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The nuclear-spin optical rotation (NSOR) effect, which has potential applications in correlated
nuclear-spin-resonance optical spectroscopy, has been explored earlier experimentally and theoret-
ically in liquid Xe. Calculations of the Xe NSOR constant are very challenging because the result
is sensitive to correlations, relativistic effects, and the choice of the basis, with strong cancellation
between contributions from lowest and remaining states. The relativistic configuration-interaction
many-body theory approach, presented here, is promising since this approach has been successful
in predicting various properties of noble-gas atoms, such as energies, oscillator strengths (OSs),
Verdet constants, and photoionization cross sections. However, correlations become stronger along
the sequence of noble-gas atoms and theoretical accuracy in Xe is not as high as for example in neon
and argon. To improve the accuracy of the Xe Verdet and NSOR constants, which are calculated
as the explicit sums over the excited states, theoretical values for several lowest levels are replaced
with empirical values of energies, OSs, and hyperfine structure constants. We found that Xe Verdet
constant is in excellent agreement with accurate measurements. To take into account liquid effects,
empirical data for energy shifts were also used to correct the NSOR constant. The resulting Xe
NSOR constant is in a good agreement with experiment, although the liquid-state effect is treated
quite approximately.

PACS numbers: 31.15.ag 31.15.aj 31.15.ap

I. INTRODUCTION

The optical detection of the nuclear magnetic resonance (NMR) signal based on the nuclear-spin optical rotation
(NSOR) effect [1], as well as other optical-NMR phenomena [2], including frequency shift by circularly polarized light
[3–10], is a promising method for realizing correlated optical-NMR spectroscopy and imaging. NSOR constants have
been measured and calculated in various liquids [1, 11–15], including liquid Xe [1, 11]. It was found that results vary
substantially depending on theoretical methods and that relativistic and correlation corrections are important [11] as
well as the choice of the basis functions.
The Xe case is particularly interesting for theory. First, NSOR can be calculated using molecular and atomic

structure computational methods for comparison, especially since atomic codes usually have more advanced treatment
of relativistic and correlation effects for an atom. Second, experimental NSOR constants were measured for three
substantially different wavelengths. This provides the basis for testing theoretical wavelength dependence. Third, the
approximation of an isolated atom can be a good starting point, since van der Waals’ interaction is fairly weak. In
fact, as we will discuss later, the shift for the transitions that give large contributions to the NSOR effect measured
in the visible range is quite small. Apart from this, NSOR experiments can be in future conducted with Xe gas to
exclude liquid effects to enable precision test of theory. Fourth, relativistic effects and correlations within the atom
are substantial and require careful treatment. Variation of results when relativistic and non-relativistic methods are
compared is a clear indication of this [11]. Finally, experimental values of hyperfine constants and oscillator strengths
of the lowest levels that give the dominant contributions to the NSOR effect have been measured, so not only theory
can be tested but also ab initio results can be corrected with the empirical data, as we will demonstrate.
In this paper, the Xe NSOR constant is calculated with two particle-hole configuration-interaction many-body

perturbation theory (CI-MBPT) methods: 1) full CI-MBPT and 2) CI-hole MBPT (CI-hMBPT), which is a truncated
version of the first. Both methods are based on CI expansion of particle-hole states with inclusion of interactions
of hole states with the core. Particle-hole excited states present additional difficulty to the theory because of poor
convergence of MBPT for hole energies. MBPT needs to be modified from its standard form to include some large
corrections that are present in single-double couple-cluster method and beyond [16]. The interaction of excited
states with the core is included in full CI-MBPT, but not in CI-hMBPT. The CI-MBPT and CI-hMBPT have been
successful in noble-gas atoms and gave energies and oscillator strengths (OSs) [17–19], g-factors [20], photo-ionization
cross-sections [21], and Verdet constants [22] in agreement with experiment. From Ne to Xe accuracy deteriorates due
to increase in correlation corrections. Because of this, in Xe CI-MBPT is no much more accurate than CI-hMBPT.
After explaining the theoretical methods in some detail, we will calculate Xe CI-MBPT and CI-hMBPT energies,

OSs, hyperfine structure (HFS) constants, and NSOR constants. Ab initio NSOR constants will be corrected using
empirical data for OSs and HFS constants. Finally, we will take into account liquid effects by modifying energies of
two lowest states. The results will be compered with experiment and other theories.
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II. METHOD

