine the estimates obtained in previous studies
[25, 26]. Moreover, this study, to our knowledge, is the
first example of a systematic analytic exploration of the
overall topology of the quantum landscape J[u] in the
presence of constraints on the control u and for the ar-
bitrary initial quantum state py and observable O. In
particular, we distinguished 4 categories of traps tenta-
tively called deadlock, topological, loop and perfect loop
traps. The landscape can contain an infinite number of
perfect loops whereas the number of traps of other types
is always finite. Among them, the number of deadlock
traps and loops decreases with increasing value of the
constraint umayx in eq. . Nevertheless, we have shown
by an explicit example that the traps of all categories
can simultaneously complicate the landscape J[u] of the
time-optimal control problem regardless of the value of
Umax- 0, this is the case where the intuitive attempt
to “extrapolate” the conclusions based on analysis of the
case of unconstrained controls totally fails.
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¢4 The fixed-time control problem is more intriguing. On
one hand we formally showed that it is impossible to
completely eliminate all the traps in this case by increas-
ing the value of uyax. This result is in line with generic
experience concerning the optimal control in technical
applications. However, if the control time is long enough
(specifically, if T>>m2/ arctan umax ) the only traps which
can survive are perfect loops. Remarkably, these traps
can be easily avoided at virtually no computational cost.
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Combined together, our results constitute a thor-
ough guide for optimal control synthesis to manipulate
the individual qubit in a variety of experiments with
cold atoms, Bose-Einstein condensates, superconducting
qubits etc. However, they also deliver more general mes-
sage since the stable control over single-qubit operations
is the necessary controllability prerequisite for a vari-
ety of quantum control problems including the universal
quantum information processing. We can conclude that
traps constitute a general obstacle for practical optimiza-
tion, and their presence can not be ignored. Neverthe-
less, we have demonstrated that there can exist simple
“patches” to standard gradient search algorithms such
that the quantum landscape will appear as trap-free from
practical perspective. The latter conclusion is consistent
with the common viewpoint in the quantum optimal con-
trol literature. That said, validity of the same conclusion
in the general case remains an open question.
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The key methodological feature of the presented
derivations is introduction of the sliding variations, which
makes it possible to extensively rely on highly visual and
intuitive geometrical arguments. For this reason, we be-
lieve that the mathematical aspect of the paper consti-
tutes instructive introduction into high-order analysis of
optimal processes.
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Appendix A: Review of the Pontryagin maximum
principle

In this appendix we briefly overview the concepts of the
Pontryagin theory and outline the derivations of the key
statements and relations of Sec.[[I} Consider the following
canonical optimal control problem [10] [11]:

0

O vmfibewt) (i=lomy (Al
95 (x(t0),x(T),t0,T)=0 (j=1,...,q<2n+2); (Alb)
uel; (Alc)

J— max. (Ald)

Here x={x1, ..., 2} and u={uy, ..., u,, } are the vectors
of phase variables and the available controls, correspond-
ingly. The functions g; introduce the boundary con-
straints on the admissible values of x whereas eq.
describes the control constrains, which are the general-
ization of eq. (3). The most general (Bolza) form of the
performance index J in is

T
J:go(x(to),x(T),to,T)—l—/ fo(x,u,t)dt. (Ale)

The task is to find the control policy u(t) and, maybe,
the final time T together with the initial and terminal
phase variables x(ty) and x(7") which maximize J.

Let us introduce the following auxiliary functions:

N
K= Z v, fi — Pontryagin function; (A2)
=0
q
G= Z vig; — terminant, (A3)
j=0

where v, Up=const >0 and the ¥(t¢) stands for the set
of so-called costate (or adjoint) variables. By definition,

0 0K

a1 Ti= 07\111 (cf. (Ala)); (A4a)
0 oK

o Yi=— 67331 . (A4b)

Mathematically, the functions ¥,(¢) and variables v; are
the Lagrange multipliers in the extremal problem
that account for the dynamic and boundary constraints
and 7 respectively. The process (trajec-
tory) {U(t),u(t),x(t)} is called admissible if it matches
eqs. and the boundary conditions (ATb).

