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We study the structure of the eigenstates and the dynamics of a system that undergoes an excited state quantum

phase transition (ESQPT). The analysis is performed for two-level pairing models characterized by a U(n+ 1)
algebraic structure. They exhibit a second order phase transition between two limiting dynamical symmetries

represented by the U(n) and SO(n + 1) subalgebras. They are, or can be mapped onto, models of interacting

bosons. We show that the eigenstates with energies very close to the ESQPT critical point, EESQPT, are highly

localized in the U(n)-basis. Consequently, the dynamics of a system initially prepared in a U(n)-basis vector

with energy E ∼ EESQPT may be extremely slow. Signatures of an ESQPT can therefore be found in the

structures of the eigenstates and in the speed of the system evolution after a sudden quench. Our findings can

be tested experimentally with trapped ions.

PACS numbers: 05.30.Rt; 64.70.Tg; 64.70.qj; 21.60.Fw

Introduction.– Quantum phase transitions (QPTs) occur at

zero temperature. They correspond to an abrupt change in the

character of the ground state of a system when a control pa-

rameter passes a critical point [1]. The subject, which perme-

ates condensed matter and nuclear physics, has become one

of the highlights of experiments with cold gases, where tran-

sitions from a superfluid to a Mott insulator [2] and from a

normal to a superradiant phase [3] have been observed. The

investigations are not restricted to the properties of the ground

state, but extend also to the dynamics of systems undergoing

QPTs. In this context, one finds studies about the quantum

analogue of the Kibble-Zurek mechanism [4], as well as the

relaxation time [5–8], revivals [9, 10], and temporal fluctua-

tions [11, 12] at critical points.

Recently, the concept of ground state QPT has been gen-

eralized to encompass also QPTs occurring at excited states.

These so-called ESQPT refer to a singularity in the energy

spectrum caused by the clustering of excited levels at a critical

energy [13–16]. This critical point can be reached either for a

constant excited energy by varying the control parameter(s)

or by fixing the latter and increasing the energy. ESQPTs

have been investigated for a broad class of many-body quan-

tum systems, such as the Lipkin-Meshkov-Glick (LMG) [17–

19], the molecular vibron [15, 20], the nuclear interacting bo-

son [17], the Jaynes-Cummings [21, 22], the Dicke [21–23],

and the kicked-top [24] models. Experimentally, signatures

of ESQPTs were found in molecular systems [25–29], su-

perconducting microwave billiards [30], and spinor conden-

sates [31].

In terms of dynamics, it has been shown that an ESQPT

leads to random oscillations of the survival probability in iso-

lated systems [21], to singularities in the evolution of ob-

servables [32], and to maximal decoherence in open sys-

tems [18, 33]. Despite these works, studies of the effects of

ESQPTs on systems’ evolutions are still scarce.

In this Rapid Communication, we provide new insights into

the dynamics of an isolated many-body quantum system that

undergoes an ESQPT. The system is prepared in an eigenstate

of an initial Hamiltonian ĤI . The evolution starts after the

sudden quench of a control parameter ξ that changes ĤI into

a new final Hamiltonian ĤF described by aU(n+1) algebraic

structure,

ĤF = (1− ξ)ĤU(n) +
ξ

N
ĤSO(n+1). (1)

This model exhibits a second order ground state QPT at

ξc = 0.2, which occurs between the dynamical symmetries

(DSs) represented by the U(n) and the SO(n + 1) subalge-

bras [34]. It also displays an ESQPT at an energy EESQPT(ξ)
for ξESQPT > ξc [15]. The model represents systems of inter-

acting bosons. It is built upon two types of bosons, a scalar

and a non-scalar one. ĤU(n) is the number operator of the

non-scalar boson, while ĤSO(n+1) is a two-body (pairing)

operator built from the second order invariant operator of the

SO(n + 1) subalgebra, which is rescaled by the system size,

N . Such models have been successfully applied to problems

of hadronic [35], nuclear [36], and molecular physics [37].

For n = 1, they coincide with the LMG model [38] in the

bosonic form.

