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We present a method for quantum entanglement distribution over a so-called code-division-
multiple-access network, in which two pairs of users share the same quantum channel to transmit
information. The main idea of this method is to use different broad-band chaotic phase shifts, gen-
erated by electro-optic modulators (EOMs) and chaotic Colpitts circuits, to encode the information-
bearing quantum signals coming from different users, and then recover the masked quantum signals
at the receiver side by imposing opposite chaotic phase shifts. The chaotic phase shifts given to dif-
ferent pairs of users are almost uncorrelated due to the randomness of chaos and thus the quantum
signals from different pair of users can be distinguished even when they are sent via the same quan-
tum channel. It is shown that two maximally-entangled states can be generated between two pairs
of users by our method mediated by bright coherent lights, which can be more easily implemented
in experiments compared with single-photon lights. Our method is robust under the channel noises
if only the decay rates of the information-bearing fields induced by the channel noises are not quite
high. Our study opens up new perspectives for addressing and transmitting quantum information
in future quantum networks.

PACS numbers: 42.50.Ex, 03.67.Bg, 62.25.Jk, 89.70.-a

I. INTRODUCTION

With recent progresses in various quantum systems,
such as ion-trap systems [1–3] and solid-state quan-
tum circuits [4–6], it is now possible to discuss how
to establish more efficient quantum networks or so-
called quantum internet [7]. The existing studies about
quantum communication [8–10] and quantum cryptogra-
phy [11, 12] have shown that quantum network has great
advantages to transfer classical or quantum information.
However, how to best transfer information via quantum
networks is still an open problem [13–23].

To transfer quantum information over a large-scale
quantum network, a question is: can we allow different
pairs of users, who want to transmit information, to share
the same channel [24–26]. This problem has been widely
discussed in the field of classical communication [27,
28]. In classical communication systems, such kind of
methods are called channel-access methods or multiple-
access methods. There are mainly four different kinds
of multiple-access methods [29]: the frequency-division
multiple access (FDMA) methods, the time-division mul-
tiple access (TDMA) methods, the code-division multiple
access (CDMA) methods, and the orthogonal-frequency
division multiple access (OFDMA) methods. In FDMA
methods, different frequency bands are assigned to dif-
ferent data streams, while in TDMA methods the users
split their signals into pieces and transmitted them at
different time slots to share the same channel. TDMA
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and FDMA work equally well and are the key techniques
for the first generation (analog) and the second gener-
ation (digital) mobile networks. In CDMA methods,
each pair of users shares the same channel and distin-
guishes with each other by their own unique codes. It
can be shown that CDMA can accommodate more bits
per channel use, compared with TDMA and FDMA [30],
and thus is used in third-generation mobile communi-
cation systems. However, the interference between dif-
ferent data streams will deteriorate the information rate
of CDMA. Other competitive approaches are proposed
including orthogonal frequency-division multiple-access
(OFDMA), in which the available subcarriers are divided
into several mutually orthogonal subchannels which are
assigned to distinct users for simultaneous transmission.
The OFDMA is capable of avoiding the interference prob-
lem and thus provide better performance in classical dig-
ital communication.

Although the multiple-access problem has been widely
studied in classical communication, it is considered in
quantum communication only recently due to the de-
velopment of techniques for scalable quantum network.
To our knowledge, FDMA, or equivalently, the so-called
wavelength-division multiple access (WDMA), has been
used for quantum key distribution (QKD) [31–37], in
which classical information is transmitted over quan-
tum network, and TDMA has been used to generate
large entangled cluster states [38]. However, whether
more popular classical communication technique such as
CDMA [41–44] and OFDMA [39, 40] can be applied to
quantum communication systems is still an interesting
problem yet to be solved.

Recently, various protocols are proposed to extend
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CDMA to the quantum case [41–44] and there is evi-
dence showing that CDMA can provide higher informa-
tion rates for quantum communication compared with
FDMA [41]. In Ref. [41], particular chaotic phase shifts,
which work as the unique code in CDMA, are introduced
to spread the information-bearing quantum signals in the
frequency regime. Since the chaotic phase shifts intro-
duced for different users are uncorrelated, the crypto-
graphic quantum signals from different users are orthogo-
nal and thus can be distinguished even when we transmit
them via the same channel. The cryptographic quantum
signals can be decoded by introducing reversed chaotic
phase shifts at the receiver side, by which the transmit-
ted quantum information can be recovered coherently.
The physical media used in Ref. [41] to transmit quan-
tum information are single-photon lights [43].
Different from the protocol in Ref. [41], instead of