The Pontryagin mazimum principle (PMP) states that
if {%(t),¥(t),a(t)} is an (locally) optimal solution of
problem then Wo>0, W(t)#£0 and

a(t)=arg max K(x(t),¥(t),u(t),t).

A5
u(t)eu ( )
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Besides that, the following transversality conditions hold:

~ oG ~ oG
=y ey
N oG - oG
Kl .= Kl _ =35 A7

Processes satisfying (Ab)-(A7) are called extremals.
(A1)

Any solution of the problem is extremal. The re-
verse is not true since PMP provides only the first-order
necessary optimality condition. To identify the solutions,
the Legendre-Clebsch condition and its generalizations
[32], or other higher-order extensions of PMP should be
used [31].

In the general case, the optimal controls u(t) are the
piecewise-smooth curves composed of regular and singu-
lar (or degenerate) subarcs and having any number of
discontinuities of the first kind (corner points). The val-
ues of () on regular subarcs can be directly obtained

from (A5|) whereas the singular subarcs where gii =0 re-
quire an extra investigation. The following Weierstrass-
Erdmann conditions must hold at each corner point:

Ul o= ‘I’|t+o9 K|, o= K‘t+0' (A8)

Let us now outline the application of PMP to the quan-
tum optimal control problem —. In this case, the
state vector x(¢) is composed of matrix elements of the
density matrix p(¢) and the control u(¢) reduces to a
scalar function u(t). The performance index is a
special case of 7 where fp=0 (a so-called Mayer
problem). Using the definition , one straightfor-
wardly obtains the expression for a Pontryagin func-
tion, where the matrix elements of O(t) serve as the com-
ponents of a costate vector W(¢). Application of
to @ gives the evolution law . The endpoint relation
stems from the second of the transversality conditions
with G=go(p(T))=Tr[p(T)O], whereas the second
pair of transversality conditions leads to the prop-

erty . Finally, note that the Pontryagin function (|6)
does not explicitly depend on time ¢. Hence, egs. (A4)

. . . g X dp % A
imply the relation (10]) since % K= %—I; d—f + ‘;—g % =0.

Appendix B: Proof of Proposition

Here we consider the case 7, >0,7';r >0. The case
7, <0,75<0 can be treated similarly. Simple geomet-
rical analysis leads to the following expression for the

travel time difference 7 between bang-bang (orange)
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and “equatorial” (black) trajectories shown in Fig. l

% sec(ar) — cos(a)r

0T,=cos(a) | arcsin +
2
1—sin? (oz)rzr
_cos(a)rf _cos(a)ry
arcsin( — arcsin(
1—sin?(a)rs \/1— sin?
s

% sec(a)+ cos(a)r;

arcsin — arcsin(r)+ arcsin(r;
( ) (r2 2)

1- sinz(a)r;2

(B1)

where §,=rF —r7. Let us fix one of the endpoints r* and
vary the position of another one. Note that 67,|5,—0=0
for any admissible value of r¥. Furthermore,

/ _ rzdstFsecta 5 + 2 sec2 «
Tz
2 52
<CSC2 a—rE ) \/177"}(2773 —Fsec?a

This allows to conclude that §7,>0 for any §,>0 which
finishes the proof of Proposition for the case r, 7’+>0

Consider now the case 7, r; <0. For darlty7 we will
assume that 7, >0 r; <rf (see Fig.). The remain-
ing cases can be analyzed similarly. e time difference
0Ty, between “equatorial” (black) and the green trajecto-
ries and its derivative with respect to the position of the
endpoint 7} read as

déT,
dr;t

(B2)

+
8Ty, = arccos(r})— cos(a) arccos rz cos(a) ;

1—rt? sin?(a)

(B3)
/ 2
0 24/ 1—r#" sin®(«
L - (2) : (B4)
orz 7 cos(20)—rd 42
These expressions show that ¢7}[,+_,;=0 and that

