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Randomized Benchmarking allows to efficiently and scalably characterize the average error of a
unitary 2-design such as the Clifford group C on a physical candidate for quantum computation, as
long as there are no non-computational leakage levels in the system. We investigate the effect of
leakage errors on Randomized Benchmarking induced from an additional level per physical qubit
and provide a modified protocol that allows to derive reliable estimates for the error per gate in their
presence. We assess the variance of the sequence fidelity corresponding to the number of random
sequences needed for valid fidelity estimation. Our protocol allows for gate dependent error channels
without being restricted to perturbations. We show that our protocol is compatible with Interleaved
Randomized Benchmarking and expand to benchmarking of arbitrary gates. This setting is relevant
for superconducting transmon qubits, among other systems.

I. INDRODUCTION

In the wake of recent advances in experimental im-
plementations of quantum gates on physical qubits [1–
3], characterizing the fidelity of those gates efficiently
and accurately becomes increasingly important. The
original standard approach to achieving this is quantum
process tomography (QPT) [4] which is not reliable as
it cannot discriminate gate errors from those of state
preparation and measurement (SPAM) [5]. Neither is
it practical due to the number of measurements needed,
which is exponential in the number of subsystems. The
Randomized Benchmarking (RB) protocol is a scalable
and SPAM independent method to benchmark unitary
2-designs such as Clifford gates by characterizing the fi-
delity of sequences of random gates [5, 6]. Interleaved
Randomized Benchmarking (IRB) provides a means to
estimate the average fidelity of a single gate of the group
up to a uncertainty defined by the group fidelity [7]. As
the RB protocol is used not only for benchmarking but
for closing the loop in experiment optimal control [8, 9]
it becomes increasingly imperative to understand and ac-
count for errors connected to this protocol.

Many promising candidates for implementing qubits
on which RB is applied such as superconducting qubits
[1, 10], NV-centers [11], trapped ions [5] or neutral atoms
[12] are not natural two level systems making leakage
into additional levels a relevant error source. Since the
physical qubit is, in a well-defined setup, protected from
unwanted interactions with the environment so are in
many cases the leakage levels. Therefore leakage is not
accounted for by standard RB, not least because coherent
leakage is a non-Markovian process. Furthermore stan-
dard RB treats gate dependencies only in the regime of
small deviations from a predominant gate independent
error. We investigate leakage arising from an additional
level per qubit as first discussed by Epstein et al. [13]
in the single qubit case. We provide a generalization of
their RB protocol accounting for leakage errors as well
as strongly gate dependent error channels. We investi-
gate the number of random sequences needed for a good
estimate of the fidelity and show that IRB still provides

a reliable assessment – even for gates not in the unitary
2-design.

This work is structured in the following way. We in-
troduce the protocol in section II and derive the associ-
ated fidelity model in section III. There, we first make an
additional assumption on the Clifford gates and discuss
in III A how useful information can be extracted even if
these are not satisfied. In sec. III B we discuss the influ-
ence of SPAM errors. Gate dependent errors are treated
in section V and section VI covers IRB.

II. MODIFIED PROTOCOL

The RB protocol allows to efficiently estimate the av-
erage fidelity of a unitary 2-design like the N-qubit Clif-
ford group CN , i.e., find the average fidelity of all Clifford
gates. This is achieved by applying a sequence of y ran-
dom gates and then inverts them with a final gate. The
final gate can be efficiently calculated on a classical com-
puter according to the Gottesmann-Knill theorem [14].
It can be shown that the resulting quantum channel ap-
proaches the y-fold application of a depolarizing error
channels [5, 6, 15] and can be fitted to an exponential
decay in y. A major consequence of the application of
RB sequences is that there is no coherent interference
between errors meaning here that the error channel does
not maintain any well-defined phase relations between
different states.

