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We examine the dynamics of circulating modes of a Bose-Einstein condensate confined in toroidal
lattice. Nonlinearity due to interactions leads to criticality that separates oscillatory and self-
trapped phases among counter-propagating modes which however share the same physical space. In
the mean-field limit, the criticality is found to substantially enhance sensitivity to rotation of the
system. Analysis of the quantum dynamics reveals the fluctuations near criticality are significant,
that we explain using spin-squeezing formalism visualized on a Bloch sphere. We utilize the squeezing
to propose a Ramsey interferometric scheme that suppresses fluctuation in the relevant quadrature
sensitive to rotation.
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I. INTRODUCTION

Lattice potentials have become an indispensable ingre-
dient of the physics of ultracold atoms with their remark-
able impact already charted in several excellent reviews
[1–3]. More recently, there has been another exciting
development in the study of cold atoms with their con-
finement in multiply-connected topology in the form of
toroidal traps realized by a variety of techniques [4–8].
Several physical phenomena that rely upon such geom-
etry are being actively studied, including generation of
persistent currents [5], and SQUID [9]. Even such phe-
nomena that do not intrinsically require such topology
are revealing novel features in a torus geometry, including
atomic versions of Josehpson effect [10, 11], Schrödinger
cat states [12], Tonks-Girardeau gas [13, 14], dipolar [15]
and spinor condensates [7] and vortex [16, 17] and soliton
dynamics [18, 19].
Considering the rich physics associated with cold

atoms in optical lattices and in a torus topology sepa-
rately, it is to be expected that a marriage of these two
different kinds of periodicity will be at least equally rich
[20]. So far, there has only been a handful of studies
of such a system. The focus has been on the influence
of a lattice on some of the phenomena mentioned above
[21–23] and on the many body physics associated with
the Bose-Hubbard model [24–26] that has been studied
extensively in the context of optical lattices. However,
Bose-Einstein condensate (BEC) in a ring-shaped lattice
offer an unique combination of features: a natural rota-
tion axis, dual periodicity and nonlinearity. Our goal in
this paper is to examine the dynamics that results from
the juxtaposition of all those features.
The circular topology of a ring trap makes it inevitable

to consider the influence of and sensitivity to rotation of
this system. Specifically we find that the nonlinear be-
havior arising from inter-atomic interactions, when com-
bined with the lattice potential leads to critical behavior
that displays strong sensitivity to rotation due to the
toroidal geometry. Interactions among the atoms also
lead to spin-squeezing effects [27] that are particularly
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FIG. 1: (Color online) The atoms are trapped in a toroidal ge-
ometry with effectively one-dimensional dynamics about the
major circle. A circular lattice potential along the ring can
be introduced or removed as required.

susceptible to both rotations and the criticality. The goal
of this paper is to examine all of these effects in tandem,
using several different approaches. Particularly, we show
that the dynamics can be used to implement a squeezed
Ramsey interferometric scheme for rotation sensing.

We develop our physical model in Sec. II, and then
use a mean field approximation in Sec. III to determine
the basic dynamical features and explain the nature and
origin of the critical behavior. We then go beyond the
mean field picture in Sec. IV and study the quantum
dynamics to probe the region around criticality to un-
derstand the significant impact of fluctuations. We con-
firm the validity in the limit of large particle numbers by
using a Gaussian approximation for the quantum correla-
tions. Having also shown in the earlier sections that the
essential quantum dynamics can be mapped to a spin-
squeezing Hamiltonian visualized on a Bloch sphere, in
Sec. V, we use that to propose a Ramsey interferometric
scheme for the purpose of reducing the increased fluctu-
ations observed near criticality to improve rotation sen-
sitivity. In Sec. VI we provide numerical estimates for
the sensitivity to rotation based on physical parameters
for the different scenarios considered. We conclude with
a discussion of feasibility and challenges towards imple-
menting our ideas in experiments and the prospects of
practical utility.
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II. PHYSICAL MODEL

We consider a BEC in a toroidal trap as shown in
Fig. 1. We take the minor radius to be much smaller
than the major radius so that the system can be treated
as a cylinder r = (z, r, φ) with periodic boundary condi-
tion on z. We assume the confinement along (r, φ), trans-
verse to the ring circumference to be sufficiently strong
to keep the atoms in the ground state ψr(r)ψφ(φ) for
those degrees of freedom, so that the three-dimensional
bosonic field operator can be written in the effective form
Ψ̂(z)ψr(r)ψφ(φ). Integrating out the transverse degrees
of freedom, the dynamics can be described by an effective
one dimensional Hamiltonian

Ĥ =

∫ 2πR

0

dzΨ̂†(z)× (1)

[

− ~
2

2m
∂2z + U(z, t) +

g

4πl2
Ψ̂†(z)Ψ̂(z)

]

Ψ̂(z).

where g = 4π~2a/m is the interaction strength defined
by the s-wave scattering length a, and lr is the average
harmonic oscillator length for the transverse confinement.
The potential along the ring is taken to be a periodic
lattice, rotating with frequency ω,

U(z, t) = ~ux cos
[

2q( z
R − ωt)

]

+ ~uy sin
[

2q( z
R − ωt)

]

.(2)

