
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Dissipative fluid dynamics for the dilute Fermi gas at
unitarity: Anisotropic fluid dynamics

M. Bluhm and T. Schäfer
Phys. Rev. A 92, 043602 — Published  1 October 2015

DOI: 10.1103/PhysRevA.92.043602

http://dx.doi.org/10.1103/PhysRevA.92.043602


Dissipative fluid dynamics for the dilute Fermi gas at unitarity:

Anisotropic fluid dynamics

M. Bluhm and T. Schäfer
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Abstract

We consider the time evolution of a dilute atomic Fermi gas after release from a trapping po-

tential. A common difficulty with using fluid dynamics to study the expansion of the gas is that

the theory is not applicable in the dilute corona, and that a naive treatment of the entire cloud

using fluid dynamics leads to unphysical results. We propose to remedy this problem by including

certain non-hydrodynamic degrees of freedom, in particular anisotropic components of the pres-

sure tensor, in the theoretical description. We show that, using this method, it is possible to

describe the crossover from fluid dynamics to ballistic expansion locally. We illustrate the use of

anisotropic fluid dynamics by studying the expansion of the dilute Fermi gas at unitarity using dif-

ferent functional forms of the shear viscosity, including a shear viscosity which is solely a function

of temperature, η ∼ (mT )3/2, as predicted by kinetic theory in the dilute limit.
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I. INTRODUCTION

Considerable effort has been devoted to extracting transport properties, in particular

the shear viscosity and the spin diffusion constant, of dilute atomic Fermi gases [1–9]. The

interest in these experiments is driven by the observation that strongly correlated Fermi

gases can serve as model systems for other quantum many body systems, such as high Tc

superconductors or the quark-gluon plasma [10–12]. There are, however, two difficulties that

have prevented truly model independent measurements of transport coefficients in trapped

systems so far. The first difficulty is that the diffusion constants for momentum or spin

depend on the local density while the associated experimental observables are global mea-

sures such as the mean square cloud size or the total spin current. This implies the need to

unfold the experimental data in order to obtain the density and temperature dependence of

the transport coefficients. The analogous deconvolution problem for equilibrium quantities

has been overcome using a number of techniques [13, 14], but the first study attempting to

determine the local shear viscosity only appeared recently [9].

The second, more serious, difficulty is that the diffusion approximation breaks down in the

dilute part of the cloud. This problem cannot be ignored, because a naive application of the

Navier-Stokes or the diffusion equation to the dilute corona leads to paradoxical behavior.

Consider, for example, a scale invariant Fermi gas expanding after release from a harmonic

trap [15]. In the case of a vanishing shear viscosity the expansion dynamics is described by

an exact scaling solution of the Euler equation. This solution corresponds to a Hubble-like

flow, in which the fluid velocity ~u is always linearly proportional to the distance from the

center of the trap, and the temperature is only a function of time. We can now study how

this picture is modified in the presence of a small dissipative term. The viscous contribution

to the stress tensor,

δΠij = −η
(

∇iuj +∇jui −
2

3
δij ~∇ · ~u

)

, (1)

is a constant in space that multiplies the local shear viscosity η. At unitarity scale invariance

implies that η = nf(n/T 2/3), where n is the density, T is the temperature, and f(x) is a

universal function. In the dilute limit the shear viscosity is only a function of temperature

and not of density, η = const · (mT )3/2. Kinetic theory predicts const = 15/(32
√
π) [16, 17].

Since the temperature is spatially constant one concludes that δΠij goes to a constant in

the dilute part of the cloud. This implies that there is no dissipative force, but a constant
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amount of dissipative heating per unit volume, where the energy for this infinite amount of

heating is supplied by a heat current that flows in from spatial infinity.

This description is, of course, completely wrong. The mean free path in the dilute corona

is much larger than the inter-particle spacing, and there are no collisions that could establish

dissipative forces or viscous heating. Particles in the dilute corona are ballistically streaming.

In order to describe the situation correctly, we have to combine a fluid dynamical description

of the core with a weakly collisional theory of the corona. In this work we suggest that an

efficient method for achieving this goal is to include certain non-hydrodynamic degrees of

freedom, an anisotropic pressure tensor, in the theoretical description. In Section II we

motivate this method by studying certain exact solutions of the Boltzmann equation. In

Section III we review the derivation of standard, isotropic, fluid dynamics from kinetic

theory, and in Sections IV and V we extend this method to anisotropic fluid dynamics. A

similar method was proposed as an extension of fluid dynamics to describe the early stage

of a heavy-ion collision, see [18, 19]. In Sections VI and VII we describe numerical methods

and show results from an anisotropic fluid dynamics code. This code is a generalization of

the Navier-Stokes code described in [20]. We show that our method describes the crossover

from fluid dynamics to free streaming both globally, for a shear viscosity of the form η ∼ n,

and locally, for a shear viscosity of the form η ∼ (mT )3/2. We end with an outlook in

Section VIII.

