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Optical frequency combs generated with ultra-high Q whispering-gallery mode resonators are
expected to provide a compact, versatile and energy-efficient source for the generation of coherent
lightwave and microwave signals. So far, Kerr and Raman nonlinearities in these resonators have
predominantly been investigated separately, even though both effects originate from the same third-
order susceptibility. We present a spatiotemporal formalism for the theoretical understanding of
these Kerr-Raman combs, which allows to describe the complex interplay between both nonlinearities
and all-order dispersion. These theoretical findings are successfully compared with experiments
performed with ultra-high Q calcium and magnesium fluoride resonators.

The study of nonlinear phenomena in whispering-
gallery mode (WGM) resonators has been the focus of in-
tense research activities in recent years. These resonators
are generally characterized by ultra-high quality factors,
which enable efficient light-matter interactions between
the long-lifetime photons and the nonlinear host mate-
rial. The main result of this interaction is a frequency-
mixing process which depletes the continuous-wave pump
and populates the quasi-equidistant eigenmodes of the
resonator, thereby generating signals with new optical
frequencies when certain conditions are met. A plethora
of applications is expected to benefit from these com-
pact multi-wavelength sources, particularly in the areas
of metrology, sensing, aerospace and communication en-
gineering.

In amorphous media or centro-symmetric crystals, the
leading nonlinear effects are related to the third-order
susceptibility χ(3). In this case, the light-matter inter-
action in the WGM resonator generally yields either a
Kerr or a Raman comb when the resonator is pumped
above a certain threshold. On the one hand, Kerr
combs are highly coherent, and originate from the quasi-
instantaneous electronic response of the bulk medium
to the laser excitation. Kerr combs have been exten-
sively studied and are known to display a very wide vari-
ety of spatiotemporal dynamical behaviors, such as Tur-
ing patterns, spatiotemporal chaos, cavity solitons and
breathers [1–13]. Adjacent sidemodes can be symmet-
rically excited regardless of their spectral distance from
the pump (typically, few GHz). On the other hand, Ra-
man combs result from the delayed molecular response
of the host medium to the laser excitation. These combs
are generally incoherent, and result from the cascaded
excitation of longer wavelength modes – or Stokes lines–
far away from the pump, typically at 10 THz and its
harmonics [14–19].
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Despite originating from the same nonlinear suscepti-
bility, and the fact that both effects are most of the time
excited simultaneously, Kerr and Raman effects in WGM
resonators have almost always been investigated sepa-
rately. The investigation of the interplay between Kerr
and Raman has been considered only very recently [20–
23], but it remains to a large extent unexplored. In
fact, one should also consider the critical role of dis-
persion at all orders in this case, since the very large
action range of Raman scattering forbids the crude ap-
proximation which consists of considering only low-order
dispersion coefficients. This situation is indeed similar to
the one of super-continuum generation, where the com-
plex interplay between Kerr, Raman, and all-order dis-
persion leads to the dramatic spectral broadening of short
and powerful pulses launched in highly nonlinear crystal
fibers [24]. The standard model used in supercontinuum
generation can therefore be adapted to our case, pro-
vided that some critical features specific to WGM res-
onators are accounted for. Indeed, the most important
difference is that our system has periodic boundary con-
ditions. This is a feature that can lead to several non-
trivial consequences from the mathematical, physical and
numerical analysis standpoints. Another important pe-
culiarity of this system is the existence of stationary so-
lutions, resulting from the balance between pump power
and losses, and between dispersion and χ(3) nonlinearity.
Along that line, the spatiotemporal dynamics of dissipa-
tive structures in optical cavities is known to be substan-
tially different from the one of optical impulsions propa-
gating in a fiber [25]. Therefore, totally unexpected sta-
tionary states are likely to emerge in a WGM resonators
when both Kerr and Raman nonlinearities are excited.

In this letter, we present a spatiotemporal formal-
ism to investigate this interaction between Kerr, Raman,
and all-order dispersion effects in WGM resonators. We
consider a WGM resonator of principal radius a, and
frequency-dependent refractive index n(ω). This partial
differential equation (PDE) model describing the spa-
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FIG. 1: Schematical representation of the experimental setup. A crystalline CaF2 or MgF2 WGM resonator is pumped by a
continuous-wave laser, and the coupling is ensured by angle-polished optical fibers. The reflected output signal is detected by a
photodetector (PD) and monitored with a fast oscilloscope, while the transmitted signal in the drop port is directly monitored
by an optical spectrum analyzer. The Pound-Drever-Hall (PDH) stabilization loop using an electro-optical modulator (EOM)
was needed to lock the 1064 nm pump laser to the CaF2 resonator. The polarization controller (PC) was inserted after the
1560 nm laser pumping the MgF2 resonator.
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where t is the time, θ ∈ [−π, π] is the azimuthal angle
along the rim of the disk, and the intra-cavity field E(θ, t)
in the moving frame is normalized in a way that |E|2
directly yields the optical power in watts.