Expanding the field operator in the eigenstates of the
ring

Ψ̂(z) =
∑

n

ânψn(z); ψn(z) =
1√
2πR

ein(z/R), (3)

the Hamiltonian becomes

Ĥ =
∑

n

~ωnâ
†
nân +

1

2
~χ

∑

n+k−l−s=0

â†nâ
†
kâlâs

+~
[

u−â
†
nân−2qe

−i2qωt + u+â
†
nân+2qe

i2qωt
]

,(4)

where we have defined the effective 1D interaction
strength χ = g

4~π2l2
r
R , unperturbed eigenenergies ~ωn =

~
2n2

2mR2 and potential amplitudes u± = 1
2 (ux ± iuy). The

equations of motion for the operators an are

i
∂

∂t
ân(t) = (ωn − nω)ân + [u−ân−2q + u+ân+2q]

+χ
∑

k

∑

l

â†kâlân+k−l. (5)

Here we have redefined the operators by replacing
ân(t) → ân(t)e

−inωt to remove the explicit dependence
on time in the equations, which is equivalent to trans-
forming to co-ordinates co-rotating with the lattice po-
tential with its angular frequency ω.

If the energy gap ~ωn is large then the coupling among
different energy states can be neglected and the dynamics

can be restricted to the subspace of the two degenerate
modes ±q that match lattice periodicity. In that sce-

nario, we denote âq = â and â−q = b̂, governed by two
coupled dynamical equations

i ˙̂a = −qωâ+ u−b̂+ χ
(

â†â2 + 2âb̂†b̂
)

,

i
˙̂
b = qωb̂+ u+â+ χ

(

2â†âb̂+ b̂†b̂2
)

. (6)

The corresponding effective 2-mode Hamiltonian

Ĥ2m = −~qω
(

â†â− b̂†b̂
)

+ ~u−â
†b̂+ ~u+âb̂

†

+
~χ

2

(

â†2â2 + 4â†âb̂†b̂+ b̂†2b̂2
)

, (7)

is time-independent.
For some of our analysis, we will find it useful to ex-

press this two-mode Hamiltonian in terms of pseudo-spin
operators

Ĵx =
1

2
(â†b̂+ âb̂†), Ĵy =

1

2i
(â†b̂− âb̂†),

Ĵz =
1

2
(â†â− b̂†b̂),

N

2
=

1

2
(â†â+ b̂†b̂), (8)

satisfying the commutation relations [Ĵi, Ĵj ] = iǫijkĴk,
where ǫijk is the Levi-Civita symbol and Einstein sum-
mation convention is assumed, and

Ĵ2
x + Ĵ2

y + Ĵ2
z =

N

2

(

N

2
+ 1

)

. (9)

The Hamiltonian can then be written as

Ĥ2m = ~

(

uxĴx + uyĴy − 2qωĴz − χĴ2
z

)

, (10)

where we have dropped a c-number term χ
(

3
4N

2 − 1
2N

)

that produces a global phase, not relevant to the two-
mode dynamics.
For our numerical simulations, we will use energy, an-

gular frequency and time units of ǫ = ~ω0 = ~
2/(mR2)

and τ = 2π/ω0,and use q = 5. In the rest of the pa-
per, we will generally set uy = 0 and use single lattice
strength parameter u defined by u+ = u− = ux/2 = u.

III. MEAN FIELD DYNAMICS

Much of the essential dynamics of this model can be
understood within a mean field approximation, where
quantum correlations and fluctuations are neglected.
This amounts to replacing the operators by their expec-
tations ân → 〈ân〉 = an, Ĵk → 〈Ĵk〉 = Jk. This approx-
imation is useful when dealing with large total particle
number N and condensates that are weakly interacting.
One can make the analogy of this approximation with
transition from the quantum electrodynamics to classi-
cal electromagnetism. Within the mean field picture, we
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examine separately the dynamics in the absence and pres-
ence of inter-atomic interactions.

A. Non-interacting linear limit

It is instructive to first consider the non-interacting
limit, setting χ = 0, so that in the two mode approxima-
tion the equations reduce to

iȧ = −qωa+ ub iḃ = qωb+ ua. (11)

These equations have exact analytical solutions,

a(t) = [cos(ηt) + i
ωq

η
sin(ηt)]a(0)− i

u

η
sin(ηt)b(0), (12)

b(t) = −iu
η
sin(ηt)a(0) + [cos(ηt) − i

ωq

η
sin(ηt)]b(0),

where we defined η =
√

u2 + ω2q2. The lattice potential
u couples the two modes, while the angular velocity ω
lifts their degeneracy. We choose our initial state to be
|a(0)|2 = N , |b(0)|2 = 0. With no rotation (ω = 0)
Eq. (12) implies a complete population swap between
the states at time ts = π/2u, i.e. |a(ts, ω = 0)|2 = 0,
|b(ts, ω = 0)|2 = N (see Fig. 2a). For ω 6= 0 the initial
state remains partially populated,

|a(ts)|2 = N

[

cos2
(π

2

η

u

)

+
ω2q2

η2
sin2

(π

2

η

u

)

]

,(13)

due to the lifted degeneracy of the two states in the ro-
tating frame. The dependence of |a(ts)|2 on the rate of
rotation ω is plotted in Fig. 3(a) for the same parameters
as in Fig. 2(a). It suggests that the mode population after
a fixed evolution time can be used for rotation frequency
measurements.