This is not the case if one considers transitions to
a third, non-computational level in any physical qubit
while still only applying qubit Clifford gates. For a single
physical qubit, Epstein et al. proposed the simple pro-
cedure of randomly inserting phase factors ±1 on the
third level to reach the required phase randomization
[13]. The multi-qubit generalization is to randomly in-
sert these phase factors on every qubit independently,
thus destroying any phase relation. Including these op-
erations extends the Clifford group C into the altered
Clifford set C∗

C∗N = CN × {12 ⊕ (±1)}⊗N (1)
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with CN the Clifford group for the corresponding N
qubits. Compared to C the size is increased by a factor
of 2N for the N physical qubits used in our RB protocol.
C∗ is not necessarily a group since the effect of every im-
plemented gate on the non-computational subspace can
be arbitrary. Therefore C∗ does not have to be closed
or contain an inverse or even neutral element. As will
be derived in section III the parameterized fidelity one
needs to fit is

Φy =
∑
i

aiλ
y
i (2)

with λi eigenvalues of an operator related to the error and
the ai define the measurement functional in its eigenbasis,
they contain the SPAM errors as one contribution. At
least a single λi is unity and the number of different λi
is smaller than 3N . The obtained average fidelity then
sums to

∑
i aiλi/

∑
i ai as the average error of applying

a single gate.

III. DERIVING THE FIDELITY MODEL

In this section, we derive a model for the error per gate,
neglecting state preparation and measurement errors as
well as the error of the inverting gate for simplicity. The
effect of this approximation will be discussed in III B.
Adding a phase factor on the leakage level as required
in the previous section is straightforward in practice, for
example by waiting the appropriate an amount of time.
This time is set through the qutrit anharmonicity δω,
i.e., the difference in Bohr frequency between the leakage
transition and the working transition, as τ = φ/δω to
achieve a phase φ. This extends easily to multiple qubits
if these are frequency-tunable [16]. Using this extended
Clifford set C∗ of equation (1) removes all phase relation
between different energy levels, thus, following the same
reasoning as in other discussions of RB such as Ref. [13]
all emerging density matrices are diagonal and therefore
in

Hd =


1 0 0

0 0 0
0 0 0

 ,

0 0 0
0 1 0
0 0 0

 ,

0 0 0
0 0 0
0 0 1


⊗N

. (3)

Using the Frobenius inner product 〈ρ1|ρ2〉 = Tr[ρ†1ρ2]
and representing diagonal density matrices as vectors and
superoperators as matrices the measured fidelity of the
RB protocol for a gate independent error channel Λ is

Φy =
1

]C∗y
∑

{Cj}∈C∗y

〈ρ0|Cy+1

1∏
j=y

(ΛCj) |ρ0〉 (4)

=
1

]C∗y
∑

{Cj}∈C∗y

〈ρ0|Cy+1

3∏
j=y

(ΛCj) C2C1×

× C−1
1 C−1

2 ΛC2C1 C
−1
1 ΛC1 |ρ0〉 . (5)

] denotes the cardinality and neither the elements of
C∗ nor error channels have to be unitary in this represen-
tation. The product indices are counted down in order
to ensure that the lower index random Cliffords Cj are
applied first. For the standard RB restricted to the com-
putational subspace the group properties of C yield that

∑
C2∈C

f(C2C1) =
∑
C2∈C

f(C2) (6)

for any C1 ∈ C and any map f . Including a third level
any unitary operation is no longer fully determined by its
effect on the computational subspace but by the 3N −2N

dimensional non computational subspace as well. Since
any gate is engineered with respect to how it acts on the
first the effect on the latter may be arbitrary as long as
the subspaces are kept disconnected. Thus, in general,
the set C∗ is not be a group since it is neither closed nor
does it contain inverse or neutral elements a priori. As
equation (6) relies on the group property it is therefore
no longer valid for general C∗ rendering a twirl over Λ
no longer possible. We will solve this problem in section
III A.

A gate on a qutrit is considered to be a perfect single
qubit gate if it has perfect gate fidelity in the qubit sub-
space and leaves a mere phase shift on the leakage level
[17]. The randomness of the phase shifts prevent any
phase relations between qubit and leakage space. The
phase shift of the gate therefore is equivalent to a global
phase on the leakage level and can be omitted. As a re-
sult the Cliffords act as the identity on the third level and
C∗1 can be treated as a group within the RB protocol.