A. Particle-hole CI-MBPT

The particle-hole CI-MBPT method has been described and applied to calculations of properties of noble-gas atoms
in previous work [16–20]. An orthogonal set of orbitals is introduced
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√
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)
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and H(2) is given in [16], is used to calculate eigenstates. Here v denotes a particle state and a denotes a hole state;
for complete explanation of the method and notations the reader is referred to [16]. The second-order correction to
the hole states is particularly important, and we provide separate calculations with CI-hMBPT. Beyond the Dirac-
Hartree-Fock (DHF) approximation, relativistic effects are also included by adding Hartree-Fock hole Breit correction
also defined in [16]. The states (i) are formed as linear combinations of the particle-hole orbitals,

Ψi =
∑

av

Ci(av)ΦJM (av) (3)

and reduced matrix elements are calculated between these states. For example, the reduced matrix element of r is

ri =
∑

av

Ci(av)〈a||r||v〉(−1)ja−jv (4)

B. B-spline basis

To obtain the basis, first the DHF equation is solved for the Xe ground state to obtain the DHF potential. Then
B-spline expansion of the ground and excited states is obtained by solving the DHF equation for an atom in a
cavity, with the size chosen to minimize distortion of the lowest atomic states and to achieve completeness of the
basis with relatively small number of splines, 40. It has been shown that such bases are accurately complete and
MBPT implementations that involve summation over basis function states provide high precision. In order to test the
convergence of the results with the basis, we compared NSOR calculations using the cavity radii of 60 atomic units
(a.u.) and 40 a.u. and the number of particle-hole states 28, 122, and 152. Configurations (the case of 122) were chosen
as follows: 5p−1

1/2ns, 5p
−1
3/2ns, 5p

−1
1/2nd3/2, 5p

−1
3/2nd3/2, 5p3/2nd5/2 with n up to 26, and 5s−1np1/2 5s−1np3/2 with n up

to 12, included. After comparison of various cases, we found that the cavity R = 40 a.u. and 122 configurations were
optimal.

C. NSOR formula with explicit summation

The Xe NSOR constant is calculated using third-order perturbation-theory expression with explicit summation over
intermediate excited states:

φ = −2πlωN
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where φ is the light polarization rotation angle in rad, Iz average nuclear spin along the quantization axis, αv is the
vector polarizability, with the superscripts denoting either single or double sum parts, ω is the light frequency, fk are
oscillator strengths between the ground and excited states k, n is the refractive index, ak is the hyperfine coupling

coefficient defined with Hhf
k = akJ · I, aij are the corresponding off-diagonal matrix elements. This expression can

be derived using formalism developed in [23], where instead of three photon absorption, we use the absorption of one
photon with frequency ω, then absorption of one hyper-fine “photon” with zero frequency, and emission of photon
with frequency ω and the reverse process where the photon is first emitted and then absorbed. The Verdet constant,
as well as the NSOR constant, is also proportional to the difference between the refractive index of positive and
negative circularly polarized photons, so there will be corresponding diagrams of these types. Note that the third-

order term with double summation α
(2)
v was neglected in [1]. Although this term is expected to be small, owing to

strong cancellation between low- and high-energy contributions, it is still important to evaluate it. In case of the
Verdet constant, the equation contains the off-diagonal magnetic-dipole moment matrix elements. In non-relativistic
approximation, many off-diagonal hyperfine matrix elements disappear due to the fact that the summation is carried
out over the singlet states and the hyperfine operator can be reduced to L/r3, where L is the angular momentum
operator. In the case of the Verdet constant, all non-diagonal matrix elements vanish and the Verdet constant
becomes proportional to the frequency derivative of the refractive index. With this approach of explicit summation
and separation of the diagonal contribution, it is possible not only to analyze contributions from various states and
estimate the accuracy of the theory from comparison with the available data for fk, ak, and ωk, but also to make
corrections using the experimental data. Furthermore, effects of interatomic interactions can be included from external
data: changes in OSs from gas to liquid, changes in transition energies and broadening. Below we will demonstrate
how the results can be corrected using experimentally available transition energies [24].