single-photon lights, we use bright coherent lights [44]
to transmit quantum information over quantum CDMA
network, which are easier to be realized in experiments.
We find that quantum entanglement can be controllably
distributed between two pairs of users sharing a single
quantum channel. We also present the particular design
of the chaotic phase shifters used in our proposals by in-
troducing electro-optic modulators (EOMs) and chaotic
Colpitts oscillator circuits [45] which is not clearly dis-
cussed in Ref. [41]. The Pecora-Carrol synchronization
technique [46, 47] is introduced to generate the reverse
chaotic phase shifts at the receiver side. This paper is
organized as follows. In Sec. II, we present the general
description of the quantum CDMA network, we use to
transmit quantum information. In Sec. III, we state how
to distribute maximally-entangled quantum states over
proposed quantum CDMA network mediated by bright
coherent lights. In Sec. IV, we consider the non-ideal case
to see how channel noise will affect our main results. In
Sec. V, we present the conclusions and a forecast of future
work.

II. QUANTUM CDMA NETWORK BY

CHAOTIC SYNCHRONIZATION

The main purpose of our work is to generate two
maximally-entangled states between two pairs of nodes
(one pair of nodes are node 1 and node 3 and the second
pair of nodes are node 2 and node 4) via a single quan-
tum channel (see Fig. 1). The quantum signals sent by
node 1 and node 2 are first encoded by two chaotic phase
shifters CPS1 and CPS2, and the two output beams are
combined by a 50 : 50 beam splitter and then transmit-
ted via a quantum channel. At the receiver side, this
combined quantum signal is divided into two branches
by another 50 :50 beam splitter and sent to another two
chaotic phase shifters CPS3 and CPS4 introduced to de-
code the information. The recovered quantum signals are
then sent to the two receiver nodes.
To understand the encoding and decoding processes
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FIG. 1: (color online) Schematic diagram of the quantum
CDMA network by chaotic synchronization. The wave pack-
ets are broadened by two chaotic phase shifters, i.e., CPS1

and CPS2, at the senders, and then recovered by another two
chaotic phase shifters, i.e., CPS3 and CPS4, at the receiver
side.

of our method, let us assume that the optical field en-
tering the i-th chaotic phase shifter is ai (i = 1, 2, 3, 4).
The chaotic phase shifter CPS1 (CPS2) induces an ef-

fective Hamiltonian δ1 (t) a
†
1a1 [δ2 (t) a

†
2a2], where δ1 (t)

[δ2 (t)] is a classical chaotic signal. It can be shown that
CPS1 (CPS2) leads to phase-shift factor exp (−iθ1 (t))
[exp (−iθ2 (t))] for the optical field. At the receiver side,
the chaotic phase shifter CPS3 (CPS4) induces an op-

posite Hamiltonian −δ1 (t) a†3a3 [−δ2 (t) a†4a4] by which
a reversed phase-shift factor exp (iθ1 (t)) [exp (iθ2 (t)] is
introduced to decode the information-bear signal masked

by the chaotic phase shift. Here θi =
∫ t

0 δi (t) dt, i = 1, 2.
To assure that the chaotic phase shift at the sender side
and that at the receiver side can be exactly cancelled,
an auxiliary classical channel between node 1 (node 2)
and node 3 (node 4) is introduced to synchronize the two
chaotic phase shifters [48, 49] (see Fig. 1).

The whole information transmission process can be
represented by the input-output relationship of the whole
quantum network from a1, a2 to a3, a4 (see Fig. 1). To
derive it, we can see that the input-output response of the
chaotic phase shifters CPSi, i = 1, 2, 3, 4 can be written
as

a′1 = a1e
−iθ1 , a′2 = a2e

−iθ2 ,

a3 = a′3e
iθ1 , a4 = a′4e

iθ2 , (1)

and the input-output response of the two beam splitters
BS1 and BS2 can be written as follows:

BS1:

a5 =
1√
2
a′1 +

1√
2
a′2, a6 =

1√
2
a′1 −

1√
2
a′2, (2)
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BS2:

a′3 =
1√
2
a5 +

1√
2
aBS, a′4 =

1√
2
a5 −

1√
2
aBS, (3)