The first term in the right-hand side (RHS) stands for
the intrinsic and extrinsic (or coupling) losses, character-
ized by the total linewidth ∆ωtot = ωC/Qtot, where Qtot

is the loaded quality factor. The second term in the RHS
stands for the effect of the off-resonance pumping, since
the parameter σ = ωL − ωC is the detuning of the angu-
lar laser frequency with respect to cold-cavity resonance
of the pumped mode. The third term in the RHS ac-
counts for both the material and geometrical dispersion
at all orders (k ≥ 2): in fact, accounting for higher-
order dispersion coefficients βk becomes here mandatory
because the Raman gain is shifted up to multiple tens
of THz away from the pump. The chromatic dispersion
can be accurately determined using the Sellmeier expan-
sion of n(ω) [26, 27], while the contribution of geometrical
dispersion can be calculated from the approximation of
spherical resonators, which is accurate for disk-resonators

with curvature radii significantly larger than the pump
wavelength. The fourth term in the RHS stands for the
external pumping term, which depends on the external
Q-factor through ∆ωext, on the intra-cavity round-trip
time TFSR = 2π/ΩFSR , and of course, on the optical power
PL of the pump. Finally, the nonlinear effects induced by
the χ(3) susceptibility are gathered in the fifth term. The
Kerr nonlinear term is here proportional to the nonlin-
ear coefficient γ = ωLn2/cAeff , where ωL is the pump
frequency, n2 is the nonlinear optical coefficient [propor-
tional to χ(3)], and Aeff is the effective mode area in-
side the resonator. It is generally difficult to evaluate
exactly the mode area in WGM resonators, but a good
estimate in our case is given by Aeff ' 0.35 [λ

L
/ng]
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L

is the pump wavelength [28]. The perturbation
operator [Ω
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/ω
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] ∂θ accounts for eventual shock phe-

nomena induced by self-steepening. The time-domain
behavior of the nonlinear host material is ruled by the
impulse response R(t) = [1 − f

R
]δ(t) + f

R
h

R
(t) where

the first term in the RHS stands for the Kerr effect
(quasi-instantaneous electronic response), while the sec-
ond accounts for the Raman effect (delayed molecular
response). In the latter case, the impulse response cor-
responding to the Raman gain is h

R
(t). By setting

f
R

to zero and neglecting the shock term, we obtain
the Lugiato-Lefever equation [29] that has been used to
model Kerr comb generation [30–32], and which has al-
ready been proven to be a very fruitful and accurate for-
malism for the understanding of these combs [33–35]. In
the present work, we model the Raman gain g(Ω) as a
Lorentzian lineshape of peak value g

R
, center frequency
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(e) Numerical spectrum
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FIG. 2: Comparison between experimental and simulated spectra, along with the all-order dispersion curves. (a) Raman
excitation for the CaF2 resonator pumped at 1064 nm (∼ 282 THz). (b) Corresponding numerical simulation with PL = 1 µW
and σ = 0. (c) Corresponding dispersion curve. (d) Raman excitation for the MgF2 resonator pumped at 1560 nm (∼ 192 THz).
(e) Corresponding numerical simulation with PL = 5 µW and σ = −∆ωtot/2. (f) Corresponding dispersion curve. (g) Kerr-
Raman excitation for the MgF2 resonator pumped at 1560 nm (∼ 192 THz). (h) Corresponding numerical simulation with
PL = 18 µW and σ = −∆ωtot/2. (i) Corresponding dispersion curve.

ΩR and FWHM linewidth ∆ΩR , so that the fractional
impulse response explicitly reads
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, and H(t) is the Heaviside
step function. The fractional coefficient can be calculated
as
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where ω
L

is the pump frequency.
The principal characteristics of Raman response for

fluorite crystals results from experimental and theoret-
ical works in condensed matter physics. Calcium fluo-
ride has a cubic fluorite structure O1

h with three atoms
per unit cell. It has a single (degenerated) Raman-
active phonon branch with F2g symmetry, shifted at
322 cm−1with linewidth 15 cm−1. In the frequency do-
main, it corresponds to a Stokes resonance shifted at
ΩR/2π = 9.66 THz, with a full-width at half-mawimum
(FWHM) linewidth ∆ΩR/2π = 450 GHz at room tem-
perature. At 1064 nm, the Kerr nonlinearity coefficient is
equal to n2 = 3× 10−20 W/m2. Magnesium fluoride has
tetragonal rutile structure D14

4h with two atoms per unit
cell. From group theory, it can be shown that it has four
first-order Raman-active branches, known in the nomen-
clature as A1g (Γ+

1 ), B1g (Γ+
3 ), B2g (Γ+

4 ), and E1g (Γ−5 ).
Generally, the strongest response is provided by the
phonon branch A1g, shifted at 410 cm−1 with linewidth
7 cm−1 (Ω

R
/2π = 12.3 THz and ∆Ω

R
/2π = 210 GHz at

room temperature). The Kerr nonlinearity at 1560 nm is
n2 = 0.9× 10−20 W/m2. For both CaF2 and MgF2, the
crystal orientation and cut, as well as the polarization of
the pump, have an influence on the Raman branches that

are excited in the system. It is also noteworthy that in
both cases, the Raman gain has a relatively high quality
factor Q

R
= Ω

R
/∆Ω

R
(of the order of few tens), while it

is significantly lower in optical fibers (Q
R
' 1/2).