B. Nonlinear regime

To examine the effects of the non-linear terms arising
from interactions, we first perform numerical simulations
without making the two-mode approximation. We solve
the coupled mean field equations

i
∂

∂t
an(t) = (ωn − nω)an + [u−an−2q + u+an+2q] an

+χ
∑

k

∑

l

a∗kalan+k−l. (14)

using a range of values of n about the resonant modes
±q. The results shown in Fig. 2 confirm that for both the
linear and nonlinear regimes, the two-mode approxima-
tion is quite accurate provided that the lattice strength
remains small, u ≪ ~

2q2/8mR2. When that condi-
tion is satisfied, the population remains in the two-
mode subspace as indicated by the constancy of the sum
|a(t)|2 + |b(t)|2 during time evolution (Fig. 2a, c, and
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FIG. 2: (Color online) Time evolution of the sum and differ-
ence of populations |a(t)|2 and |b(t)|2 in states |±q〉, is plotted
by numerically solving Eq. (5). The constancy of their sum
justifies the two-mode model Eqs. (6) when u ≪ ~

2q2/2mR2.
Plots (a) and (b) illustrate the non-interacting case; (b) shows
that significant fluctuations out of two modes occurs only at
much higher lattice potentials (u is 2000 times higher in (b)
compared to (a)). With nonlinearity, there can be both (c)
oscillatory and (d) self-trapped regimes.

d). Deviations occur only when u is large as in Fig. 2b.
Therefore, for most cases the two-mode approximation
can be applied.

The nonlinearity leads to an additional time-dependent
potential due to the atomic density pattern. In the two-
mode picture, this is proportional to [ab∗ exp(i2q( z

R −
ωt)) + c.c.], and its effects can be clearly seen if the two-
mode equations are written in the form

iȧ = −qωa+ ub− χ|a|2a,
iḃ = qωb+ ua− χ|b|2b, (15)

where a and b have been redefined to absorb a global
phase. This shows that the nonlinear terms appear di-
agonally and add/subtract to the rotation term, thereby
influences the sensitivity to the rotation.

Insight into the dynamics of the system can be gained
from a semiclassical picture where the operators are re-
placed with c-number variables parameterized as

Jx =
N

2

√

1− z2 cosφ,

Jy =
N

2

√

1− z2 sinφ,

Jz =
N

2
z, (16)

where the dimensionless dynamical variables have the
range −1 ≤ z ≤ 1 and −∞ ≤ φ ≤ ∞. Thereby, the
Hamiltonian in Eq. (10) reduces to the semi-classical
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FIG. 3: (Color online) In the mean-field approximation, start-
ing with |a(0)|2 = N , the time-evolved population |a(ts)|

2 in
mode | + q〉 at the fixed time ts is plotted as a function of
the angular velocity ω; here ts is the time required for a com-
plete swap to state | − q〉, |b(ts)|

2 = N in the non-interacting
case when ω = 0 as seen in (a). The remaining panels (b-
d) show that nonlinearity sharpens the dependence on the
ω, as u → uc = Nχ/4, the critical value from above with
∆u = 100(u − uc)/uc. Although the plots look similar, note
the scale of the horizontal axis that indicates two orders of
magnitude increase in sensitivity to changes in ω as critical-
ity is approached.

form

Hsc = −N~

2

(

Nχ

2
z2 − 2u

√

1− z2 cosφ+ 2qωz

)

. (17)

The canonically conjugate pair of variables φ and N~z
2

yield the equations of motion

ż = − 2

N~

∂H

∂φ

= 2u
√

1− z2 sinφ, (18)

φ̇ =
2

N~

∂H

∂z

= − 2uz√
1− z2

cosφ− 2qω −Nχz. (19)

The Hamiltonian (17) corresponds to a “nonrigid pendu-
lum” dynamics introduced as a model of quantum coher-
ent atomic tunneling between two trapped BECs [28].

It is convenient to introduce a parameter Λ = Nχ/(2u)
characterizing the ratio between the nonlinear interaction
and the Rabi oscillations, as in [29]. The Hamiltonian
then takes the form

Hsc = −N~u

2

(

Λz2 − 2
√

1− z2 cosφ+
2qωz

u

)

, (20)

which can be expanded in the vicinity of z = 0, φ = π up

to the second order in dz, dφ as

Hsc ≈ −N~u

2

[

2 + (Λ− 1)dz2 +
2qω

u
dz − dφ2

]

. (21)

Changing the nonlinearity parameter from Λ < 1 to
Λ > 1 the trajectories near z = 0, φ = π change from
elliptical to hyperbolic. Being in the hyperbolic regime,
Λ > 1, we are interested in the trajectory that goes
through the pole, z = 1. This corresponds to the value
of the Hamiltonian Hsc = −N~u

2 (Λ + 2qω/u), yielding

Λ− 2 + 2qω
u

Λ− 1
=

[

dz +
qω

u(Λ− 1)

]2

− dφ2

Λ− 1
. (22)