=2 §T,>0 for any admissible value of r}. Thus, §7},>0

wh1ch proofs Proposition for the case r, r+<0

Appendix C: Proof of Proposition

The proof is based on explicit construction of the
second-order McShane’s (needle) variation of the control
@(r) which decreases 7' if the inequality is violated.
Choose arbitrary infinitesimal parameter 7~ —0 and de-
note r; =r(7;—d7~). Under assumptions of Proposition
it is always possible (except for the trivial case 7; ,=0) to
choose another small parameter 77 such that the state
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vector 7‘+:7~’(7Zi+(5’7'+) obeys the equality: r; =/ . Tt is
evident that the Bloch vector r; . can also reach 7‘ L in
the course of free evolution Wlth u=0 after certain tlme
g0, If we require that d7;",d77|5, - ;=0 then both 7;°

and 70 are uniquely defined by &7,

(57’*267—; (fi7y+257—i_7:i72) Yo

K2

Tiy
57_0 257’ (67’ (U:Fz,x+fz,z)+fz,y)

7 ~ 9
Tiy

(C1)

and thus, 0r0—5r+—67~=2ii; (67 ) Fi.0/Fiy. The lat-
ter quantity should be nonnegatlve for the locally time-
optimal solution which leads to eq. .

Appendix D: Proof of Proposition

Consider any type °II extremal with s>0 containing
at least one interior bang segment 7€[7;, 7;11] of length
Ari=mn cos(a) (meN,0<7;, T41<T). Since 7;=Ti+1
both the value of the performance index J and dura-
tion T will not change if this segment will be “trans-
lated” in arbitrary new point 7(7/(k)) of extremal
via the following continuous variation @(7)—u(k,7)
(—Ti<r<T—mm cos a):

a(r), T<7~'¢—|——”_2|”| Y T>7~’i+1+LZW;
u(k, 7)= 4 U, T R<T<Tip1+K;
u(t—A7;) otherwise,
(D1)
where 7/ (k)=T;+r+1 (1+5) AT,

K
Suppose that a(7) 1|s | locally time-optimal solu-
tion. Then the entire family of control policies
{u(k,7),r(k,7)} should be locally time-optimal too.
Since s>0 it is always possible to select the value K=k
such that 7(7' (ko)) is interior point of the bang arc with
(7' (ko))=—0; and 7,(7'(ko))#0. However, the result-
ing trajectory r(kg,7) is both A- and V-shaped in the
neighborhood of point r(7;+ko)=r(Fi+1+ko). Accord-
ing to Proposition such trajectory can not be time-
optimal. The obtained contradiction finishes the proof.

Appendix E: Proof of Proposition

Let u/(7) be the control strategy obtained via arbitrary
McShane variation du(7) of the control @ (7). Let us show
that u/(7) is less time efficient than some member v (7)
of the control family F¥ (u”*(7)) with the same k but
perhaps the different anzatz u” ™ For this we will need
the following lemma which is complementary to Propo-
sitions [ and B

Lemma 1. Suppose that r'(7') is junction point of two
bang arcs of the trajectory u(t) such that r,,=0. Consider
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FIG. 10. Projections of the characteristic pieces of the origi-
nal, varied and reduced trajectories #(7), v’'(7) and r”(7) on
the zz plane (it is assumed that y-components of all shown
parts of trajectories are greater than zero). The color associ-
ations are indicated in the inset.

any two points v~ (77) and r* () (t7<7'<7t) on ad-

77 jacent arcs such that r;=r} and the complete segment
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1y (7)>0 for any T€(7~,7%). Denote as At the mini-
mal duration of free evolution (u=0) required to reach r+
starting from r—. Then, AT>7T—77

Since Uan,(7) is locally optimal by assumption it is
sufficient to consider the variations of the du(7) which
do not involve the vicinities of the trajectory endpoints.
Moreover, it is sufficient to analyze the variations du(r)
which are nonzero only in vicinities points where 7(7)=0.
To show this consider the McShane variation in the ar-
bitrary interior point Ag of the bang arc (see Fig. .
Consider the piece A7AgAgA;10 of the varied trajectory
7/(7). According to Proposition [3] (see eq. (C))) the path
By BgAg is more time-efficient than By AgAg if the varied
segment AgAg is sufficiently small. Thus, the trajectory
A7 BsBgA10 is more time-efficient than original segment
A7AgAgA10. By repeated application of the same rea-
soning to the modified pieces of trajectory one can replace
the control u'(7) with the more effective strategy which
differs from @(7) only in vicinities of the points r’ with
r?.—0. Since it is sufficient to consider only this modified
control policy we will rename it as /() and will refer as
the initial variation in the subsequent analysis.