This argument does not hold in the same form for more
than a single qubit. On the other hand, the multi-qubit
Clifford set C∗N is generated by its single qubit genera-
tors plus at least one entangling Clifford gate between
arbitrary qubits. If one presumes that the entangling
gate induces a mere phase change on the leakage lev-
els as well – which is equivalent to it being diagonal in
the non-computational subspace – then this means the
whole Clifford set has this same property. Analogous to
above, phases are averaged to zero by their randomiza-
tion the set of Clifford gates can be treated as a group
as for further calculations. In the following we call such
a set a twirl design because it preserves the group prop-
erties,hence it allows to rewrite the average sequence as
a product of errors twirled over the Clifford set analo-
gous to the standard RB. This is different from the case
discussed in III A where we show how to do RB without
these assumptions. Twirl designs yield a fidelity of the
form

Φy =
1

]C∗y
∑

{Cj}∈C∗y

〈ρ0|
1∏
j=y

C−1
j ΛCj |ρ0〉 (7)

≡ 〈ρ0|Λytwirl |ρ0〉 . (8)

The matrix Λtwirl, representing the error channel Λ
twirled over C∗, now acting solely on Hd has only real
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non-negative entries since they represent the transition
from one level to another. The Perron–Frobenius the-
orem of linear algebra [18–20] states that such a ma-
trix always has a unique highest eigenvalue with posi-
tive eigenvector under the condition that all entries are
nonzero which is clearly the case for any real quantum
channel. This eigenvector represents the state the sys-
tem converges to for increasing sequence length y, irre-
spective of the initial state, and the single unique highest
eigenvalue has to be equal to one. Another fundamental
property of any Λ in this eigenbasis is that every column
sums up to one due to trace preservation. Here, the trace
of a vector means the sum of its vector entries as each
basis vector represents a density matrix with unit trace.

Λtwirl is diagonalizable in all cases besides a set with
vanishing Haar measure; its eigenvectors λi, on the other
hand, are not restricted to be real for more than one
qubit as the resulting channel is no longer guaranteed to
be depolarizing. To investigate conditions for real eigen-
values we first consider a channel Λ on Hd resulting from
a small unitary error. We write Û = exp(−i∆Ĥ) as an

exponential of a Hermitian operator with ∆‖Ĥ‖ � 1 and
expand the resulting Λ in orders of a small parameter ∆.
Since the zeroth order of the expansion is the identity
and the first order vanishes by construction, the leading
order matrix elements to be investigated are of second
order in ∆,

Λ
(2)
ij = ∆2Tr

[
|i〉〈i| Ĥ |j〉〈j| Ĥ

]
= ∆2| 〈i| Ĥ |j〉 |2 = Λ

(2)
ji . (9)

Λ is thus Hermitian up to second order ensuring real
eigenvalues λi. Third order terms have small effects
on the characteristic polynomial and of Λ and complex
eigenvalues can only occur if the second order eigenvalues
are degenerate or very close to each other. For a most
general Λ one has to consider a unitary operation on the
system combined with an environment {|Ek〉} [4].

Λ
(2)
ij = ∆2

∑
k

| 〈i, Ek| Ĥ |j, E0〉 |2 (10)

Only one summand, k = 0, is guaranteed to be invariant
under exchange of i and j, the rest are arbitrary and can
therefore in principle yield eigenvalues λi which have a
non-negligible imaginary part. It needs to be noted that
this is not very common as the Λ(2) are typically close
to Hermitian operators, as is also confirmed numerically.
In any case Λytwirl is an element of the Hilbert space of
linear operators on Hd, and Φy of equation (8) is a linear
functional of that, therefore

Φy =
∑
i

aiλ
y
i (11)

with constants ai defining the functional in the eigenba-
sis of Λtwirl. Note that this is the same form as equation
(2). Unlike the single qubit case [13] for multiple qubits

not all errors channels have the same eigenbasis so the
fit parameters do not reveal all channel properties of the
twirled error. Luckily one does not need to know the
exact form of Λ but can simply fit the measured fidelity
to equation (11), using {ai, λi} as fit parameters. In the
same way it is possible to measure the population of the
computational subspace within the same model to char-
acterize the total leakage rate of an error channel. This
has been studied Ref. in [21] under the assumption of
control over the leakage space in the form of unitary 1-
designs over each computational and non-computational
subspace, whereas our work shows that such control is
not required for extracting the fidelity.