Sign of the expression on the left hand side of Eq. (22)
determines whether the hyperbolic trajectory crosses to
the opposite hemisphere or becomes self-trapped. For
this change, the critical value of the nonlinearity corre-
sponds to

Λcrit = 2− 2qω

u
. (23)

Choosing the Rabi frequency u = uc ≡ Nχ/4, we see
that the transition happens for frequency ω = 0 where
Λcrit = 2. The corresponding change of behavior can be
seen in Figs. 2(c) and (d), 3 and 4.
Although the equations of motion are identical in form

to those describing BECs in coupled double wells [28, 30],
the interpretation is different: (i) The relevant states are
circulating modes that occupy the same physical space,
(ii) the lattice provides the coupling, (iii) the role of the
onsite energies is played by the rotation, (iv) the nonlin-

ear term has negative −χĴ2
z in Eq. (10) despite a repul-

sive interaction. This last point, seemingly contradictory,
can be explained [31] as follows: For Jz ≈ 0 the counter-
rotating modes a and b are almost equally populated and
the condensate forms a standing wave with pronounced
interference fringes. Therefore, the particles are effec-
tively compressed to half of the volume that would be
occupied if they were all circulating in the same direction
(Jz ≈ ±N/2) with no interference fringes. Thus, states
with larger |Jz| correspond to lower interaction energy .
An essential distinguishing feature of our specific sys-

tem emerges when ω 6= 0: Then even when the non-
linearity and the lattice strength are constant, simply
varying the rate of rotation can lead to a transition from
self-trapping to oscillatory behavior as shown in Fig. 4.
Thus, when the system is close to criticality the nonlin-
earity can significantly enhance sensitivity to the rotation
by magnifying the dependence of the observable |a(ts)|2
on ω. Specifically, for a fixed potential u, and for ω = 0,
consider that the nonlinearity is tuned to be just below
the critical point in the oscillatory regime and the time
required for complete swap ts is set to be the detection
time. When rotating the system (ω 6= 0) there are two
possibilities depending on the direction of rotation: (i)
In one direction, the rotation tips the system over into
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FIG. 4: (Color online) Phase space trajectories of the semi-
classical dynamical variables z and φ. Each line represents
time evolution for specific values of χ and ω. (a) Transition
from oscillatory to self-trapped behavior as ω is varied with
the interaction strength χ fixed (just below the critical point
for ω = 0).

the self trapped-regime; (ii) in the opposite direction the
system stays in the oscillatory regime, but due to the
proximity to the critical point there is still a high sensi-
tivity to small changes in ω. Note that changing the sign
of the nonlinearity switches the dependence on the direc-
tion of rotation in the relevant regime close to ω = 0, as
follows from the relative signs of ω and χ in Eqs. (15).
Figure 3 illustrates this enhancement of the sensitiv-

ity to rotation due to nonlinearity by about two orders
of magnitude compared to the linear case, as the lattice
strength approaches the critical value u → uc = Nχ/4
for fixed nonlinearity χ. An additional feature implicit
in the parameters shown in the plots is that the associ-
ated values of the lattice potential u can be substantially
higher than in the linear case, which has the effect of
reducing the swap time ts by about two orders of mag-
nitude. Thus, nonlinearity not only increases the sen-
sitivity, but the process can be accomplished in shorter
times as well. Nevertheless, to get useful metrological
applications, one also has to take into account the noise
generated in the process. One source of noise stems from
fluctuations of the total atomic number N : if u is chosen
assuming the atomic number to be N0, but the actual
number is N = N0 + ∆N , the critical value of the fre-
quency is changed to ωc = −χ∆N/(4q). This limits the
precision with which ω can be measured. Another source
of noise are quantum fluctuations which are enhanced
especially in the vicinity of critical values of the parame-
ters. The corresponding dynamics is studied in the next
section.

IV. QUANTUM DYNAMICS

A. Full quantum simulations

The mean-field simulation demonstrates the existence
of critical behavior, however, near criticality quantum
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FIG. 5: (Color online) Comparison of the two-mode quan-
tum time-evolution (blue line with error bars) with the mean
field evolution (red lines without error bars). The popula-
tion difference between the two modes of interest are plot-
ted as a function of time for no rotation ω = 0. The tran-
sition from self trapping to oscillatory behavior is seen as
the lattice strength u passes through the critical value of
uc = Nχ/4 = 5.155. Notably close to the critical point, the
quantum fluctuations are enhanced and there is substantial
difference between the two pictures, but not so further from
the critical point.

fluctuations also get enhanced. Since mean field does
not account for that, we now examine the quantum dy-
namics of the system. Based on our results in the pre-
vious section we restrict our analysis to a two mode
subspace. The Hilbert space is spanned by the Fock
states |na, nb〉 ≡ |N − n, n〉, hence the general state of
the atoms is

|Φ(t)〉 =
N
∑

n=0

cn(t)|N − n, n〉. (24)

For this state, we can quantify the fluctuations of the
operator Ĵi, i = x, y, z, by the standard deviation

σi ≡
√

〈Ĵ2
i 〉 − 〈Ĵi〉2, i = x, y, z. (25)