D. Results

We used CI-MBPT and CI-hMBPT methods to calculate Xe energies, OSs, HFS and Verdet constants, and finally
NSOR constants from Eq.5. Table I shows the compilation of energies, OSs, HFS constants calculated with CI-hMBPT
and CI-MBPTmethods for four lowest J=1 odd states. Since hole energies are the main contributor to the particle-hole
energy of states and are strongly correlated with core states, they are calculated beyond regular second-order MBPT,
with modified MBPT [16], as we discussed above. It can be observed that energies calculated with both CI-hMBPT
and CI-MBPT agree well with experiment, with the average deviation of a few percent, with energies being slightly
overestimated by CI-hMBPT and underestimated by CI-MBPT. In the case of OSs, there are many measurements
(a compilation is given in Ref.[25]) that substantially disagree, so for comparison we averaged the measured values
listed in Ref.[25]. Theoretical values show agreement with experiment for strong transitions, but the agreement is of
qualitative nature for weaker transitions. This is quite expected taking into account limited precision of theory to
which weak transitions are more sensitive and does not affect much the accuracy of the NSOR calculations because
their contributions are small. Calculations of HFS constants also show agreement with experiment, especially taking
into account their strong sensitivity to correlations. To further improve accuracy, it can be important to use all-order
methods, such as coupled-cluster single-double method with energy adjusted pseudo potential and perturbatively
added triple excitations[26] (note that some technical difficulties might exist with this method in calculations of
hyper-fine matrix elements). Although semi-empirical methods were quite successful in Xe [27], they were applied to
lowest states without giving a complete basis set required in NSOR calculations with Eq.5.
The Verdet constant is calculated similarly as the NSOR constant, with the third order expression that involves

summation over excited states, including continuum. Effectively, HFS matrix elements are replaced with g-factors or
magnetic-dipole matrix elements. In non-relativistic case the summation is over singlet states due to the fact that
singlet-triplet transitions are forbidden. In addition it is possible to calculate the refractive index for a given frequency
and from its derivative obtain the Verdet constant [28]:

V = 1.024× 106ω
dn

dω
. (8)

Here the Verdet constant has units of µmin Oe−1 cm−1 at STP. In Table II we listed the relativistic results. In
addition to purely ab initio values we replaced OSs and energies for four first excited levels to improve accuracy
using experimental values. This replacement procedure led to more consistent agreement between CI-MBPT and CI-
hMBPT Verdet constants. Also after the addition of off-diagonal contributions, the agreement of both CI-MBPT and
CI-hMBPT calculations with experiment became very close, especially at 1064 nm, at which precise measurements
were recently reported [29]. Previously, the Verdet constant calculated with the CI-hMBPT method for He,Ne, Ar,
Kr, and Xe [28] using only the diagonal contribution (single sum) showed very good agreement for lighter atoms,
which is expected from the smallness of correlations and relativistic effects.
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After investigating Verdet constants, we calculated NSOR constants using both CI-MBPT and CI-hMBPTmethods.
In addition, similarly as in the case of the Verdet constant, we replaced energies and OSs and HFS constants for the
lowest excited states that give dominant contribution. The results are presented in Table III. We also show the
contribution from the lowest four excited states to give an idea of strong cancellation between this part and the
rest. Due to the cancellation the results are quite different between CI-MBPT and CI-hMBPT even after additional
empirical corrections and adding off-diagonal contributions. This is quite unlike the case of the Verdet constant. This
is not surprising because even larger variation was observed between theoretical methods in [11] (Table IV).
Liquid Xe posses further complications for theory. Not only energies, OSs and HFS constants are expected to