We assume that the initial Hamiltonian corresponds to one

of the two limits of ĤF , with ξ = 0 or ξ = 1. Thus, the initial

state |Ψ(0)〉 is either a basis-vector |φU(n)〉 associated with

the DS U(n+ 1) ⊃ U(n) ⊃ . . . , which defines the so-called

“spherical” or “symmetrical” phase, or it is a basis-vector

|φSO(n+1)〉 associated with the DS U(n+1) ⊃ SO(n+1) ⊃
. . . , which corresponds to the “deformed” or “broken symme-

try” phase [34]. We study the evolution of initial states with

different values of the energy

E = 〈Ψ(0)|ĤF |Ψ(0)〉, (2)

and show that the rate at which these states change in time can

be anticipated from the eigenstates structures.
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The initial state |ψ(0)〉 = |φU(n)〉 with energy E closest to

EESQPT corresponds to the ground state of the U(n) Hamil-

tonian. The evolution of this state is extremely slow. This

happens because the main contributions to its dynamics stem

from very few eigenstates of ĤF whose energies are exceed-

ingly close to the separatrix that marks the ESQPT.

Differently from ground state QPTs, the characterization of

the different phases in ESQPTs is hindered by the fact that the

order parameter does not vanish above or below the critical

point. However, degeneracy patterns with respect to angular

momentum [15, 39] and the structures of the eigenstates reveal

information about the phases [15]. For instance, the distri-

bution of the U(n)-components of the eigenstates below and

above the separatrix resemble, respectively, the distributions

of the U(n)-components of the eigenstates of the deformed

phase [SO(n + 1) DS] and of the eigenstates very close to

the spherical phase [U(n) DS] (see details in Ref. [15]). The

aforementioned excited eigenstates at the separatrix are the

ones that mark the change of character from one symmetry

to the other, being highly localized in the ground state of

the spherical configuration. In contrast, when written in the

SO(n + 1)-basis, the eigenstates close to the separatrix are

delocalized and do not show particular structures. As a result,

the evolution of |Ψ(0)〉 = |φSO(n+1)〉 is not much affected by

the ESQPT.

TheU(n)-basis plays a special role in the study of ESQPTs.

The point of the transition is clearly revealed from the analysis

of the structure of the eigenstates in this basis as well as from

the dynamics starting from a U(n)-basis vector.

Model.– The findings described in this work were numer-

ically confirmed for one-, two-, and three-dimensional vi-

bron models [20, 37, 40–42], characterized respectively by the

U(2), U(3), and U(4) algebraic structures, as well as for the

U(2) LMG model [38]. The results were equivalent, so we

chose the 3D case to present the illustrations below.

The U(4) vibron model provides an algebraic framework

for the full rovibrational spectrum of diatomic molecules [37].

It has two rotationally invariant DSs: U(4) ⊃ U(3) ⊃ SO(3)
and U(4) ⊃ SO(4) ⊃ SO(3). The U(3) limit describes

the vibrational spectrum of non-rigid molecules, while the

SO(4) limit corresponds to rigid molecules with vanishing

vibrational transitions. The ground state QPT of this model

was studied in [43].

The U(4) dynamical algebra generators are bilinear prod-

ucts of creation and annihilation operators of the scalar s
and the vector pµ boson operators, with µ = 0,±1. The

scaled Hamiltonian, ĤU(4) = (1 − ξ)n̂ + ξP̂ /N , is built

from the number operator, n̂ =
√
3[p† × p̃](0), which is

the first order Casimir operator of the U(3) subalgebra, and

the pairing operator, P̂ = N(N + 1) − Ŵ 2, that contains

the second order Casimir operator of the SO(4) subalge-

bra: Ŵ 2 = D̂2 + L̂2, where L̂µ =
√
2[p† × p̃]

(1)
µ and

D̂µ = i[p† × s̃ + s† × p̃]
(1)
µ [37, 44]. The U(3)-basis,

|[N ]nL〉, has quantum numbers n = 0, 1, . . . , N − 1, N
and L = 0 or 1, . . . , n − 2, n. The SO(4)-basis, |[N ]wL〉,
has quantum numbers w = 0 or 1, . . . , N − 2, N and L =
0, 1, . . . , w − 1, w. The matrix elements of the two Casimir

operators in any of the two bases can be found in [37, 44].
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FIG. 1: (Color online) Top left: normalized excitation energies vs ξ;