Hence, from Eqs. (1-3), we can obtain the input-output
relationship of the whole quantum network

a3 =
1

2
a1 +

1

2
a2e

i(θ1−θ2) +
1√
2
eiθ1aBS,

a4 =
1

2
a2 +

1

2
a1e

i(θ2−θ1) − 1√
2
eiθ2aBS. (4)

For the chaotic phase shifts θi (t) , i = 1, 2, we should
take average over these broadband “random” phases [50],

by which we have: exp(±iθi(t)) ≈
√
Mi [51–53], where

Mi = exp

[

−π
∫ ωui

ωli

dωSδi (ω) /ω
2

]

. (5)

Sδi (ω) is the power spectrum density of the signal δi (t)
and ωli, ωui are the “lower” and “upper” bounds of the
frequency band of δi (t), respectively. Equation (4) can
then be reduced to

a3 =
1

2
a1 +

√
M1M2

2
a2 +

√

M1

2
aBS,

a4 =
1

2
a2 +

√
M1M2

2
a1 −

√

M2

2
aBS. (6)

The correction factor Mi may become extremely small
when δi (t) is induced by a chaotic signal which has a
broadband frequency spectrum. Thus we have a3 ≈ a1/2,
a4 ≈ a2/2, which means that the quantum signal trans-
mitted from node 1 to node 3 and the quantum signal
transmitted from node 2 to node 4 can be totally de-
coupled from each other although they are transmitted
simultaneously on the same quantum channel. The mech-
anism of such a quantum multiple access network is that
the information bearing fields transmitted on the quan-
tum channel are broadened by the chaotic phase shifters
in the frequency regime, which cannot be detected un-
less we can reduce the chaotic phase shifts and sharpen
the quantum signal by chaotic synchronization. This
idea is quite similar to the classical CDMA communi-
cation. That is why we call it quantum CDMA network
in Ref. [41].
Now, let us consider the case where the quantum fields

a1 and a2 are in the coherent states |α1〉 and |α2〉, and the
field aBS is in a vacuum state. It can be easily checked
from the input-output relationship given by Eq. (6) that
the output fields a3 and a4 of the quantum network are
in the coherent states

|α3〉 =

∣

∣

∣

∣

1

2
α1 +

1

2

√

M1M2α2

〉

≈
∣

∣

∣

∣

1

2
α1

〉

,

|α4〉 =

∣

∣

∣

∣

1

2
α2 +

1

2

√

M1M2α1

〉

≈
∣

∣

∣

∣

1

2
α2

〉

. (7)

III. QUANTUM ENTANGLEMENT

DISTRIBUTION OVER Q-CDMA NETWORK

Let us then consider how to distribute two-qubit quan-
tum entanglement over the quantum CDMA network.
In our proposal, the qubit states are stored in the dark
states of four Λ-type three-level atoms in four optical
cavities (see Fig. 2). What we want to do is to gen-
erate maximally-entangled state between atom 1 (atom
2) and atom 3 (atom 4). Here we extend the strategy in
Refs. [54, 55] to generate such kinds of distributed entan-
gled states by bright coherent lights. The Hamiltonian
of the i-th coupled atom-cavity system can be expressed
as

H̃qc
i = ωca

†
iai +

ωq

2
σ(i)
z + g

(

a†iσ
(i)
− + aiσ

(i)
+

)

, (8)

where ωc, ai (a
†
i ) are the frequency and the annihilation

(creation) operator of the cavity mode; ωq, σ
(i)
z and σ

(i)
±

are the frequency, the z-axis Pauli operator, and the lad-
der operators of the qubit; and g is the coupling strength
between the qubit and the cavity mode. Here, to simplify
the discussion, we have assumed that the system param-
eters are the same for four qubit-cavity systems. Under
the dispersive-detuning condition |∆| = |ωc − ωq| ≫ |g|,
the Hamiltonian can be diagonalized and reexpressed in
the interaction picture as [56]

Hqc
i =

g2

∆
a†iaiσ

(i)
z . (9)

In this paper, we introduce four electro-optic modu-
lators (EOMs) [57] acting as the chaotic phase shifters
CPSi. It is known that the refractive index of the electro-
optic crystal in EOM can be varied by changing the volt-
age V (t) acting on it (see Fig. 3(a)). Based on this effect,
we let the information-bearing optical field pass through
the EOM to obtain a phase shift β which will be changed
by varying the voltage V (t) acting on it. This phase
shift can be expressed as β =

[(

ωn3rL
)

/ (cd)
]