II. GLOBAL CROSSOVER FROM FLUID DYNAMICS TO BALLISTIC EXPAN-

SION

The global crossover from fluid dynamics to free streaming in the expansion of a trapped

Fermi gas after release from the trap was studied in [21], based on a set of scaling solutions

to the Boltzmann equation obtained in [22, 23]. We will use these solutions to motivate

an extension of the fluid dynamic equations that accommodates the transition from fluid

dynamics to free streaming locally. This approach is described in Sect. IV.

The scaling solutions introduced in [22, 23] solve the Boltzmann equation in a harmonic

confinement potential and using the Bhatnagar-Gross-Krook (BGK) approximation. This

approximation is based on a collision term of the form C[f ] = −δf/τ , where δf is the

deviation of the distribution function f from the local equilibrium distribution, and τ is the
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relaxation time. The authors of [21–23] further assumed that τ is only a function of the local

temperature, but not of the local density. In the case of two-dimensional traps extensions

of the scaling ansatz to anharmonic confining potentials were studied in [24].

Fluid dynamics corresponds to the limit τ → 0, and free streaming is realized as τ → ∞.

In both limits the Boltzmann equation is solved by a distribution function of the form [22]

f(~x,~v, t) = Γ(t) f0(~R(t), ~U(t)) , (2)

where

f0(~R, ~U) ∼ exp

(

− m

2T

∑

i

[

ω2

iR
2

i + U2

i

]

)

(3)

is the initial distribution function in a harmonic potential with frequencies ωi and

Γ(t) =
∏

i

1

bi(t) θi(t)1/2
, Ri(t) =

xi

bi(t)
, Ui(t) =

vi − ui

θi(t)1/2
, αi(t) =

ḃi(t)

bi(t)
, (4)

with ui = αi(t) xi for fixed i. We note that the ansatz in Eq. (2) preserves the shape of

the initial Boltzmann distribution in the cartesian directions i = x, y, z, and that θi plays

the role of an anisotropic scale factor for the temperature. In the free streaming limit the

solution of the Boltzmann equation is

θi(t) =
1

bi(t)2
, bi(t) =

(

1 + ω2

i t
2
)

1/2
. (5)

In the limit of ideal fluid dynamics we find θi(t) = θ̄(t) with θ̄(t) = [
∏

i bi(t)]
−2/3, which

implies that the temperature is isotropic. The scale parameters bi(t) are determined by

b̈i(t) =
ω2

i
[

∏

j bj(t)
]

2/3
bi(t)

. (6)

This equation can be solved analytically in the limit of late times and a strongly deformed

trap, ωz = λω⊥ and ωx = ωy = ω⊥ with trap deformation λ ≪ 1. In this case one finds

b⊥(t) ≃
√

3/2ω⊥t.

Solutions for the transverse flow velocity and the density distribution in the transverse

plane are shown in Fig. 1. We observe that the free streaming and fluid dynamic solutions

are qualitatively similar. Transverse pressure in fluid dynamics leads to acceleration, which

is reflected in the larger expansion velocity of the fluid dynamics solution in the left panel.

Over time, the larger velocity shifts the peak of the density distribution to larger radii, as

shown in the right panel. It is interesting to note that the velocity field at late times is the
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FIG. 1: Comparison between solutions of the Boltzmann equation in the limits of free streaming

(blue solid curves) and ideal fluid dynamics (red dashed curves). In the left panel we show the

velocity field component ux and the transverse density profile xn(x) at an early time t = ω−1

⊥
. In

the right panel we show these observables at a later time t = 6ω−1

⊥
. The solutions correspond to

a trap deformation λ = 0.045. The density n and the velocity ux are given in arbitrary units, but

the scales in the left and the right panel are identical.

same in free streaming and ideal fluid dynamics. The mean velocity, that is the velocity

weighted by the density, is larger in fluid dynamics because the maximum of the density

is shifted to larger radii. In the limit λ ≪ 1 this difference in the mean velocity can be

understood in terms of energy conservation. In free streaming the internal energy of the

fluid is transferred equally to kinetic energy in all three directions. In fluid dynamics most

of the energy is transferred to transverse motion, and the mean velocity is larger by a factor
√

3/2 ≃ 1.22.