The characteristic piece AgAsAsAg of the resultant
trajectory is shown in Fig. [I0] Following the proof of
Proposition (see eq. ) the path Cy A2 is less time-
efficient than CyA;B,C;. This implies that the path
A1B;C; is more time-efficient than A4;4-,C;. Accord-
ing to Lemma [I], the path A3C7 A3z is more time-efficient
than the path AsAj associated with the free evolution.
As a result, the trajectory segment A; AsAs of the r/(7)
is less time efficient than the combination of the segment
A1 B;C1 of the trajectory r”(7) with the segment Cq As.
By continuing the similar analysis one finally comes to
conclusion that the part of trajectory r/(7) between the
points Ay and As is less time efficient than the corre-
sponding segment of u” (7). Applying the same reasoning
to the entire trajectory r/(7) we will reduce the original
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variation to the °IT type control u”(7) and trajectory
r" (7). Note that we must assume that all the singular
segments where u”(7)=0 are located on the same side
with respect to xz plane (otherwise the control time can
be further reduced by eliminating some singular segments
following the proof of Proposition |2 see eq. ) This
mean, that all the interior bang sections of the control
u’(7) are of length mn/cos(a) (m € N). Thus, the tra-
jectory u” (7)=0 must belong to the family F* (u”*"* (7))
with the same index k as FM(u”*(7)) and the an-
zatz u"*" (1) related to @*"%(7) via infinitesimal varia-
tion. Since @*"*(7) is time-optimal the performances and
control times associated with policies u” M7 and 42" are
related as J**>J"*" and T*"*<T"*"”. Consequently,
J>J" and T<T", so that the control policies u”(7) and
u'(7) can not be more effective than @(7). The latter
conclusion completes the proof of Proposition

Proof of the Lemma[1 For concreteness, consider the
case 1, >0, r; >0. Denote d7=r"(77)—r*(r+)—Ar. Us-
ing simple geometrical considerations one can find that

—~ 1 " ¢y~ cot
57'(7“;,7";):5 Z arcsin | 22z CONY (@)

s==+1 2

1—ry

)

. r— csc(a)—sr’ cos(a)
arcsin -
\/1—7"’22 sin2 ()

(E1)
tan?(a)+1
By differentiating (E1) we find that
~, _ 22 sin(2a)y/1—x2 csc? (a)
% ot(ry ,r.=0)=— (7 T) (con(@a) T227-T) <0 for any

Similarly, one can show that

=

or(r;,r,)<0 for any ad-

admissible r; >0.

d1(r;=0,7,)=0 and 7/ Br7

missible r,7#0. Taken together, these relations lead to
!/

conclusion that 57\'(7"; ,7.,)<0 for any admissible r; >0
which completes the proof for the case 7";>O7 ry >0.

Other cases can be analyzed in the same way. O

Appendix F: Proof of Proposition |§| and |Z|

One can directly check that the transformation
S1=exp(ATL(tuUmax)) is equivalent to the composition
of rotation Sz, (F¢) around axis €, by angle F¢ with ro-
tation Sz, (1) around the normal vector ity t0

the plane Ay, by 7,
81=8i., (M)Se. (FE)

where the domain restrictions on the values of n and &
result from . Thus, the state transformation induced
by any two subsequent bang arcs is equivalent to rota-
tion around 7M4,,,, by angle 2n. This proofs that the all
odd (even) corner points are located in the same plane
orthogonal to i, (ﬁuj) and parallel to €,. More specif-
ically, they are located on the circles 711y, =co Which
are mirror images of each other in xz plane.