N = 200. Top right: density of states ρ; N = 400, ξ = 0.6. Middle

panels: participation ratio of the eigenstates in the U(3)-basis; N =
600 [ξ = 0.6 has also N = 2000 (bottom curve) and a zoomed in

inset]. Bottom panels: same for the SO(4)-basis. All panels: L = 0;

vertical lines mark EESQPT from Eq. (3).

Separatrix and density of states.– For ξ above the criti-

cal point, ξc = 0.2, there appears an energy region in the

spectrum of ĤU(4) with a large density of excited levels

signalizing the ESQPT. This is illustrated in the top left panel

of Fig. 1, where we plot the normalized excitation energies

Ek/N for all levels as a function of the control parameter ξ.

[Throughout this work, the value of the energy of the ground

state is set to zero. In the figures, the units for energy and

time are arbitrary.] The dashed line is the separatrix that di-

vides the states with different physical characters: those closer

to the deformed configuration below the separatrix and those

closer to the spherical configuration above it. The equation

for the separatrix as a function of ξ in the mean field (large

N ) limit is

EESQPT = (1− 5 ξESQPT)
2/(16 ξESQPT). (3)

This equation was derived in [20, 39] for the U(3) model and

can be extended to other U(n) models [45]. The large density

of states along the separatrix is made evident by the peak at
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EESQPT in the energy levels histogram in the top right panel of

Fig. 1.

Structure of the eigenstates.– To analyze of the structure of

the eigenstates of the total Hamiltonian ĤU(4), we use the par-

ticipation ratio (PR), which quantifies the level of delocaliza-

tion of a state in a particularly chosen basis [46]. A large value

indicates an extended state in that basis and a small value, a

localized state. For an eigenstate written in the U(3)-basis,

|ψk〉 =
∑N

n=LC
(k)
n |[N ]nL〉k,

PR
(k)
U(3) =

1
∑

n |C
(k)
n |4

. (4)

For eigenstates written in the SO(4)-basis, |ψk〉 =
∑N

w=LC
(k)
w |[N ]wL〉k, we have PR

(k)
SO(4). Note that the sums

in n and w are in increments of two units.

When ξ = 0, the eigenstates coincide with the U(3)-basis

vectors and PR
(k)
U(3) = 1. As ξ increases, the average level

of delocalization in the U(3)-basis grows. However, the de-

pendence of the values of PR
(k)
U(3) on the energies Ek changes

significantly for ξ before and after the critical point. This can

be seen in the five middle panels in Fig. 1, where we plot

PR
(k)
U(3)/N vsEk/N . Across the region 0 < ξ ≤ ξc, PR

(k)
U(3) is

a smooth function of energy. In contrast, a singularity appears

above the critical point; a pronounced dip becomes noticeable

at EESQPT. Its location moves as ξ increases, following the

increasing value of EESQPT. As seen for ξ = 0.6, the dip be-

comes more pronounced as the value of N increases.

The bottom panels of Fig. 1 depict PR
(k)
SO(4)/N vs Ek/N

for different values of ξ. The average level of delocalization

in the SO(4)-basis decreases as ξ increases and PR
(k)
SO(4) = 1

when ξ = 1. At ξ = 0, the plot shows a dip in the middle of

the spectrum with no relation to the ESQPT. Below the critical

point, as ξ increases, this dip moves toward lower energies and

fades away. Above ξc, a discontinuity appears at EESQPT. It

is much less conspicuous than the dip in the U(3)-basis and it

requires large N to be apparent, as seen in the inset for ξ =

0.6. Notice also that PR
(k)
SO(4) peaks to its maximum value

for the states with energies right above EESQPT. From these

observations, one concludes that PR in the two bases can be

used to identify the ESQPT point, but it is by far more evident

in the U(3)-basis, especially for small N .