A fit to multiple complex decay parameters λi can
cause technical difficulties, especially for few different se-
quence lengths and due to statistical noise overshadowing
oscillatory behavior; also fitting to real λi is more con-
venient since complex ones are unlikely to occur. The
oscillations reflected in the imaginary parts of the λi are
due to population oscillating back into the computational
subspace. While Λytwirl is composed of an average over
C−1ΛC the application of C does not affect the popu-
lation in the non-computational subspace where it effec-
tively acts as the identity. The part of said population
brought back into the computational subspace is there
evenly distributed into all 2N levels by C−1. Further-
more if at most 1

2N of the lost population can repopulate
into the initial state, not including oscillations still ac-
counts for at least 1−2−N of the actual error. Note that
this is an argument on the total error and not on the
eigenvalues λi and that complex eigenvalues only occur
for more than one qubit.

A. RB of Clifford sets that are not twirl designs

The assumption made in earlier this section when in-
troducing the twirl design that the entangling gate or
gates are diagonal on the non computational subspace
does not apply to all physical systems. This assump-
tion was necessary to make sure the randomized Clifford
set closes like a group hence forming a twirl design. For
example considering a CNOT on the computational sub-
space also performing a NOT on the target if the control
qubit is in |2〉. Omitting this assumption thus requires
to reconsider equation (4) where Cy+1 is no longer the
inverse of all previous Clifford gates as the dynamics in-
side the non-computational space are not accounted for
and may be non-Clifford. Because we are only measuring
within the computational subspace – up to measurement
error that we neglect as it contributes to SPAM – we can
calculate as it were

Φy =
1

]C∗y
∑

{Cj}∈C∗y

〈ρ0|C−1
1 C1Cy+1

2∏
j=y

(ΛCj)ΛC1 |ρ0〉 .

(12)
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With C1Cy+1 being the inverse of all Cliffords but the
first, one can see that applying one more random Clifford
gate in the sequence means multiplying C−1

1 from the left
and ΛC1 from the right averaged over all C1 in C∗. Thus,
extending the length of the sequence by one gate defines a
linear and positive map TΛ on the Hilbert space of linear
operators on Hd. The resulting fidelity

Φy = 〈ρ0|T yΛ(1) |ρ0〉 (13)

as a linear functional of a matrix exponential is again
expressed as

Φy =
∑
i

biκ
y
i . (14)

There are vanishing entries in TΛ due to the fact that
the Clifford set does not connect all states, specifically
it does not connect leakage and computational subspace.
According to the Perron–Frobenius theorem the highest
eigenvalue does no longer have to be unique in this situ-
ation but the moduli of all eigenvalues are still bounded
by one. This implies that there might no longer be a
uniform limit to which all elements of Hd converge for
large y but rather the limit depends on the initial state
if it exists at all. The protocol is still invariant under
changing the initial state in the computational subspace,
so only accounting for real eigenvalues produces a factor
of 1 − 2−N by which the error rate can potentially be
underestimated.

Figure 1 compares the RB protocol for a Clifford set
which forms a twirl design to the case where it does not.
The error we used for the sake of simulation is unitary
which is the channel most affected by twirling and there-
fore has been considered the errors most difficult to esti-
mate with RB in previous publications. We observe that
not only the derived average errors concur strongly (and
are close to the actual error) but also the decay behav-
iors of both cases are close.We attribute this to the fact
T j−1

Λ (1) is nonetheless close to depolarizing; the multi-

plication of C−1
j from the left close to commutes so that

T yΛ(1) is close to Λytwirl. Furthermore are effects deviat-
ing from the decay of the twirl design of higher order in
the gate error.

In the simulation we produced a random unitary error
by applying a random unitary basis transformation to
the exponential of a small diagonal Hermitian matrix.
For arbitrary error channels we apply such a unitary to
the system plus an environment which we then trace out.