(—m<n<0; 0<€<m), (F1)
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In order to complete proof of Proposition [6] it remains
to show that €,€A 1y, (i-e. that ¢g=0). Since it is al-
ready shown that €,||Aty.y it is enough to prove that
there exist an least one common point with axis €,. Con-
sider the infinitesimal variations §7;” and §7;" of the du-
rations Ar; and A~Ti+1 of the bang arcs adjacent to ar-
bitrary corner point 7;=7(7;), such that the transforma-
tion S=exp(67; L(@; )) exp(d7;" L(@;)) moves the point
73 into T;E/\ﬁi—. In other words, we require that 7; and
(67;). For
convenience, we will call such variations as” Slilding77 ones.
The form of decomposition indicates that the sliding
variation at r; shifts the locations of all subsequent cor-
ner points 7>, —7; by similar rotations Sﬁu_ (67y;) around

r} should relate by infinitesimal rotation Sz _

J
the associated axes 7i,,-. Consider the arbitrary compo-

sition of the sliding vamatlons such that the trajectory
start and end points remain ﬁxed, ie. >, 0v=0. If the
extremal w is locally optimal then such variations should
not allow the reduction of the control time T": )", §7; <0,
where 07;=67; +07;". This requirement leads to the fol-
lowing first-order (in §7;) necessary optimality condition:

. dé’yz - dé’)/j
) dé’]’l o d(sTj '

Vi (F2)

Using simple geometrical analysis it is possible to explic-
itly calculate the derivatives in (F2]),

o () -
dor;  zhe 20, sin (%) 1+uZ,,, cos (%)

We can conclude that equalities (F2]) are equivalent to
condition: ;

u,; =const which dlrectly leads to conclu-

sion that eze)\il and completes the proof of Proposi-
tion 6

Remark 1. It is worth stressing that the above proof
of Proposition [6] does not explicitly depend on the time
optimality of the trajectory @(7). Thus, its statement
is generally valid for any type I extremal locally optimal
with respect to small variations of control @(7), including
the case of fixed control time T

The proof of Proposition [7] follows from the analysis
of the higher-order terms in sliding variation along the
extremal trajectory. Calculations result in the following
expression:

5'yi:2cos(g)5n 5133(5) i0T; +q(3)57 +o(677),
(F4)
where
ql(s) 3 u? . cos (g) [QSec (2) —3¢? tan? (727)—
6 cot(7;) (tan (g) +(gi+1) tan® (g))} . (F5)
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The necessary condition of the local optimality is thus
the inequality > ., ¢;677>0 in which the variations d7;
are subject to constraint Y., d7;=0. The power of slid-
ing variation is in the fact that the quadratic form in the
left-hand side of this inequality is diagonal (i.e. the con-
tributions of the sliding variations d+; are independent
up to the second order in §7;). Thus, optimality implies
non-negativity of the following simple quadratic form:

Qrj=0kjqk+an (k,j=1,...,n—1), (F6)

which can be easily rewritten in the form of statement of
Proposition [7}

Appendix G: Proof of Proposition [9]

Let ¢'=q;»<0 be the smallest term in the set {¢;}. By
applying Proposition [7] to the corner points adjacent to
7’-th we have: ¢y+1+¢;<0. These inequalities can be
rewritten after some algebra as

Gy ~ arccos (\/sirf (3) (cost) + 2>) ;
<]+ cos™ W (2) (costm + 2>> @

where §v;=(y; mod m)—% (|6vy|<™£). One can show
that at least one of the inequalities . holds if
In|< arccos(v/2—1). From the definition of 7 it follows

that the latter inequality holds for any umax>v 1+v/2.
This means that for this range of controls the i'-th
corner point can be only either the left-most or the
right-most corner point of time-optimal extremal. Us-
ing Fig. [5] one can accordingly improve the estimate for

|7’“ ‘+2} <2 for Umax>Vv1+v2 Q.E.D.

nmax : nmax

Appendix H: Proof of Proposition

Suppose that 7,/ is interior corner point of the glob-
ally time-optimal solution. From it follows that

‘i{l sin(¢;) sin(%)occ sin(¢§;).

u

where ¢ is some real

fi,x:
constant. Since |sin(¢;)|< sin(™2) and [¢yr—Cyrar |[=T52
the following inequality holds:

T _Tz +1,x
T4 T

>0. (H1)
Proposition |3| states that the trajectory curve in vicin-
ity of 7 5 should be A-shaped (V-shaped) in the case
of 7y <0 (77 »>0), as shown in Fig. Together with
this means that both left and right adjacent arcs
intersect the plane z=f7; , twice and have the second
common point {7 o, —7y 4,7 . }. However, the globally
time optimal trajectories can not have intersections with
themselves. This contradiction proves the statement of
Proposition. The associated maximal number of switch-
ings can be directly counted using Fig.
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FIG. 11. Projection of the extremal on zz-plane in vicinity of
the corner point ;s in the case 7 ,<0. Orange dashed ellipse
is the projection of intersection of the Bloch sphere with the
planes At+1. Arrows indicates the admissible routes of passing
the point 7;; according to Proposition [3]