V (t),
where ω is the frequency of the injected light. n are the
refractive index and the electro-optic coefficient of the
electro-optic crystal in EOM. L and d are respectively
the length and thickness of the EOM (see Fig. 3(a)). c
is the velocity of light. Therefore, when the optical field
transmits through the EOM, an interaction Hamiltonian

Hi = δi (t) a
†
iai = − (~/τ)βa†iai [58] can be obtained,

where ai (a†i ) is the annihilation (creation) operator of
the injected field and τ is the optical round-trip time
through the EOM. In present system, each pair of EOMs
is driven by two synchronized standard chaotic Colpitts
oscillator circuits, as shown in Fig. 3(b), and the specific
synchronized circuit is presented in Appendix A. We use
the voltage VC2 to drive one EOM at the sender side,
and the voltage ṼC2 to drive another EOM at the re-
ceiver side, as shown in Fig. 3(b).
To show how the quantum entanglement is dis-

tributed over our quantum CDMA network, we assume
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FIG. 2: (color online) Schematic diagram of the entanglement distribution over a quantum multiple-access network. The bright
coherent lights are sent to two cavities 1 and 2 in which the optical fields interact with the atoms 1 and 2, respectively. After
that, the two output beams transmit through two EOMs, i.e., EOM1 and EOM2, and are broadened in the frequency domain.
The two output beams are then combined by an beam splitter and transmitted through a single quantum channel. At the
receiver side, the combined optical field is split into two branches by another beam splitter and fed into another two EOMs,
i.e., EOM3 and EOM4. Since the chaotic circuits driving EOM1 (EOM2) and EOM3 (EOM4) are synchronized, the chaotic
phases introduced at the sender side can be compensated at the receiver side, and thus the quantum signals transmitted can be
recovered. The recovered quantum signals are then stored in the dark states of the atoms 3 and 4, and homodyne detections
are preformed for the output fields to post-select the maximally entangled states.

that the i-th atom is in a superposition state |ψi〉 =

(|gi〉+ |ei〉) /
√
2 (i = 1, 2, 3, 4). The probe field enter-

ing the cavity 1 (cavity 2) is a bright coherent light |α〉
with average photon number n̄ = |α|2 ≫ 1. When the
probe field comes out of cavity 1 (cavity 2) at time τ ′,
the system composed of the atom 1 and the probe field
fed out of cavity 1 is in an entangled state

e−iHqc
1

τ ′ |ψ1〉|α〉 =
1√
2

(

|g1〉|αe−iφ/2〉+ |e1〉|αeiφ/2〉
)

.

(10)
Similarly, the system composed of the atom 2 and the
probe light fed out of cavity 2 is also in an entangled
state

e−iHqc
2

τ ′ |ψ2〉|α〉 =
1√
2

(

|g2〉|αe−iφ/2〉+ |e2〉|αeiφ/2〉
)

.

(11)
Here, Hqc

1 , Hqc
2 are the Hamiltonians given by Eq. (9)

and φ = 2g2τ ′/∆ is the phase shift of the probe field
induced by the qubit-cavity coupling. Thus, the system
composed of atoms 1, 2 and the two probe lights before
entering our q-CDMA network is in a separable state

1
2

[

|g1g2〉|αe−iφ/2〉|αe−iφ/2〉+ |e1g2〉|αeiφ/2〉|αe−iφ/2〉
+|g1e2〉|αe−iφ/2〉|αeiφ/2〉+ |e1e2〉|αeiφ/2〉|αeiφ/2〉

]

.

From Eq. (7), the system composed of the atoms 1 and 2
and those two probe fields which enter the cavities 3 and

4 is in the state

|Φ〉 =

(

1√
2
|g1〉

∣

∣

∣

∣

1

2
αe−iφ/2

〉

+
1√
2
|e1〉

∣

∣

∣

∣

1

2
αeiφ/2

〉)

(

1√
2
|g2〉

∣

∣

∣

∣

1

2
αe−iφ/2

〉

+
1√
2
|e2〉

∣

∣

∣

∣

1

2
αeiφ/2

〉)

.