B. State Preparation and Measurement Errors –
SPAM

In all the above calculations we neglect SPAM errors.
We show in this subsection that this is justified and that
SPAM errors have in fact very little influence on our RB
protocol and can moreover, as in other RB protocols, be
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FIG. 1. (Color online) Average fidelity Φy for a unitary error
of 1.354×10−3 for 40 different random sequences per sequence
length y. The blue points are simulated data for a twirl design
whilst the Clifford set used to generate the red points is none.
The twirl design estimates an error of 1.379 × 10−3 and the
other 1.350 × 10−3. Both 2-qubit Clifford sets are generated
from the single qubit Clifford sets and few 2-qubit entangling
gates [22] which do or do not satisfy the conditions for a twirl
design. The obtained average sequence fidelities Φy are fitted
to the multi exponential decay function and the error rates
are calculated via equation (16).

isolated as they do not depend on the sequence length y
thus giving an offset of the fidelity curve. For twirl de-
signs, none of the calculations assume that one prepares
and measures states in the computational subspace. The
fidelity of the full experiment then is

Φy = 〈ρ0|ΛMΛΛytwirlΛP |ρ0〉
≡ 〈ρM |Λytwirl |ρP 〉 . (15)

Here, the second line defines the actually prepared state
ρP , as well as an effective measured state ρM . As this is
once again a linear functional of a matrix exponential the
model stays intact. One can think of the actual average
fidelity of a single random Clifford as the factor by which
the highest possible effective fidelity decreases due to its
application. Said fidelity is determined by SPAM errors
leading to an average fidelity of the Clifford set

Φ =
〈ρM |Λtwirl |ρP 〉
〈ρM |ρP 〉

=
Φ1

Φ0
. (16)

The assumption that for Clifford sets which are not twirl
designs the last gate Cy+1 can be considered the inverse
of all previous ones is only true in the computational
subspace, because the full operations are not necessarily
Clifford. The error made by that is calculated by first
splitting up the effective measured state into computa-
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tional and non-computational parts

Φy =
1

]C∗y
∑

{Cj}∈C∗y

〈ρM |Cy+1

1∏
j=y

(ΛCj) |ρP 〉

=
1

]C∗y
∑

{Cj}∈C∗y

〈ρM |comp Cy+1

1∏
j=y

(ΛCj) |ρP 〉

+ 〈ρM |leak Cy+1

1∏
j=y

(ΛCj) |ρP 〉


For the computational subspace Cy+1 can now be re-
placed by the actual inverse D−1

y .

=
1

]C∗y
∑

{Cj}∈C∗y

〈ρM |compD
−1
y

1∏
j=y

(ΛCj) |ρP 〉

+ 〈ρM |leak

1∏
j=y+1

(CjΛ)C1 |ρP 〉comp

+ 〈ρM |leak Cy+1

1∏
j=y

(ΛCj) |ρP 〉leak


= 〈ρM |comp T

y
Λ(1) |ρP 〉

+ 〈ρM |leak T̃
y
Λ(1) |ρP 〉comp +O(εP (εM + ε)). (17)

The ε are state preparation, measurement and gate error
rates and hence the deviation from the model is negligibly
small and not scaling with y leading to the same fidelity
arguments as before.

IV. VARIANCE OF THE FIDELITY

It is remarkable how few different realizations of se-
quences are typically needed to obtain a reliable result;
all the more so, as the number of possible choices for y
random Clifford gates is

(
]CN 2N

)y
where the cardinality

of the Clifford group has a lower bound exponential in N.
We therefore investigate the variance of the fidelity with
respect to these possible choices up to second/third or-
der for twirl designs. (Although all error are considered
the same they are perturbed by Λ = Λtwirl + εΛ in both
factors of the squared term as well as after every gate
individually.) The raw channel Λ is close to Λtwirl but
has an error due to the limited number of sequences, and
therefore can be written as Λ = Λtwirl + εΛ with a small
operator εΛ. Sorting by order of this εΛ and omitting
higher orders one gets

[Φ2]C∗ = [Φ]2C∗ +

1

]C∗
y∑
x=1

∑
D∈C∗

〈ρ0|Λx−1
twirlD

−1εΛDΛy−xtwirl |ρ0〉2 . (18)

Note that the above is second order since every twirl
over an εΛ has to vanish. Also all second order terms
with perturbations on different errors are zero as well
as those of every odd order because single deviation al-
ways twirls to zero. Furthermore one needs to take into
account that the errors εΛ as the difference between an
operator on Hd and one on density matrices in general
is not per se an operator on Hd but rather acts on the
space of density operators. Since for the second order
terms there is only one εΛ in each ρ0 bracket it can be
just as well projected onto such. For further calculations
we change to the eigenbasis of the twirled error and ab-
breviate ε(D) ≡ D†εΛD. We can thus work out the RHS
of equation (18).