We do our simulations for N = 104 atoms for quan-
tum evolution, with ux = 2u and uy = 0, and compare
the results with the mean field dynamics in Fig. 5. We
plot the population difference between the two states,
which in the quantum simulation is 〈2Ĵz〉. We also indi-
cate the quantum fluctuations by vertical bars measured
by ±σz (this is consistent with a minimum resolution of
2σz utilized in Sec. VI). There is qualitative agreement
between the mean-field approximation and the quantum
dynamics. Specifically, the panels in Fig. 5 show simi-
lar critical behavior in both approaches, when the lattice
depth u is varied keeping the interaction strength χ fixed:
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FIG. 6: (Color online) Bloch sphere representation of the two-
mode quantum mechanical time-evolution with (a) initially
all the population centered at the north pole (〈|a(0)|2〉 = N).
(b) In the absence of interaction, the density distribution un-
dergoes rotation but its shape is maintained. (c) With in-
teraction, in additon to rotation, spin-squeezing distorts the
distribution, and (d) which eventually destroys its Gaussian
profile as well. Here we use N = 100 and Nχ = 2.06 for illus-
tration, but for N = 10, 000 used in our estimates squeezing
is much more pronounced.

There is transition from self-trapped Fig. 5(a) to oscilla-
tory Fig. 5(b,c,d) regime which even for the quantum dy-
namics occurs in the vicinity of the critical ratioNχ = 4u
predicted by the mean field theory. Away from the crit-
ical value uc = Nχ/4, the quantum dynamics is almost
identical to the mean field dynamics, remarkably even
for relatively strong non-linearity assumed here, show-
ing that only weak inter-atomic correlations are created
during the evolution.
However, pronounced differences emerge close to the

criticality. The transition from self-trapping to oscilla-
tory is more gradual in the quantum dynamics as can be
seen by the progression from Figs. 5(a) through (d). One
can interpret the differences as a smearing effect brought
on by the quantum fluctuations which are small far from
the critical point but get progressively larger as the crit-
ical point is approached. In the quantum dynamics the
time and magnitude of the maximum swap also differ
from the mean field results, with the maximum swap be-
ing incomplete in the quantum case.
The dynamics is best visualized on Bloch sphere as

shown in Fig. 6 where Q-functions of the states are plot-
ted. The Q-function is the squared projection of the state
on the spin coherent state with the mean values of oper-
ators Ĵx,y,z defining position on the Bloch sphere. The

initial state is a spin coherent state with 〈Ĵz〉 = N/2

with a Q-function of a Gaussian-like blob centered at the
north pole. In the linear case (χ = 0) the distribution
maintains its shape which for ω = 0 rotates around the
Ĵx axis so that south pole is reached at ut = π/2.
The nonlinear term introduces twisting around the Jz

axis. Combination of rotation around Jx and twisting
around Jz leads to a more complicated migration of the
blob. For critical values of the parameters at the center
of the blob approaches the Jx axis where it stays, whereas
for even stronger nonlinearity the blob gets to a trajec-
tory returning back to the north pole. The twisting also
deforms the blob as it is being squeezed in one direction
and stretched in the other: This is the spin squeezing
effect first proposed by Kitagawa and Ueda [27]. As a
result, for some variables we can find suppressed noise
whereas for others the noise is amplified. Specifically, in
Fig. 6 the orientation of the stretching indicates ampli-
fied fluctuations in Jz, hence in the modal population
difference.
This effect directly impacts the sensitivity to rotation

close to criticality. We illustrate this in Fig. (7), where
the plots are analogous to those in Fig. (3), but now along
with the mean-field evolution, the results of our quan-
tum mechanical simulation are plotted including fluctu-
ations. The fluctuations are large near criticality [panels
(a) and (b)] whereas far from criticality the mean field
approximation is almost indistinguishable from the quan-
tum simulation. Near criticality there is also a significant
difference in the location of the minimum (the point of
maximum swap). These effects can be explained as re-
sults of bifurcating phase trajectories near the intersec-
tion of the Bloch sphere with the Jx axis.

B. Gaussian Approximation of Quantum dynamics

Numerical modeling of the quantum mechanical evo-
lution becomes quite demanding for large N , therefore,
approximate solutions are helpful. For short times one
can assume that the state remains approximately Gaus-
sian and find a closed set of nine equations for the first
and second moments Ji and Vij of Ĵi, (i = x, y, z) given
in Appendix A [32, 33]. We solve these equations with
ux = 2u and uy = 0 and with the initial conditions

Jz,0 =
N

2
, Vxx,0 = Vyy,0 =

N

4
, (26)

Jx,0 = Jy,0 = Vzz,0 = Vyz,0 = Vxy,0 = Vxz,0 = 0,

i.e., starting from a spin-coherent state located at the
north-pole of the Bloch sphere.
The comparison between the evolution of moments cal-

culated from the approximate equations Eq. (A2)–(A3)
is in Fig. 8 with the upper panels displaying the time evo-
lution and the lower panels the impact of rotation. The
results of the Gaussian approximation including fluctua-
tions are overlaid with their equivalents calculated from
the two mode quantum analysis and mean field approxi-
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FIG. 7: (Color online) Comparison of the two-mode quantum
time-evolution ((blue line with error bars) with the mean field
evolution (red line without error bars)). The population dif-
ference between the two modes of interest as a function of the
rotation rate ω after fixed time evolution ts, the time for full
swap with no interaction and no rotation. Notably close to
the critical point uc = Nχ/4 = 5.155, the quantum fluctua-
tions are enhanced and there is substantial difference between
the two pictures, but not so further from the critical point.