Figure 1 shows the difference between ideal fluid dynamics and free streaming in the

idealized situation that the relaxation time is not a function of density, so that the entire

cloud is either in the ballistic or the fluid dynamical regime. In reality a transition between

the two regimes occurs in the dilute part of the cloud, and the transition region may shift

during the evolution. In Sect. IV we will study a theoretical approach that can dynamically,

as a function of time and the spatial coordinates, accommodate the crossover from fluid

dynamical to ballistic behavior.
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III. FLUID DYNAMICS FROM KINETIC THEORY

Before we introduce anisotropic fluid dynamics we review the derivation of standard fluid

dynamics from kinetic theory. We can view fluid dynamics as an effective description of

a fluid that arises from the Boltzmann equation in the limit of a short mean free path.

Consider the Boltzmann equation

(

∂t + ~v · ~∇x − ~F · ~∇p

)

fp(~x, t) = C[fp] , (7)

where fp is the single-particle distribution function, C[fp] is the collision term, ~v = ~∇pEp the

velocity of a particle with energy Ep, and ~F = −~∇xEp is a force. Using the properties of the

collision term, in particular the conservation of particle number, energy and momentum, we

can derive conservation laws for the conserved currents. Taking moments of the Boltzmann

equation we find (the repeated index j is summed over)

∂ρ

∂t
+ ~∇ · ~π = 0 ,

∂πi

∂t
+∇jΠij = 0 ,

∂E
∂t

+ ~∇ · ~ E = 0 . (8)

The conserved charges, the mass density ρ = mn, the momentum density ~π, and the energy

density E , are given by

ρ(~x, t) =
∫

dΓpmfp(~x, t) ,

~π(~x, t) =
∫

dΓpm~vfp(~x, t) ,

E(~x, t) =
∫

dΓpEpfp(~x, t) , (9)

where dΓp = d3p/(2π)3. The momentum density ~π is also the conserved current associated

with the conservation of mass. The remaining conserved currents are the stress tensor Πij

and the energy current ~ E ,

Πij(~x, t) =
∫

dΓp pivjfp(~x, t) , (10)

~ E(~x, t) =
∫

dΓpEp

(

~∇pEp

)

fp(~x, t) . (11)

In order for Eqs. (8) and (9) to close we have to supply constitutive equations, that is

explicit expressions for the conserved currents in terms of the fluid dynamical variables ρ, ~π
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and E . In kinetic theory constitutive equations can be derived by expanding the distribution

function around the local thermodynamic equilibrium distribution f 0

p ,

fp = f 0

p + δf 1

p + δf 2

p + . . . , (12)

where

f 0

p = exp ([µ− E(|~v − ~u|)] /T ) , (13)

and δfn
p are terms that contain n’th order gradients of the fluid dynamical variables. The

equilibrium distribution function is expressed in terms of intensive quantities, the local

chemical potential µ(~x, t), the temperature T (~x, t), and the fluid velocity ~u(~x, t). From

Eq. (13) we can compute the conserved currents at zeroth order in the gradient expansion.

We get ~π = ρ~u and

Πij = ρuiuj + Pδij , (14)

as well as ~ E = ~u
(

w + 1

2
ρ~u2

)

. Here, P is the pressure and w = E0+P is the enthalpy density,

where E0 denotes the energy density in the local rest frame of the fluid, E0 = E − 1

2
ρ~u2.

The conservation laws combined with Eq. (14) lead to the Euler equations of ideal fluid

dynamics. The final ingredient needed to complete the description is an equation of state,

P = P (E0, ρ). Using the dispersion relation of a free particle, E(~v) = 1

2
m~v 2, we obtain

P = 2

3
E0, which agrees with the exact result for a scale invariant fluid.

The local equilibrium distribution function is a solution of the Boltzmann equation at

leading order in the Knudsen number Kn = lmfp/L, where lmfp is the mean free path and L

is the characteristic distance over which the conserved charges vary. At next order a solution

can be found most easily by using a very simple form of the collision term. Using the BGK

collision term

C[fp] = −fp − f 0

p

τ
, (15)

and, again, taking the dispersion relation to be that of a free particle, we find

δf 1

p = −mτf 0

p

2T

(

cicjσij +
[

5T

m
− c2

]

ckqk

)

, (16)

where we have defined ~c = ~v−~u, and repeated indices i, j, k are summed over. We have also

introduced the strain tensor

σij = ∇iuj +∇jui −
2

3
δij ~∇ · ~u , (17)
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as well as ~q = −~∇ log(T ). The corresponding corrections to the conserved currents are

δΠij = −ησij , δ Ei = ujδΠij − κ∇iT , (18)

where we have defined the shear viscosity η = τP and the thermal conductivity κ = 5

2
τP .

Incorporating the gradient corrections in Eq. (18) into the conservation laws leads to the

Navier-Stokes equation. Note that within the approximations used here the shear viscosity

and the thermal conductivity are proportional to one another, and the bulk viscosity ζ is

zero. In general, η, ζ and κ are independent parameters, but in a scale invariant fluid ζ = 0

is an exact result.