1

]C∗
y∑
x=1

∑
D∈C∗

〈ρ0|Λx−1
twirlD

−1εΛDΛy−xtwirl |ρ0〉2

=
1

]C∗
y∑
x=1

∑
D∈C∗

3N∑
s1,s2,s3,s4

γ{s}λ
x−1
s1 ε(D)s1s2λ

y−x
s2 λx−1

s3 ε(D)s3s4λ
y−x
s4

with γ{s} = 〈ρ0|λs1〉 〈λs2 |ρ0〉 〈ρ0|λs3〉 〈λs4 |ρ0〉

=
1

]C∗
∑
D,{s}

y∑
x=1

γ{s}

(
λs1λs3
λs2λs4

)x
(λs2λs4)

y

λs1λs3
ε(D)s1s2ε(D)s3s4 (19)

Evaluating the geometric sum leaves us with

≡
∑
{s}

γ{s}
1−

(
λs1λs3

λs2
λs4

)y+1

1−
(
λs1

λs3

λs2λs4

) (λs2λs4)
y

λs1λs3
Es1s2Es3s4 . (20)

Equation (20) always has an upper bound by an expo-
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FIG. 2. (Color online) Variance with respect to possible
combinations of Clifford gates for an relatively small error
(7.42×10−4) – averaged over a total of 30 different sequences

nential decay times y, γ is smaller than one and the Es
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are comparable to single gate errors. For simplicity (and
consistent with our numerics these terms are mostly big-
ger than others for random errors) we now assume that
s1 = s2 and s3 = s4 and continue on equation (19)

(
[Φ]2C∗ − [Φ2]C∗

)
s1,s3

= γ{s}y
(λs1λs3)

y

λs1λs3
Es1s1Es3s3 (21)

∝ ye−κy (22)

This explains the behavior observed in the simulation
conducted for figure 2. For s1 = 1 or s3 = 1 which
corresponds to changes of the state with λ = 1 the E
terms vanish since this state is preserved for all quantum
channels. Therefore there will always be an exponential
decay. The order of this estimates is the same as that for
standard RB [23].

V. GATE DEPENDENT ERRORS

The RB protocol analyzed so far assumes Λ to be in-
dependent of the preceding gate or more specifically uses
an effective gate error. Magesan et al. investigated first
order corrections to that assumption for the leakage free
case yielding an altered fidelity model under the condi-
tion ‖Λ− Λj‖y � 1 with gate dependent error channels
Λj [6]. Having more degrees of freedom for these error
channels Λj this issue becomes even more important for
the leakage case considered here. Neglecting SPAM we
get

Φy =
1

]C∗y
∑

{Cj}∈C∗y

〈ρ0|Λy+1Cy+1

1∏
j=y

(ΛjCj) |ρ0〉

∼=
1

]C∗y
∑

{Cj}∈C∗y

〈ρ0|ΛCy+1

1∏
j=y

(ΛjCj) |ρ0〉

=
1

]C∗y
∑

{Cj}∈C∗y

〈ρ0|ΛC−1
1 C1Cy+1 ×

×
2∏
j=y

(ΛjCj) Λ1C1 |ρ0〉 . (23)

Up to an additional error of the order of ‖Λ−Λj‖ which
is overall and not per gate, the expansion by one ran-
dom Clifford is a linear operation on the operators on
Hd hence

Φy = 〈ρ0|T yG(1) |ρ0〉 (24)

=
∑
i

ciτ
y
i . (25)

This shows that is it not necessary to alter the protocol
for gate dependent errors; however there a two aspects
which need to be considered.
First the phase randomization is no longer considered
perfect leading to transitions to non diagonal density ma-
trices. This has the potential of vastly increasing up the

dimension of TG up by a factor of 32N resulting in more
and likely complex eigenvalues but as second order terms
in single qubit errors these effects can be considered small
with respect to the average error. In the practical appli-
cation one needs to consider how many different τi are
needed to properly describe the y dependence of the fi-
delity. One can see that the number of different τi is the
order up to which deviation from an effective τ are com-
pletely covered. Magesan et al. discussed conditions for
neglecting higher order terms when they derived a first
order protocol for gate dependent errors without leakage
[6]. As our calculation still holds without leakage errors
one can show how their model coincides with ours in the
limit of sufficiently weak gate dependencies while we are
not restricted to this regimes.
Second we have to note that Φy is no longer completely
independent of the initial state which is necessary for con-
sidering only real eigenvalues and counteracts the idea of
RB itself. It however can be fixed by an approximation
making a single error of the order of ‖Λ− Λj‖