mation. There is a good agreement among all three meth-
ods for short times and parameters far from the critical
point [panels (b) and (d)]. Even when the parameters
are chosen close to criticality, the time evolution [panel
(a)] in the Gaussian approximation matches the quan-
tum simulation quite well in the approach to the equator
in the Bloch sphere since the distribution maintains the
Gaussian shape. Beyond that point, for the critical pa-
rameters, there is significant difference because the Jz
twisting distorts the distribution [see Fig. 6 (d)] from
a Gaussian shape, leading the Gaussian approximation
tends to overestimate the fluctuations beyond the ap-
proach to the critical point. The Gaussian approximation
however serves the purpose of confirming the two-mode
quantum dynamics as can be seen in their general simi-
larity in the ω-dependence in panels (c) and (d).

V. SQUEEZED RAMSEY INTERFEROMETRY

The quantum simulations have shown that fluctuations
due to squeezing near criticality effectively erase the en-
hanced rotation sensitivity indicated by a mean field pic-
ture. However, the problem carries within it a solution as
well, because the squeezing can also be used to suppress
fluctuations in interferometric schemes to improve mea-
surement precision [34–36]. Here we describe a Ramsey-
style interferometric sequence [37] applied to the present
orbital model as steps labeled (a-f) in Fig. 9.
(a -b) The initial state is prepared as the Jz = N/2

coherent state on the pole of the Bloch sphere (all atoms
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FIG. 8: (Color online) Comparison of the Gaussian approxi-
mation (green dashed line with dotted error bars) with quan-
tum simulation (thick blue line with solid error bars) as well as
mean-field approximation (thin red line without error bars).
The upper two plots show the time evolution of the modal
population difference, corresponding to Fig. 5(b) and (c), and
the lower two plots its value at time ts as function of the rota-
tion rate ω, and corresponds to Fig. 7(a) and (c). The Gaus-
sian approximation generally overestimates the fluctuations
more so closer to criticality.

orbiting in one direction). Application of the Jy operator
rotates the state to the equator centered on −Jx corre-
sponding to a superposition of atoms orbiting in each
of the two directions. The superpositions is balanced
with approximately equal atomic numbers in the two di-
rections, with binomial fluctuations

√
N/2. The density

distribution forms an interference pattern along the ring
with fringes positioned with angular precision ∼ 1/q

√
N .

(b-c) The nonlinear Hamiltonian is applied

Ĥc = −2ωqĴz + 2uĴx − χĴ2
z , u =

Nχ

4
(27)

for duration tsqueeze to generate squeezing, for short
times described by the squeezing parameter ξ2 ≈
exp(−χNtsqueeze) (ξ2 is the ratio of the minimum vari-
ance on the Bloch sphere to the variance of the spin co-
herent state) [33, 37]. The lattice strength u = Nχ/4
is chosen to be at the optimum value ensuring that the
Bloch-sphere distribution is kept aligned along the −π/4
orientation centered at the −Ĵx axis for fastest squeez-
ing [33]. Note that although this value corresponds to
the critical value of Λ = 2 for which the classical tra-
jectories going through a pole change from oscillatory to
self-trapped, here the precision of u is not critical. Choice
of u = Nχ/4 leads to fastest squeezing generation, but
deviations from the optimum value caused, e.g., by fluc-
tuations of N , do not influence substantially precision
of measurement of ω. The duration of tsqueeze is cho-
sen to achieve maximum squeezing value; longer dura-
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FIG. 9: (Color online) The sequence of steps in the Ramsey
interferometric scheme to suppress fluctuations: (a) Initial
state with mean population entirely in state a = | + q〉, (b)
the state is transformed to be centered on the equator, (c)
the state has undergone nonlinear evolution with maximal
spin squeezing, (d) the state is transformed to have long axis

parallel to the Ĵz axis, (e) free evolution solely under influ-
ence of angular velocity ω, (f) the state is transformed to have

short axis aligned with the quadrature of interest Ĵz for re-
duced fluctuations. Here we use N = 100 and Nχ = 10.3
for illustration; but for N = 10, 000 as used in our numerical
estimates squeezing is much more pronounced.

tion would degrade the squeezing due to distortion of the
distribution into an S-shaped form, displayed in Fig. 6
(d). During the squeezing process fluctuations of both
the atomic number difference and of the fringe position
increase, however their correlations become stronger.

(c-d) When the maximally squeezed state is reached,
the nonlinearity χ is switched off by suppressing the
atomic interaction, possibly by Feschbach resonance,
changing the Hamiltonian to a linear form

Ĥ = −2ωqĴz + 2uĴx. (28)

This Hamiltonian acts for ttransform = π/(8u) to rotate

the state about the −Ĵx axis until the long axis of the

TABLE I: The evolution of the fluctuations in the population
difference as measured by the standard deviation in 〈Jz〉 is
tabulated for the various steps of the Ramsey interferometric
scheme shown in Fig. 9. Results of simulations for two dif-
ferent values of total particle number N are displayed. The
final reduced fluctuations should be compared with the fluc-
tuations for the non-interacting linear case, both shown in
bold letters. The beginning of step (b-c) is taken as t = 0.