be significantly different but also the error in the NSOR constant calculations due to overall uncertainty in them
is amplified by strong cancellation, as in an isolated Xe atom. Because the NSOR constant depends on energies
of the excited states very sharply, we attempted to take into account liquid effects by replacing identifiable energy
shifts in the solid Xe at 53 K given in [24]. We chose to use the data at the highest available temperature, 53 K,
because the solid state approaches the liquid state when temperature is raised. To some extent, using empirical
data for solid Xe is a better approximation for liquid Xe than using a dimer [11], which takes into account only
the interaction with one atom. Ideally it is desirable to replace not only energies, but also OSs and HFS constants,
but these data are not available. Nevertheless, it seems that the empirical corrections for liquid effects attempted
here bring the results in closer agreement with the experiment (Table V). Further reduction in the NSOR constant
about 1.4 times is also included due to the refractive index n according to Eq.5. Since we did not find the value of
n for different wavelengths in liquid Xe in the literature, we estimated it in the long wavelength limit from a known
dielectric constant and then used theoretical calculations to extrapolate n to different wavelengths. With energy
shift and refractive index corrections, we find that the average value of CI-MBPT and CI-hMBPT NSOR constants
agrees well with the experimental measurements for all measured wavelength. Although such agreement could be
coincidental, the refractive index reduction is estimated quite accurately, and the factors due to other liquid-state
effects, such as changes in OSs, hyperfine matrix elements, and energies of higher excited states, can be considered to
have uncertainty of 100%. The variation between CI-MBPT and CI-hMBPT results gives the estimate of accuracy of
our result as being 50%, which is not much influenced by uncertainty arising from liquid effects. Because the trend is
well reproduced, it becomes possible to extrapolate experimental values to different wavelength with better accuracy
then theoretical uncertainty for absolute values. For example, at 405 nm, we predict that the NSOR constant is
-2.2±0.5×10−5 rad/M/cm. It is also interesting to note that the absorption peak shifts in the solid Xe depend on
temperature and hence some variation of results is expected for liquid itself. This is a clear indication of sensitivity of
the NSOR effect to the structure properties of liquid, and this sensitivity can be used to study the liquid structure.
Apart from our empirical analysis based on energy shifts, in Ref.[11] a theoretical estimate based on dimers was made
that liquid effects reduce the NSOR constant by 35-45%, which is consistent with the calculations we presented here.
In general, one conclusion can be made that in order to have more stringent test of theory, it is important to

conduct measurements of the NSOR constant in gas. This should be quite possible, since liquid experiment was done
with only 1 cc of 3%-polarized Xe, while much longer path length and higher polarization can be used with hyper
polarized Xe gas. On the other hand, liquid Xe can be further experimentally studied to obtain energies and OSs;
however, the hyperfine constant is hard to extract due to broadening. Most likely path is to elaborate theory for Xe
liquid and test it against the absorption spectrum. Then the theoretical values can be substituted for example in our
calculations to take into account liquid effects.

III. CONCLUSION

In this paper we calculated the Xe Verdet and NSOR constants (both for gas and liquid) using relativistic mixed
configuration-interaction many-body perturbation theory. The theory was tested by comparison of energies, OSs,
and HFS constants with experiment. Energies are in good agreement, while OSs and HFS constants have substantial
deviations. Nevertheless, we refined our Verdet and NSOR constant calculations in vacuo by replacing energies and
OSs of four and HFSs of three lowest odd excited states of J=1 with experimental values. The replacement of energies
and OSs leads to an excellent agreement for the Verdet constant of Xe gas calculated with both CI-MBPT and
CI-hMBPT methods. Furthermore, using the NSOR explicit summation formula, we replaced energies of two lowest
J = 1 odd states with those in solid Xe at 53K and divided results by the refractive index to estimate the NSOR
constant in liquid Xe. The result was found in good agreement with experiment, although the theoretical error is
about 50%. One conclusion can be made that the approach of using explicit summation and experimental values
works and can be further refined by using experimental and theoretical data: measured absorption peaks in liquid
Xe, absolute measurements of absorption coefficients or OSs, HFS constant calculations. Finally, to verify theoretical
methods at higher level of precision, it would be important to conduct measurements using hyperpolarized Xe gas.
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TABLE I: Comparison of theoretical and experimental energies (atomic units), OSs (dimensionless), and HFS constants
(HFSC)(MHz) of relevant odd J = 1 states that enter Eq.5.