Φy =
1

]C∗
∑
C∈C∗

〈ρ0|C−1T y−1
G (1)ΛC |ρ0〉 . (26)

This means that the protocol is independent of the initial
as well as the measured state up to a very small error.
This aspect is crucial for that fitting to real eigenvalues
accounts for at least 1 − 2−N of the actual error. The
gate dependent error channels produce a fundamentally
different error associated matrix T than in the gate in-
dependent case so one can no longer argue that all real
eigenvalues are likely, regardless of the use of the phase
randomizing Clifford set C∗.

VI. INTERLEAVED RANDOMIZED
BENCHMARKING

The RB protocol is designed to identify the average
performance of a unitary 2-design such as the Clifford
group; the fidelity of an individual element V thereof can
be estimated by Interleaved Randomized Benchmarking
(IRB) [7]. The main idea is to alternate random Clifford
gates with gate of interest to obtain a combined fidelity.
Applied to our framework one obtains as a generalization
of equation (4)

Φy =
1

]C∗y
∑

{Cj}∈C∗y

〈ρ0|Λy+1Cy+1

1∏
j=y

(V ΛV ΛjCj) |ρ0〉

∼=
1

]C∗y
∑

{Cj}∈C∗y

〈ρ0|ΛC−1
1 V −1V C1Cy+1 ×

×
2∏
j=y

(V ΛV ΛjCj)V ΛV Λ1C1 |ρ0〉 . (27)

V C1Cy+1 is the inverse of the gate sequence without V C1

and therefore adding a random gate plus the gate in ques-
tion is once again a linear operation which results in the
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FIG. 3. (Color online) Interleaved Randomized Benchmark-
ing for a unitary operation on SU(4) not element of a twirl de-
sign with a gate independent error of 7.57×10−4 (blue). The
interleaved protocol yields a combined error of 1.304 × 10−3

estimating the gate of interest at 5.50× 10−4 when its actual
error is 5.44× 10−4. This is a very good estimate considering
the range of IRB.

same fit model

Φy = 〈ρ0|T yV (1) |ρ0〉 (28)

=
∑
i

diη
y
i . (29)

The resulting fidelity

Φ1 =
1

]C∗
∑
C∈C∗

〈ρ0|C−1V −1V ΛV ΛCC |ρ0〉

=
1

]C∗
∑
C∈C∗

〈ρ0|C−1ΛV ΛCC |ρ0〉 (30)

shows the average combined error of V and the Clifford
set. Assuming those are small the estimated error rate of
V can be calculated as εV = εC∗×V − εC∗ and lies within
the bounds(√

εC∗×V −
√
εC∗
)2 ≤ εV ≤ (√εC∗×V +

√
εC∗
)2

. (31)

The only point where we used that V is in C∗ is that
the inverting gate at the end of the sequence can be im-
plemented sufficiently accurately. This means that its
error has to be small with respect to the sequence errors
but can easily be of an order of magnitude higher than
the gate error because it is independent of the sequence
length. This is comparable to the influence of SPAM er-
rors. Under above assumption the IRB protocol provides
a reliable estimate for every unitary operation which is
shown in figure 3.

VII. CONCLUSION

We have investigated the effect of leakage errors on
RB and, to account for those, provided an alternated
protocol using a phase randomizing Clifford set and a
multi-exponential decay fit function. We introduced
conditions under which the twirl of the error channel
over the Clifford set is preserved but also showed that
our protocol applies regardless of this. Although we
only considered one additional level out work is easily
expendable to multiple leakage levels. Our protocol
accounts for arbitrary gate dependent error channels,
even if they are not small perturbations. We showed
that our protocol is compatible with IRB and that
this even holds for gates that are not element of the
underlying unitary 2-design.
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