IV. ANISOTROPIC FLUID DYNAMICS FROM KINETIC THEORY

The gradient expansion fails in the dilute regime of the cloud. An obvious solution to this

problem is to consider the full Boltzmann equation, see [25]. Such an approach is motivated

by the observation that even though the classical Boltzmann equation is only justified in the

dilute regime, it reproduces the fluid dynamical limit in the dense regime. This implies that

coarse grained observables extracted from the Boltzmann equation are in fact more reliable

than the kinetic theory which is used to derive them. There are, however, some difficulties

with this approach. First of all, the Boltzmann equation involves a six-dimensional phase

space distribution function, and is considerably more difficult to solve than the Navier-Stokes

equation. Second, the transport properties are now encoded in a non-linear collision integral,

which is difficult to compute from first principles, and not easy to parameterize in a way

that allows for a shear viscosity which is a general function of density and temperature. And

finally, it is difficult to incorporate the empirical equation of state.

An alternative approach is to use a set of fluid dynamical equations which is equivalent

to the approach presented in the previous section at some fixed order in the gradient expan-

sion, but also contains extra, non-hydrodynamic, degrees of freedom that ensure a smooth

crossover to the ballistic regime. Consider

fp = f an
p + δf ′ 1

p + δf ′ 2

p + . . . , (19)

where

f an
p = exp

(

µ

Tle

−
∑

a

mc2a
2Ta

)

, Tle =

(

∏

a

Ta

)

1/3

. (20)
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The form of the anisotropic distribution function f an
p is motivated by the observation that,

for suitable choices of µ, Ta and ua = va − ca Eq. (20) is an exact solution of the Boltzmann

equation describing the expansion from a harmonic trapping potential in the free streaming,

collisionless limit, see Section II. In order to derive the conservation laws and constitutive

equations we will use the free dispersion relation Ep = p2/(2m). This is sufficient in order

to recover the ballistic and fluid dynamical limits, but restricts the form of the equation

of state to P = nT = n
3

∑

a Ta. This is not a problem in the scale invariant limit, because

the evolution equations are only sensitive to the relation P (E0) = 2

3
E0, which is fixed by

scale invariance. The full equation of state, P = P (n, T ), is needed to determine the initial

density profile from the equation of hydrostatic equilibrium, ~∇P = −n~∇V , where V is the

confining potential.

We note that the ansatz for f an
p breaks rotational invariance. This particular ansatz is

intended for analyzing the expansion of a gas cloud from a harmonic confinement potential,

where the symmetry axes of the potential are aligned with the cartesian coordinate system

used. Rotational symmetry can be restored by using the more general ansatz

f an
p = exp





µ

Tle

−
∑

a,b

m

2
caθabcb



 , Tle =
(

det
(

θ−1
))

1/3
. (21)

For our purposes we will continue to use the simpler ansatz given in Eq. (20).

We can use Eqs. (9) - (11) to determine the constitutive equations. We find ~π = ρ~u and

E =
1

2
ρ~u2 + E0 , E0 =

3

2
P . (22)

The stress tensor is given by

Πij = ρuiuj + Pδij + δΠij , δΠij = δiaδja∆Pa , (23)

where ∆Pa = Pa−P . We use the convention that repeated vector indices i, j, k are summed

over, but repeated anisotropic indices a, b are not, unless an explicit summation symbol

occurs. The components of the energy current are

Ei = ui

(

1

2
ρ~u2 + w

)

+ δEi , δEi = ujδΠij = δiaua∆Pa , (24)

where w = E0 + P . In kinetic theory we also find P = nT and Pa = nTa. Combining

the constitutive equations (22) - (24) with the conservation laws Eqs. (8) and (9) gives five
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equations for seven fluid dynamical variables, µ, Pa and ui. We can get two additional

equations by considering further moments of the Boltzmann equation. The conservation

laws arise from taking moments with respect to the conserved quantities 1, m~v, and m~v2/2.

Taking moments with mv2a/2 (no sum over a) gives

∂Ea
∂t

+ ~∇ · ~ Ea = −∆Pa

2τ
, (25)

where we have defined

Ea =
1

2
ρu2

a + E0

a , (26)

(Ea)i = ui

(

1

2
ρu2

a + E0

a + δiaP
)

+ (δEa)i , (27)

and E0

a = 1

2
Pa as well as

(δEa)i = δiaujδΠij = δiaua∆Pa . (28)

Note that Eq. (25), when summed over a, gives the equation of energy conservation. The

remaining two equations determine the non-equilibrium pressure components Pa. Also note

that we can derive additional equations based on the off-diagonal moments with mvavb/2

(a 6= b). These equations determine the off-diagonal components of the temperature in

Eq. (21).