Levels 6s[3/2] 6s′[1/2] 5d[1/2] 5d[3/2]
CI-hMBPT energy 0.3253 0.3617 0.3790 0.3957
CI-MBPT energy 0.2957 0.3356 0.3511 0.3802
NIST energy 0.3100 0.3517 0.3644 0.3822
NIST-CI-MBPT Diff. 0.0144 0.0161 0.0134 0.0020
OS CI+hMBPT 0.241 0.214 0.059 0.266
OS CI-MBPT 0.318 0.266 0.044 0.752
OS expt. Avr. 0.253 0.200 0.012 0.385
HFSC CI-hMBPT -901 -2940 -4376 415
HFSC CI-MBPT -560 -3950 -3989 437
HFSC expt -963 -5793 -2421

TABLE II: Comparison of CI-MBPT and CI-hMBPT (only hole states contain MBPT corrections) theoretical Verdet constants
(micromin/Oe/cm) with experiment: Σ122 is obtained with the summation over 122 particle-hole states, +ΣE−T

4
with energies

and OSs replaced with experimental for four lowest states; +Σi6=j with the double summation non-diagonal contribution.
Experimental Verdet constants are obtained using the empirical formula given in Ref. [30]; in addition, for 1064 nm two
accurate measurements are also listed, a [31] and b [29].

λ(nm) CI-MBPT CI-hMBPT Expt.

Σ122 +ΣE−T
4

+Σi6=j Σ122 +ΣE−T
4

+Σi6=j

300 337 247 208 209 233 195 247
350 221 164 138 140 155 130 151
405 153 115 97 99 109 92 100
488.8 98 75 63 65 71 60 63
505 91 70 59 60 66 55 58
514.5 87 67 57 58 63 53 55
532.0 81 62 52 54 59 50 51
589 65 50 42 43 47 39 41
694.3 45 35 30 30 33 28 28
770 37 28 24 25 27 23 22
1064 18.6 14.1 12.1 12.6 13.7 11.5 11

11.9±0.1a

12.2±0.3b
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4
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4
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TABLE IV: Comparison of current and previous theoretical in vacuo NSOR constants (105×rad/M/cm)
X
X
X
X
X
X
X
XX

Method
λ(nm)

1064 770 532

DFT/BLYP NR 2.39 4.85 11.71
DFT/BLYP R 1.79 3.67 9.03
DFT/B3LYP NR 1.76 3.57 8.59
DFT/B3LYP R 1.21 2.49 6.16
DFT/BHandHLYP NR 1.17 2.39 5.76
DFT/BHandHLYP R 0.68 1.42 3.59
HF NR 0.74 1.51 3.71
HF R 0.35 0.76 2.04
NR CCSD 1.29 2.60 6.17

CI-hMBPT Σ122+ΣE−T
4

0.66 1.17 2.00
CI-MBPT Σ122+ΣE−T

4
1.23 2.29 4.53

CI-hMBPT Σ122+ΣE−T
4

+Σi6=j 0.22 0.38 0.62
CI-MBPT Σ122+ΣE−T

4
+Σi6=j 1.06 1.99 4.53

TABLE V: Calculations of the NSOR constant for liquid Xe using corrections for energy shifts of the two lowest levels observed
in solid Xe at 53K “E2 liq.” and dividing the result by the refractive index, “E2 liq./n”. The refractive index in the long
wavelength limit is obtained from the experimental dielectric constant; the frequency dependence is obtained theoretically. As
it can be seen, significant reduction of the NSOR constant is observed compared to in vacuo values. CI-MBPT and CI-hMPBT
calculations are compared. The average of these is given as the final theoretical result with error bar computed from the
difference for comparison with experiment. Agreement with experiment for average can be observed, and theory can be used
to predict the NSOR constant at different wavelengths with uncertainty roughly equal to the experimental error bar at 532
nm, that is 20%. this agreement should be treated with caution because the energy shifts of solid Xe instead of liquid Xe were
used and oscillator strength as well as hyperfine constants were assumed unchanged by van-der Waalse interactions. It might
be also the case that the energy shifts themselves depend on the conditions of liquid Xe.

CI-hMBPT CI-MBPT
λ (nm) n in vacuo E2 liq. E2 liq./n in vacuo E2 liq. E2 liq./n Th. Avr. Expt.
300 1.46 0.41 -0.78 -0.54 -10.48 -8.44 -5.78 -3.2±1.9
350 1.45 -0.31 -0.01 0.00 -8.60 -7.37 -5.08 -2.5±1.8
405 1.43 -0.61 -0.38 -0.27 -6.76 -5.96 -4.17 -2.2±1.4
488.8 1.42 -0.65 -0.50 -0.35 -4.86 -4.32 -3.05 -1.7±1.0
505.0 1.42 -0.64 -0.50 -0.35 -4.52 -4.06 -2.86 -1.6±0.9
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