At first sight, the drop in the value of PRU(3) and PRSO(4)

at EESQPT is counterintuitive. PR usually reflects the density

of states. Even though the values of PR are intrinsically at-

tached to a basis, in general, one expects the states to be more

extended where the density of states is larger. To better un-

derstand what happens to the structure of the eigenstates in

the vicinity of EESQPT, we analyze in Fig. 2, for ξ = 0.6 and

N = 600, the contributions to |ψk〉 from each basis vectors

for three eigenstates, one before the ESQPT (k = 49), the

eigenstate closest to the ESQPT (k = 148), and one after the

ESQPT (k = 249). We depict the squared coefficients |C(k)
n |2

(middle panels) and |C(k)
w |2 (bottom panels) as a function of

the energies of the bases, eb = 〈[N ]bL|ĤU(4)|[N ]bL〉 with

b = n, w. A similar study was done in Ref. [15], but the plots

were for the coefficients with respect to the index of the basis

vectors, instead of their energies.
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FIG. 2: (Color online) Top panel: ratio R vs N for the eigenstate in

the U(3)-basis closest to the separatrix (top curve) and for the one

with the largest PRU(3) (bottom curve). Middle and bottom pan-

els: squared coefficients of the eigenstates, respectively, in the U(3)-
and SO(4)-basis vs the energies of the corresponding basis vectors;

N = 600. All panels: L = 0 and ξ = 0.6. Left: low energy

eigenstate k = 49, Ek/N = 0.1767. Middle: eigenstate with en-

ergy closest to the separatrix, k = 148, EESQPT/N = 0.4173. Right:

high energy eigenstate k = 249, Ek/N = 0.6513. Vertical lines

mark the ESQPT critical energy from Eq. (3).

The structures of three eigenstates in the U(3)-basis are il-

lustrated in the middle panels of Fig. 2. For an eigenstate with

low energy (k = 49), the largest contributions (largest ampli-

tudes ofC
(k)
n ) come from low values of en, with a peak at each

edge of the contributing energy interval. As Ek increases and

approachesEESQPT, the largest value of C
(k)
n on the left of the

contributing energy interval moves away from the boundary,

towards higher energies, and its amplitude increases substan-

tially. At the ESQPT (k = 148), this enhanced peak obscures

the other components. Compare the y-axis scale for k = 148
with k = 49, 249. Finally, as Ek further increases beyond the

critical point, the enhanced peak decreases and moves back

to the left boundary of the contributing energy interval, the

whole interval naturally moving towards larger values of en,

as seen for k = 249.

The eigenstates in the U(3)-basis with energy very close

to the separatrix have a blunt preference for the first basis

state, whose energy en=0 is also ∼ EESQPT . This is em-

phasized by the top panel of Fig. 2, which shows the ratio

R = |Cn=0/Cn=ν |2 (where |Cn=ν |2 is the second largest

component of the eigenstate) for various system sizes. R is al-

ways larger than 1 for an eigenstate close to the separatrix (top

curve). In contrast, R ∼ 1 for eigenstates with large PR (bot-

tom curve). The favoritism for |[N ]0, 0〉 can be understood

as follows. At the separatrix, the structure of the eigenstates

change from being close to the SO(4) deformed symmetry to

being more spherical [U(3) DS]. The eigenstate |ψESQPT〉 at

the separatrix is the ground state of the spherical [U(3)] con-
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figuration, so its largest contribution comes from en=0. The

high level of localization of |ψESQPT〉 in the U(3)-basis can

also be explained with dynamical considerations based on the

classical limit of the model [45].

The structures of the eigenstates in the SO(4)-basis are less

striking (bottom panels of Fig. 2). For an eigenstate with low

energy (k = 49), the largest amplitudes of C
(k)
w occur at low

values of ew. As Ek increases, the contributing energy inter-

val moves towards larger values of ew.