We will show in Section V that Eq. (23) reduces to the Navier-Stokes stress tensor in

the limit τ → 0. This implies that f an
p already contains all terms of order O(∇iuj) in δf 1

p ,

and that δf ′ 1

p only includes terms associated with heat conduction, δf ′ 1

p = O(∇iT ). It is

straightforward to include these effects, but in the context of an expanding gas cloud heat

conduction is a very small effect, because the initial state is isothermal and this property

is preserved by the evolution in ideal fluid dynamics. This implies that gradients of the

temperature are proportional to τ , and, thus, heat flow is a second order effect in the

relaxation time, κ∇iT = O(τ 2).

V. FLUID DYNAMICAL EQUATIONS IN LAGRANGIAN FORM

In practice we solve the equations of fluid dynamics in Lagrangian form. We introduce

the comoving time derivative D0 = ∂0 + ~u · ~∇. The continuity equation can be written as

D0ρ = −ρ~∇ · ~u (29)
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and the equations of momentum and energy conservation are

D0ui = −1

ρ
(∇iP +∇jδΠij) , (30)

D0ǫ = −1

ρ
∇i

(

uiP + δEi
)

, (31)

where we have defined the energy per mass ǫ = E/ρ and δEi = ujδΠij as well as δΠij =

δiaδja∆Pa. The equation for the anisotropic energy density can be written as

D0ǫa = −1

ρ
∇i

[

δiauiP + (δEa)i
]

− 1

2τρ
∆Pa , (32)

where ǫa = Ea/ρ and (δEa)i = δiaujδΠij. In standard fluid dynamics we view ρ, ui and E
as the fluid dynamical variables. Their time evolution is governed by Eqs. (29) - (31), and

in order to determine the RHS of Eqs. (30) and (31) we use the equation of state P (E0)

with E0 = E − 1

2
ρ~u2, where in a scale invariant fluid P (E0) = 2

3
E0. In anisotropic fluid

dynamics we have two extra variables, E1 and E2 with
∑

a Ea = E . Their time evolution is

governed by Eq. (32), and Pa is given by the anisotropic equation of state Pa(E0

a) = 2E0

a

with E0

a = Ea − 1

2
ρu2

a. Note that P = 1

3

∑

a Pa satisfies the isotropic equation of state.

In the previous section we argued that in the limit τ → 0 anisotropic fluid dynamics re-

duces to Navier-Stokes viscous fluid dynamics. We expect, in particular, that the dissipative

correction to the stress tensor δΠij = δiaδja∆Pa approaches δΠij = −ησij (for i = j) with

η = τP . To see this we rewrite Eq. (32) as

∆Pa = −2τρ

(

D0ǫa +
1

ρ
∇i

[

δiauiP + (δEa)i
]

)

(33)

and solve for ∆Pa at leading order in τ . This implies that in evaluating E0

a and (δEa)i we

can replace Pa by P , so that ǫa = 1

3
ǫ − 1

6
~u2 + 1

2
u2

a and (δEa)i = 0. We use the equations of

ideal fluid dynamics to compute D0ǫ and D0ui and find

∆Pa = τP
(

2

3
~∇ · ~u− 2∇aua

)

+O(τ 2) = −τPσaa +O(τ 2) . (34)

This result shows that anisotropic fluid dynamics relaxes to the Navier-Stokes equation with

η = τP , (35)

where τ is the relaxation time. Note that the expression in Eq. (23) does not reproduce the

off-diagonal components of δΠij in Navier-Stokes theory. In order to study flows in which

these terms are non-zero we have to start from the more general ansatz in Eq. (21) and

consider moments of the Boltzmann equation with mvavb/2 for a 6= b.
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VI. ANISOTROPIC FLUID DYNAMICS: NUMERICAL METHOD AND

CHOICE OF UNITS

We have implemented anisotropic fluid dynamics as an extension of the Navier-Stokes

code described in [20]. The Navier-Stokes code solves the advection equations in Lagrangian

coordinates. A Lagrangian time step is followed by a piecewise parabolic remap onto

an Eulerian grid. The algorithm is based on the PPMLR (Piecewise-Parabolic Method,

Lagrangian-Remap) scheme developed by Colella and Woodward [26] and implemented as a

multi-dimensional method in the VH1 code written by Blondin and Lufkin [27]. The main

modification is that we add the fluid dynamical variables Pa and Ea and solve Eq. (32). We

solve for all three components of Pa and verify that 1

3

∑

a Pa agrees with P . Since Eq. (32)

is a relaxation equation for ∆Pa we have to choose the time step as

∆t = min
x

(

cs
∆x

2
, ui

∆x

2
, τ
)

, (36)

where cs is the local speed of sound, ∆x is the grid spacing, and τ = η/P is the local relax-

ation time. The first two constraints arise from the condition that disturbances emerging

from opposite faces of a fluid cell cannot interact during a time step. The third constraint

ensures that the relaxation time equation is stable. The condition ∆t ≤ τ implies that the

simulation becomes inefficient if τ is very small, which is close to the limit of ideal fluid

dynamics. In principle this can be addressed by using the analytic result given in Eq. (34),

but we have not done so in the present work.