Appendix I: Proof of Proposition

The statement of Proposition will be proven by con-
tradiction. Suppose that the first of inequalities
is violated (the case of violation of the second in-
equality can be treated similarly), i.e. i (V§
Tia<Tj « AT; <0) . Using Propositionwe conclude that
Ti 2 <Ti—1,2,Ti+1, and that the trajectory around 7; is
A-shaped: Je,VoTE€(—¢,€) : 7y(T;4+07)<Fz(7;). Similarly
to the proof of Proposition [I0] these observations mean
that the both arcs 7€(7;—1,7;) and 7€(%;, Ti+1) should
cross the plane x=7; , twice and thus have the common
point {7 4, =7y, 7 .}. However, the latter contradicts
with the assumed global time optimality of the trajec-

tory (7).

Appendix J: Proof of Proposition

Similarly to 7+ and 77, let us introduce the new nota-
tions ry ="1Ee dsign (|7 4| —|Fp 0 |) 522 for the first and
the last corner points 71 and 7, of trajectory 7(7), so that
|74+ 2/>|7- 2|. Using Fig. We find that

= ¢ —C- 1= arcsin(74 ;¢)— arcsin(f_ ;o) 1,
T+n 2 arctan(umax®)
(J1)
where ¢p=—+. Eq. . can be rewritten as
¢ Tt T
Jo . 72, 132, ‘ dé
nyj= ” : +1. (J2)
S TFubeg? )do

. 987
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ors The integrands in the numerator and denominator of
ors are monotonically increasing and decreasing functions of
o7 ¢ in the range of interest. Since sm( )>|F+ 2| one obtains
o7s the upper estimate 1 <nj max, where

§+

+1.

arccos( = ))( J3)

Mt max =1 Qarctan( 1AL
+oo

7|7"+ x|

=

oo In order to make this result constructive, we will find
o0 the upper estimate for ny max by replacing 7, , and 7_ ,
in with their upper and lower estimates given in
Proposition |7 2| <|Fi 2 |<|FF|, and 0<|r_ .|<|7; |
Elementary analysis shows that npmax(7+q,7— ) is a
monotonic function of 7_, and reaches a maximum
when sign(74 ;)7— , is minimal. At the same time,
N max (74,2, 7— ) is a concave function of 7, , when
T4 o7— »<0 and monotonically increasing function of
|F4+ 5| in the range 7y ,7_ ,>0. Using these properties,
we obtain inequality

in i ity (25a) for the case 77, <0 and the
second of the estimates (25b) for the case rj 7 >0.

Note that the latter estimate directly accounts for
the location of only one trajectory endpoint and can
be further refined. Namely, due to the corner
points in the case 7y ,7_ >0 are located in the range
7i,2€[0,7]]. Since the a-coordinates of the corner points
are monotonic functions of the index i (see Proposition|[10]
and Fig. ' the trajectory can be split into two con-
tinuous parts Ry and Ry such that all ng,(ng,) cor-
ner points in the segment R;(Rs2) belong to the range
T €(Fy 7] (75.2=[0,77]), and their junction point 7. is
chosen such that 7. ,=7,. Using these range estimates
and the extremal propertles of function we obtain
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Let us show that ng,<3

1003 that NRp, > m+l

(which will prove the first estimate in ) Indeed,
the duration A7 g, of this segment can not exceed 7 (the
maximal duration of the trajectory with @(7)=0 connect-
ing 7~ and 7.). At the same time, according to eq.
the minimal duration of each arc of the bang-bang trajec-
tory is § cos a. Thus, the number of the interior bang seg-

1004
1005
1006
1007
1008

1009

1010 ments of duration A7 in the case umax <1 can not exceed

[2v/2]=2, i.e. ng,<3 (the same restriction for the case
Umax>1 trivially follows from Proposition ) Hence,
113 Proposition is completely proven.
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