Dynamics.– We start by analyzing the effects of the ESQPT

on the time evolution of initial states that correspond to U(3)-
basis vectors, given the special role of this basis, as described

above. Thus, ĤI = ĤU(3) and ĤF = ĤU(4). The simplest

quantity to evaluate how fast an initial state |Ψ(0)〉 changes in

time is the survival probability,

P(t) ≡
∣

∣

∣
〈Ψ(0)|e−iĤF t|Ψ(0)〉

∣

∣

∣

2

=

∣

∣

∣

∣

∣

∑

k

|C(n)
k |2e−iEkt

∣

∣

∣

∣

∣

2

,

(5)

whereC
(n)
k = 〈ψk|[N ]nL〉. P(t) is the discrete Fourier trans-

form in energy of the components |C(n)
k |2. Thus, the distri-

bution of Ek weighted by |C(n)
k |2 for a chosen initial state

characterizes the decay of the survival probability [47].

In Fig. 3 (a), we show the weighted energy distribu-

tion for an initial state with n = 0. Its energy, En=0 =

〈[N ]0, 0|ĤF |[N ]0, 0〉, is the closest one to EESQPT. As ex-

pected from the analysis of the structure of |ψESQPT〉, the dis-

tribution is strongly localized at EESQPT. Thus, the evolution

of this first U(3)-basis vector is very slow, as seen in Fig. 3

(d) and it does not accelerate as the system size increases.
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FIG. 3: (Color online) Weighted distribution of normalized excita-

tion energies for three U(3)-basis vectors: n = 0 (a), n = 2 (b), and

n = 1332 (c). In (d): Survival probability for the three basis vectors

evolving according to ĤU(4). N = 2000, L = 0, and ξ = 0.6.

The second U(3)-basis vectors for L = 0, |[N ]2, 0〉, is

slightly more spread out in energy [Fig. 3 (b)] than |[N ]0, 0〉,
its dynamics being then faster [Fig. 3 (d)]. As n increases, the

energy distribution stretches further in the direction of ener-

gies smaller and also larger than EESQPT. As a consequence,

the second state with En closest to EESQPT is not |[N ]2, 0〉,
but instead a high-n basis vector with a more or less symmet-

ric distribution around EESQPT [Fig. 3 (c)]. Its decay is much

faster than that of the first basis vectors [Fig. 3 (d)] and, for

the system sizes studied, it gets faster as N increases.

Similarly to what happens to the structure of the eigenstates

in the SO(4)-basis, the projection of one |[N ]wL〉 onto |ψk〉
has an ‘accordion-like’ behavior as Ew increases from zero.

The energy distribution ofEk weighted by |C(k)
w |2 is localized

around low (high) values of Ek when Ew is small (large) and

it spreads out for Ew away from the edges of the spectrum.

The dynamics reflects these distributions, being slower and

the fluctuations after saturation being larger for initial states

with energies closer to the border of the spectrum than for

those away from it. No special behavior is observed for Ew ∼
EESQPT.

Experimental realization.– Recent experiments with

trapped ions [48, 49] studied the quench dynamics of systems

where the range of the interaction was tunable. One of

the systems considered was described by the Ising spin-1/2

Hamiltonian with a transverse field, which in the limit of

infinite-range interaction corresponds to the LMG model [17–

19]. Thus, the experimental setup to compare the speed of the

evolution for different basis vectors is already available.

Conclusion.– In general, the dynamics of initial states with

energies very close to the edges of the spectrum is much

slower than for states with energies closer to the middle of

the spectrum [47]. Here, we showed that in an isolated system

undergoing an ESQPT, a slow time evolution can occur also

for initial states with energy very close to EESQPT. This is the

case of the first basis vector of theU(n) subalgebra of a model

described with a U(n+ 1) algebraic structure. This behavior

reflects the structures of the eigenstates close to the separa-

trix, which are highly localized in that particular basis vector.

Our findings have therefore identified two additional methods

to detect the presence of an ESQPT, by analyzing the level

of delocalization of the eigenstates in the U(n)-basis and by

comparing the speed of the evolution of different U(n)-basis

vectors evolving under U(n+ 1) Hamiltonians, the latter be-

ing more accessible experimentally.

We plan to extend the present studies to consider also the

effects of an ESQPT associated with first order phase tran-

sitions [50, 51]. We also intend to study the influences of

ESQPTs on coupled systems [51].
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