We have studied the evolution of a unitary Fermi gas after release from a harmonic trap.

The trapping potential is V (x) = 1

2
mω2

i x
2

i with ωx = ωy = ω⊥ and ωz = λω⊥. We use

dimensionless variables for distance, time and velocity based on the following system of

units [20]

x0 = (3Nλ)1/6
(

2

3mω⊥

)1/2

, t0 = ω−1

⊥
, u0 = x0ω⊥ . (37)

The unit of density is n0 = x−3

0 . The corresponding units for energy density, pressure, and

temperature are given by

E0 =
mω2

⊥

x0

, P0 =
mω2

⊥

x0

, T0 = mω2

⊥
x2

0
. (38)

Finally, the unit of the shear viscosity is

η0 =
mω⊥

x0

. (39)
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In the high temperature limit the initial density is a Gaussian. The central density is given

by

n(0) = n0

Nλ

π3/2

(

EF

E0

)3/2

, (40)

where N is the number of particles, EF = (3Nλ)1/3ω⊥ is the Fermi energy, and E0 is the

total energy per particle of the trapped gas. Moreover, it is convenient to normalize the

dimensionless central density n(0)/n0 to one. This means we also divide the density by

the dimensionless factor (Nλ)/π3/2 · (EF/E0)
3/2 in equ. (40). The normalized dimensionless

shear viscosity is

η̄ =
η

η0

n0

n(0)
. (41)

In the following we will consider a shear viscosity of the form η = αnn + αT (mT )3/2. The

corresponding dimensionless shear viscosity is η̄ = ᾱnn̄ + ᾱT T̄
3/2 with

ᾱn =
3

2

αn

(3Nλ)1/3
, ᾱT =

4π3/2

3

αT

(3Nλ)1/3

(

E0

EF

)3/2

. (42)

Kinetic theory predicts that in the high temperature limit αn = 0 and αT = 15/(32
√
π). In

the anisotropic fluid dynamics framework the shear viscosity is determined by the relaxation

time. The dimensionless relaxation time is

τ̄ =
τ

t0
=

η̄

P̄
. (43)

Equation (42) shows that, in dimensionless units, the number of particles N only appears

together with the viscosity coefficient. This implies that the ideal evolution is independent

of N , and that for a given viscosity dissipative effects are smaller for a larger number of

particles.

VII. ANISOTROPIC FLUID DYNAMICS: RESULTS

We first consider the case αT = 0 and study the dependence on αn. Figure 2 shows

the time evolution of the aspect ratio AR(t) = 〈r2
⊥
〉/〈r2z〉, defined by the ratio of mean

squared transverse and longitudinal cloud radii, for different values of the shear viscosity,

ᾱn = 0.1, 1, 1000. For comparison we also show the result in ideal fluid dynamics, the free

streaming limit, and the solution of the Navier-Stokes equation for ᾱn = 0.1, 1. We consider

a Gaussian initial condition, which corresponds to a solution of the hydrostatic equation in
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FIG. 2: This figure shows the evolution of the aspect ratio AR as a function of time t in dimension-

less units, as explained in the text. The initial trap deformation is AR(0) = λ = 0.1 and the initial

energy is E0/EF = 1. The red solid curve shows the evolution in ideal fluid dynamics, and the

black dashed curve is the free streaming limit. The remaining curves were obtained using viscous

fluid dynamics with different values of ᾱn for the shear viscosity η̄ = ᾱnn̄. The dotted curves show

Navier-Stokes results for ᾱn = 0.1, 1 and the data points are the corresponding predictions from

anisotropic fluid dynamics. In the case of anisotropic fluid dynamics we also show the result for

ᾱn = 1000, which is close to the free streaming limit.

the case of an equation of state of a free gas, P = nT . At t = 0 the aspect ratio is given by

the trap deformation, AR(0) = λ. Pressure gradients preferentially accelerate the fluid in the

transverse direction, and AR(t) grows as a function of time. Viscous effects counteract the

expansion in the transverse direction, and accelerate the fluid in the longitudinal direction,

reducing the value of AR(t).

For the smallest value of the shear viscosity, ᾱn = 0.1, we find good agreement between

anisotropic fluid dynamics and Navier-Stokes theory, as expected from Eq. (34). For larger

values of ᾱn anisotropic fluid dynamics predicts that dissipative effects saturate, and that

AR(t) approaches the free streaming limit. In Navier-Stokes theory, on the other hand,

dissipative effects continue to grow with ᾱn and the evolution of AR(t) becomes arbitrarily

slow.