N = 1,000 N = 10,000

step t (τ) σz t (τ) σz

b 0 15.8 0 50.0

c 1.61 58.3 0.220 340

d 2.37 81.6 0.296 480

e 3.37 81.6 1.296 480

f 4.89 3.24 1.446 5.65

linear 15.8 linear 50.0

distribution is aligned along Jz direction. In this state
the fluctuations of the atomic number difference become
large, however the fluctuations of the position of the
fringes become suppressed below the coherent state value
∼ 1/q

√
N .

(d-e) The lattice potential is switched off for tsensing so
that the Hamiltonian is

Ĥc = −2ωqĴz, (29)

and the state evolves purely under the rotation of the
frame, thus acquiring the interferometric phase. The
sharply localized fringes now change their position by
2qωtsensing.

(e-f) The lattice is restored to the same strength as in
step (c-d)

Ĥc = −2ωqĴz + 2uĴx, (30)

and the state evolves under its influence for tπ/2 = π/(4u)
equivalent to a π/2 pulse to rotate the state to be now

with short axis along Ĵz direction. Then the number of
atoms in both modes is measured to find Jz . The atomic
number difference now has suppressed fluctuations and
contains information on the rotational frequency ω.

Results of our simulation of this sequence are sum-
marized in Table I for two different particle numbers
N = 1, 000 and N = 10, 000. We find that rotation
of the squeezing axis reduces fluctuation σz from 81.6 to
3.24 and from 480 to 5.65 for the two cases respectively,
and in both cases, they represent significant suppression
of fluctuations over the binomial values of 15.8 and 50.0
in the non-interacting linear case.

We conclude this section by noting, that the Ram-
sey interferometric scheme relies upon nonlinearity only
for generating squeezing (in step (b-c)) and there is no
critical dependence on the exact knowledge of the to-
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tal atomic number unlike in Sec. IIIA. The situation is
similar to that explored in some recent squeezed Ramsey
interferometric experiments, for example Ref. [38] clearly
demonstrated phase resolution below standard quantum
limit even with N ≈ 380± 15, a relatively small atomic
number and large relative fluctuation of N .

VI. SENSITIVITY TO ROTATION

The dynamics of cold atoms in a ring lattice and the
physical pictures used to describe it can be characterized
by the sensitivity to rotation. Here we provide a very
basic order of magnitude comparative numerical estimate
using a simple criterion of the minimum resolution ∆ω
about ω = 0 set by the averaged standard deviation

|〈2Jz(0)〉 − 〈2Jz(∆ω)〉| ≥ σz(0) + σz(∆ω), (31)

where 2Jz(ω) is the mean differential modal population
at the time of measurement ts. Our simulations assume
N = 104 sodium atoms with m = 3.8 × 10−26 kg, ring
radius R = 10−5 m, mode q = 5, and radial confinement
ωr = 2π× 100 Hz. These set our units ǫ = 2.9× 10−33 J
and τ = 0.23 s and ω0 = 28 rad/s.
In the non-interacting linear limit with χ = 0 in

Eq. (4), the complementary probabilities of the two
modes indicate a binomial distribution, with each of
the N atoms constituting an independent trial, so that
σz(ω) =

1√
N
|a(ω)||b(ω)|. For lattice depth u = ǫπ/400,

maximum swap time is ts = 200τ = 46 s, and the crite-
rion in Eq. (31) yields ∆ω = ω0u/(2q

√
N) = 2.2 × 10−4

rad/s. In the corresponding nonlinear case, the interac-
tion strength is Nχ = 20.6ω0. Using Fig. 7(c), where
u = 5.25ω0 > uc = Nχ/4,the critical value, we estimate
sensitivity of ∆ω = 1.5× 10−3ω0 = 4.1× 10−2 rad/s.
For a uniform comparison, we normalize by the dura-

tion, in the linear case, ∆ω×√
ts = 1.5×10−3 rad/s/

√
Hz

and for the nonlinear case ∆ω × √
ts = 1.5 × 10−2

rad/s/
√
Hz with ts = 0.57τ = 0.13 s. Despite the ad-

vantage of a much shorter cycle duration the nonlinear
case remains an order of magnitude less sensitive to ro-
tation near the critical point, underscoring that fluctua-
tions more than erase the nonlinear advantage indicated
by mean field dynamics alone.
Squeezing, however, can reverse that situation. For the

Ramsey interferometric scheme the evolution of the stan-
dard deviation σz listed in Table I, shows that squeezing
along the quadrature of interest Jz leads to a significant
increase in sensitivity over the Poisson value: factor of
5 and 10 reduction in fluctuation for N=1,000 and N
=10,000 respectively. Shorter cycle duration (from Ta-
ble I) causes time-normalized sensitivity to increase by
factors of about 30 and 120. Using our estimate for the
linear case, the enhanced rotation sensitivity would be
∆ω ∼ 2× 10−5 rad/s or ∆ω ×√

ts ∼ 10−5 rad/s/
√
Hz.