The experimental system is presented in Fig. 1. A
crystalline WGM disk-resonator is pumped using a
continuous-wave laser. The pump laser radiation is cou-
pled inside the resonator using the evanescent field of
an angle-polished optical fiber. The crystals are either
CaF2 or MgF2 disk resonators with size ranging from
few hundred microns to few millimetters, and with intrin-
sic quality factors of the order of 109 at 1550 nm. The
free beam reflected from the resonator is photodetected,
and the generated electric signal is eventually fed back to
the laser via a Pound-Drever-Hall lock, which stabilizes
the laser frequency to the pumped cavity resonance, or
through thermal self-stabilization.

We first investigate the spatiotemporal dynamics of
the system when the cavity is a CaF2 resonator with
radius a = 5 mm, and pumped at 1064 nm and with
Qin = 5 × 109. Above a given threshold pump value,
the intra-cavity spatiotemporal dynamics shows that af-
ter a transient time, Stokes lines are sequentially excited,
at up to the 5th order. However, in the time domain,
no asymptotic state is reached, thereby indicating that
the comb is essentially incoherent. Figures 2(a) and (b)
display a comparison between the theoretical and ex-
perimental combs. Since the Raman gain is shifted at
Ω

R
/2π = 9.66 THz away from the pump, the overall

spectral span of this comb is therefore of around 50 THz,
and the model agrees with the experimental data over
this large frequency range, where the dispersion is found
to be strongly normal. The bandwidth of the Raman
gain (∼ 450 GHz) is much larger than the free-spectral
range of the resonator (∼ 13 GHz), and as a conse-
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FIG. 3: Spectro-temporal dynamics of the locally coherent
Kerr-Raman comb of Fig. 2(h). The asymptotic power spec-
trum is displayed in (a), while the spectro-temporal dynamics
of the Kerr-Raman comb is shown in (b).

quence, several modes are typically excited for each order
of the Raman scattering. The second configuration un-
der study is with a MgF2 disk-resonator with main radius
a = 190 µm, and pumped at 1560 nm. Figure 2(c) shows
a spectrum where a Raman line has been excited in the
resonator. This excited mode is shifted at ∼ 12.3 THz
from the carrier as expected. The numerical simulation
also shows that this regime, which corresponds to very
low pump powers, can also be described by the general-
ized Eq. (1). However, as the power is increased, we find
that there is a regime where both Kerr and Raman effects
are simultaneously excited, as displayed in Fig. 2(g). In
this regime, the dispersion is found to be only weakly nor-
mal, and the comb displays a highly stable output (local
coherence) as shown in the spectro-temporal representa-
tion of Fig. 3. This regime is similar to the one presented
in [20], where it was shown that the comb around the
Stokes Raman line was coherent. The local coherence of
this Kerr-Raman comb is lost when the power is further
increased, and a wide but non-stationary comb is can
be obtained when the resonator is pumped beyond mW

intra-cavity power.
An exhaustive analytical study of Eq. (1) is indeed

very difficult to achieve because of the many degrees
of fredeom that are involved. However our numerical
simulations presented in Figs. 2 provides insightful un-
derstanding of the effect of dispersion and pump power
on the formation of Kerr-Raman combs. Even though
it logically appears that both Kerr and Raman effects
are simultaneously excited when the pump power is high
enough, we find that all-order dispersion plays a critical
role as far as local coherence is concerned. Our results in-
dicate that optimal conditions to obtain a high degree of
local coherence combines a pump above Raman threshold
(same order of magnitude) and a weak all-order normal
dispersion, as evidenced in Fig. 2.

In conclusion, we have described a unified formalism
for the theoretical description of Kerr-Raman frequency
combs. Results of the numerical simulations of Eq. (1)
agree very well with the corresponding experimental
measurements, demonstrating the accuracy of the
proposed theoretical model. It is noteworthy that
dispersion plays a critical role in Kerr-Raman comb
generation which arise in the regime of weakly normal
all-order dispersion. The model can be improved by
accounting for intra-cavity thermal effects, which are
expected to play a critical role on the nature of the
comb, along with the cavity detuning. We expect that
dispersion management will provide useful degrees of
freedom for the purpose of tailoring these combs for
many applications [37].
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