More details are provided by Fig. 3. In this figure, we compare the dissipative corrections

14



-5 0 5
x / x

-0.03

-0.02

-0.01

0

δΠ
   

/P

Π    (A-Hydro)
Π    (Navier-Stokes)

xx
0

0

xx

xx

x

FIG. 3: This figure shows the xx component of the dissipative correction to the stress tensor

δΠxx(x, 0, 0) in Navier-Stokes theory (green solid curve) and in anisotropic fluid dynamics (red

squares) for different times t/t0 = 0.75 − 2.0 in steps of ∆t = 0.25 t0. The magnitude of the

viscous stresses decreases with time. The calculation was performed with a density dependent

shear viscosity η̄ = ᾱnn̄ and ᾱn = 0.15. We used a trap deformation λ = 0.045 and an initial

energy E0/EF = 3.

to the stress tensor in Navier-Stokes theory and in anisotropic fluid dynamics. We focus

on the xx components δΠNS
xx = −ησxx and δΠAH

xx = ∆Px at different times during the

evolution of the expanding gas cloud. The calculation was performed for ᾱn = 0.15, so that

the aspect ratio AR(t) shows good agreement between Navier-Stokes theory and anisotropic

fluid dynamics. Note that δΠNS
xx in Fig. 3 was computed using the velocity field in anisotropic

fluid dynamics. We observe that the two dissipative stress tensors are indeed very close, and

that the agreement improves at late times. This indicates that the equations of anisotropic

fluid dynamics contain second order terms in τ that describe the relaxation of the stress

tensor to the Navier-Stokes limit [28, 29].

Figure 4 demonstrates that anisotropic fluid dynamics can be applied to the case of a

purely temperature dependent shear viscosity, η = αT (mT )3/2, for which Navier-Stokes fluid

dynamics fails. We observe that in the center of the cloud the two dissipative corrections

to the stress tensor are close, in particular at late times. In the corona, however, δΠNS
xx

and δΠAH
xx are very different. As explained in Section I the dissipative contribution to the
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FIG. 4: Same as Fig. 3 for a temperature dependent shear viscosity η̄ = ᾱT T̄
3/2 with ᾱT = 0.06.

The blue dashed line shows the negative of the anisotropic pressure component Px.

Navier-Stokes stress tensor is approximately constant in space. In contrast, the dissipative

contribution to the stress tensor in anisotropic fluid dynamics goes to zero in the dilute part

of the cloud. As we can see from the blue dashed curves in Fig. 4 this happens in the regime

where the dissipative stresses are comparable to the total pressure of the fluid, |δΠNS
xx | ∼ Px.

This condition, corresponding to the point where the dashed blue line intersects the red

symbols, signals the breakdown of Navier-Stokes theory.

We note that −∇xδΠ
AH
xx corresponds to a force that points towards the center of the

cloud, and reduces the transverse expansion. We also observe that at late times σxx, which

measures the slope of the velocity field, is smaller in the center than in the corona. Viscous

forces push on the center of the cloud and slow it down, while the ballistic corona is lifting

off.

In anisotropic fluid dynamics the viscous stresses are concentrated in the center of the

gas cloud even if ησij is not localized. We therefore expect that the time evolution of the

aspect ratio AR(t) can be described by an effective density dependent shear viscosity η ∼ n

even if the microscopic shear viscosity is only a function of temperature. This approximation

has been used to analyze experimental data on the expansion of trapped Fermi gases near

unitarity [4, 8]. In Fig. 5 we show that for a given initial temperature, and for a suitably

chosen value of αn, the evolution of AR(t) is indeed essentially indistinguishable between
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FIG. 5: This figure shows the time evolution of the aspect ratio AR from a simulation using

anisotropic fluid dynamics with ᾱT = 0.023 in η̄ = ᾱT T̄
3/2 and λ = 0.1, E0/EF = 1 (blue squares).

For comparison we also show the result in ideal fluid dynamics (red solid curve) and the case

of purely ballistic expansion (black dashed curve). The green dotted curve shows a fit to the

ᾱT = 0.023 result based on Navier-Stokes theory with ᾱn = 0.066 in η̄ = ᾱnn̄.

the two cases η ∼ n and η ∼ (mT )3/2.

In order to resolve this ambiguity and determine the full microscopic dependence of η

on n and T we have to study the sensitivity of the effective αn on the initial temperature

T or the initial energy E0/EF . In the literature, the value of αn which describes the time

evolution of AR(t) at a given initial temperature is referred to as the trap averaged value

of η/n, denoted 〈αn〉 [4]. In Fig. 6 we show the dependence of 〈αn〉 on E0/EF for the

case η = 15/(32
√
π)(mT )3/2. We consider a Gaussian initial condition, so that E0 = 3T .