Obvious scaling with number of particles indicates that
with N ≥ 105 further improvement in sensitivity is pos-

sible. The single cycle sensitivity can be enhanced by
increasing the sensing time tsensing, but can compromise

the time-normalized sensitivity. Since the 〈Ĵz〉 depen-
dence on ω is linear, the sense of rotation can be resolved.

VII. DISCUSSION AND CONCLUSION

Ring-shaped lattices discussed here can be created us-
ing two Laguerre-Gaussian beams [20, 39] with oppo-
site orbital angular momentum LG± ∝

√
I0 exp(±iqφ).

Combining these beams coherently with different com-
plex amplitudes a±, such that |a+|2 + |a−|2 = 1, one
can achieve the required intensity structure. The Ra-
man techniques of transferring quantized orbital angular
momentum (OAM) from light beams to condensates [40],
allow one to create circulating condensate with the wave-
function of the form we use.
To detect values of Ĵz, the procedure can be reversed:

a Raman process transforms atoms circulating in the a+
mode to a nonrotating BEC and then the proportion of
the nonrotating atoms is measured. In [6], such mea-
surement was performed by releasing the condensate and
observing the size of the central hole in the interference
pattern produced by the free-falling atoms. Alternately,
as discussed in [31], one can measure Ĵz by coupling the
ring resonator to a linear atomic waveguide (formed, e.g.,
by a red-detuned horizontal laser beam) positioned tan-
gentially near the ring. Atoms circulating in the opposite
orientations would leak to the waveguide and propagate
in opposite directions towards the waveguide ends where
they can be detected.
The physical parameters used in our simulations cor-

respond to scenarios already realized in the context of
toroidal traps [6], the duration ∼ 40 s (and longer since)
of persistent currents observed in such experiments ac-
commodate our estimates. The demonstration of the
nonlinear critical behavior as well as the spin squeez-
ing effects described here therefore should be accessible
within the spectrum of current experimental capabilities.
Going beyond proof of principle, to utilize the nonlin-

ear behavior for rotation sensing will certainly require
more effort, and perhaps the biggest challenge would
be to determine the number of particles in the system
with the required level of precision. In this regard, there
have been some remarkable developments in recent years
where individual atoms in lattices could be imaged [41];
subsequent melting of such a lattice can be used to initi-
ate experiments with well-defined number of atoms.
Our estimates of optimal rotation sensitivity of ∆ω ∼

10−5 rad/s or ∆ω × √
ts ∼ 10−5 rad/s/

√
Hz for the pa-

rameters used approaches but falls short of the current
state of the art capabilities of atom interferometers at
the order of 10−7 rad/s/

√
Hz [42] 10−7 rad/s [43] re-

spectively. However, a relevant comparison has to take
into account that we use substantially less atoms, and
notably the area of our ring at ∼ 10−10 m−2 is several
orders of magnitude smaller than corresponding parame-
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ters in such experiments, so that normalization by possi-
ble parallel realizations can make our approach competi-
tive. While there will certainly be challenges to overcome
in implementation, that has to be placed in the context
that currently used methods are the result of almost two
decades of engineering and experiments.
Aside from the possible applications for rotation sens-

ing, our study has shown that toroidal lattices offer a
novel system for studying spin-squeezing and nonlinear
dynamical effects like self-trapping, with the option of
easily including non-inertial effects. Of particular rele-
vance for future studies, we have shown that mean field
theory is inadequate for accurate analysis of such a sys-
tem and quantum fluctuations and correlations have to
be taken into consideration.
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Appendix A: Moments in Gaussian approximation

In this appendix we present the equations of motion,
used in Sec. IV, for the first and second moments of the

operators Ĵi, (i = x, y, z), defined by

Js ≡ 〈Ĵs〉, (A1)

Vnl ≡ 1

2

〈

(Ĵn − Jn)(Ĵl − Jl) + (Ĵl − Jl)(Ĵn − Jn)
〉

.

They follow from the Heisenberg equations i~〈Ȧ〉 =
〈[A,H ]〉 on using the approximation 〈JkJsJp〉 ≈
JkJsJp+JkVsp+JsVpk+JpVks valid for Gaussian states.
Thus we find

J̇x = uyJz + 2qωJy + 2χ (JyJz + Vyz) ,

J̇y = −uxJz − 2qωJx − 2χ (JxJz + Vxz) ,

J̇z = uxJy − uyJx, (A2)
and

V̇xx = 2uyVxz + 4qωVxy + 4χ(JzVxy + JyVxz),

V̇yy = −2uxVyz − 4qωVxy − 4χ(JzVxy + JxVyz),

V̇zz = 2uxVyz − 2uyVxz

V̇xy = −uxVxz + uyVyz − 2qω(Vxx − Vyy)

−2χ [Jz(Vxx − Vyy) + JxVxz − JyVyz] ,

V̇xz = uxVxy + uy(Vzz − Vxx) + 2qωVyz

+2χ (JzVzy + JyVzz) ,

V̇yz = ux(Vyy − Vzz)− uyVxy − 2qωVxz

−2χ (JzVxz + JxVzz) . (A3)
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