We observe that the growth of 〈αn〉 is not simply proportional to E
3/2
0 . This is because

the evolution is not only sensitive to the temperature dependence of the shear viscosity,

η ∼ T 3/2, but also to the temperature dependence of the relaxation time, τ ∼ T 1/2, and the

temperature dependence of the effective relaxation volume.

We note that as a consequence of the complicated dependence of 〈αn〉 on the system size

and lifetime the result is not universal, which means that 〈αn〉 depends on the number of

particles N and the trap deformation λ. In the present work we will not attempt to perform a

detailed analysis of the experimental data obtained in [8, 9]. This will require implementing
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FIG. 6: This figure shows the dependence of 〈αn〉, the effective trap averaged ratio η/n, on the

initial energy per particle in units of the Fermi energy EF . A precise definition of 〈αn〉 is given

in the text. The calculation was performed for a gas cloud of 2 · 105 particles with an initial trap

deformation of λ = 0.045. The microscopic shear viscosity is given by the kinetic theory result in

the high temperature limit, η = 15/(32
√
π)(mT )3/2.

a non-axially symmetric confining potential, a non-Gaussian initial density distribution, a

realistic equation of state P (n, T ), and a shear viscosity which is a function of both n and

T . It is nevertheless interesting to consider a rough comparison between our results and the

analysis in [9]. At E0/EF = 3.14 we find 〈αn〉 = 13.49, compared to 〈αn〉 = 19.63 ± 0.54

reported in [9]. The discrepancy is an indication of the magnitude of the effects due to the

trap geometry, contributions beyond the dilute limit of the equation of state and the shear

viscosity, and possible shortcomings of our description in the regime where the size of the

fluid dynamical core shrinks to zero, and a kinetic treatment of the entire cloud is more

appropriate.

VIII. CONCLUSIONS AND OUTLOOK

In this work we have shown that by including non-hydrodynamic degrees of freedom it

is possible to achieve a smooth transition between fluid dynamics and the ballistic limit.

There are a number of interesting applications and theoretical issues that remain to be

investigated.
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• Other fluid dynamic problems: The anisotropic fluid dynamics approach, described by

equ. (29-32), provides a general scheme for addressing problems in which the transition

regime from fluid dynamics to ballistic behavior plays a role. In this work we have

applied this method to the expansion of a unitary Fermi gas from a harmonic trap, but

the applicability of the approach is clearly much broader, including Bose or classical

gases, as well as other experimental observables, such as collective modes.

• Restoring rotational invariance: In this work we only considered the “cartesian” ansatz

in Eq. (20). In order to restore full rotational invariance we have to start from Eq. (21)

and derive the corresponding fluid dynamical equations.

• Relation to second order fluid dynamics: In our numerical simulations we observed

that anisotropic fluid dynamics contains some effects that appear at second order in

the gradient expansion of fluid dynamics, in particular a finite viscous relaxation time.

It would be interesting to make this more precise, and extend the equations of motion

to complete second order accuracy.

• More accurate treatment of the Knudsen limit: We have shown that anisotropic fluid

dynamics reproduces the Navier-Stokes equation at order O(τ), where τ is the relax-

ation time in the BGK approximation to the Boltzmann equation. In the opposite

limit, τ → ∞, anisotropic fluid dynamics provides an exact solution of the Boltzmann

equation for τ = ∞. However, at O(1/τ) anisotropic fluid dynamics does not provide

an exact solution of the Boltzmann equation, only a solution at second order in an

expansion in moments of the distribution function with respect to momentum. The

reliability of this approximation can be studied by comparing with the exact numerical

solutions obtained in [25].

• Extension to superfluid hydrodynamics: The experimental results obtained in [9] also

cover the regime T < Tc, where Tc is the critical temperature for superfluidity. In

order to extract the shear viscosity in this regime we have to extend anisotropic fluid

dynamics to the superfluid (two-fluid) regime.

• Extension to spin diffusion: The problem related to the dilute regime also affects the

extraction of the spin diffusion constant. It will be interesting to study whether our

method can be extended to the case of charge and spin diffusion.
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Our immediate goal is to use the method developed in this work to extract the local

shear viscosity η(n, T ) = nf(n/T 2/3) from the data presented in [9]. This can be achieved

by inverting the dependence of the aspect ratio AR(E0, t) as a function of the initial energy

on the function f(x). As explained in the previous section, this will require implementing

a non-Gaussian initial density distribution as well as considering a non-axially symmetric

trap, and a realistic equation of state P (n, T ). A natural starting point for unfolding the full

density and temperature dependence of the shear viscosity is the reconstruction presented

in [9]. At this point we have not implemented a superfluid version of the anisotropic fluid

dynamics method, and we are limited to the regime T > Tc.
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