Here we have omitted those
√
M1M2 terms since the

factors M1 and M2 are negligibly small in the chaotic
regime. After transmitting over the quantum CDMA
network, the probe fields a3 and a4 interact with the
atoms 3 and 4, and the interaction times are both τ ′.
Thus, the state of the total system composed of the four
atoms and the optical fields fed out of the quantum net-
work is

e−i(Hqc
3

+Hqc
4 )τ ′ |Φ〉1

2
(|g3〉+ |e3〉) (|g4〉+ |e4〉)

=

(

1√
2
|Ψ+

13〉
∣

∣

∣

∣

1

2
α

〉

+
1

2
|g1g3〉

∣

∣

∣

∣

1

2
αe−iφ

〉

+
1

2
|e1e3〉

∣

∣

∣

∣

1

2
αeiφ

〉)

(

1√
2

∣

∣Ψ+
24

〉

∣

∣

∣

∣

1

2
α

〉

+
1

2
|g2g4〉

∣

∣

∣

∣

1

2
αe−iφ

〉

+
1

2
|e2e4〉

∣

∣

∣

∣

1

2
αeiφ

〉)

, (12)

where |Ψ+
13〉 = (|g1e3〉+ |e1g3〉) /

√
2 is the maximally-

entangled state between atom 1 and atom 3 and |Ψ+
24〉 =
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FIG. 3: (color online) (a) Schematic diagram of a trans-
verse electro-optic modulator. The voltage is applied per-
pendicular to the propagational direction of the input beam,
and the refractive index of the electro-optic crystal can be
changed by varying the voltage V , which induces a voltage-
dependent phase shift on the input beam; (b) The diagram of
the chaotic synchronization circuit between CPS1 and CPS3,
where the transmitter drives the EOM1 and the receiver drives
the EOM3.

(|g2e4〉+ |e2g4〉) /
√
2 is the maximally-entangled state

between atom 2 and atom 4.
Finally, we impose homodyne detections on the probe

fields leaking out of the cavities 3 and 4. As shown
in Eq. (12), the state of the probe fields leaking out
of the cavities 3 and 4 can be three possible states
|α/2〉, |αe−iφ/2〉, and |αeiφ/2〉. Since the probe fields
are bright coherent lights with average photon number
n̄ = |α|2 ≫ 1, we have

∣

∣

∣

∣

〈

1

2
α

∣

∣

∣

∣

1

2
αe−iφ

〉∣

∣

∣

∣

2

= exp
[

−n̄ sin2 (φ/2)
]

≈ 0,

∣

∣

∣

∣

〈

1

2
α

∣

∣

∣

∣

1

2
αeiφ

〉
∣

∣

∣

∣

2

= exp
[

−n̄ sin2 (φ/2)
]

≈ 0,

∣

∣

∣

∣

〈

1

2
αe−iφ

∣

∣

∣

∣

1

2
αeiφ

〉∣

∣

∣

∣

2

= exp
(

−n̄ sin2 φ
)

≈ 0,

which means that the three coherent states |α/2〉,
|αe−iφ/2〉, and |αeiφ/2〉 are pairwise orthogonal and thus
completely distinguishable. Thus, the homodyne detec-
tions on the probe fields are just projective measure-
ments. Corresponding to the three measurement outputs

α/2, αe−iφ/2 and αeiφ/2, the states of the system com-
posed of atom 1 and 3 (atom 2 and atom 4) collapse
to the maximally-entangled state |Ψ+

13〉
(

|Ψ+
24〉

)

and two
separable states |g1g3〉 (|g2g4〉) and |e1e3〉 (|e2e4〉). The
most important case is that the measurement outputs
of the probe fields leaking out of the cavity 3 and cav-
ity 4 are both α/2. In this case, the atoms 1 and 3 are
in the maximally-entangled state |Ψ+

13〉 and the atoms 2
and 4 are in the maximally-entangled state |Ψ+

24〉, which
means that we generate two maximally-entangled states
between two pairs of nodes by sharing the same quantum
channel.

We then consider the interference effects between the
quantum signals from the two pairs of users. These in-
terference effects have been omitted in our previous dis-
cussions under the condition that the correction factor
M (M =M1M2) is negligibly small if the chaotic phases
introduced have very broad bandwidths. However, these
interference effects will affect the information transmis-
sion process if the bandwidths of the phase signals are
not broad enough. To show this, let us consider how the
correction factors M1 and M2 will change if we tune the
correspondent bandwidths of the chaotic signals δ1 and
δ2. From Fig. 4(a), we can see that both M1 and M2

decrease with the increase of the bandwidth of δ1 and δ2,
and when we take the bandwidth values of the chaotic
signals as 450 MHz, M1 and M2 are 0.0012 and 0.0033,
respectively. With experimental realizable parameters
of the Colpitts chaotic circuits [46, 47], it is not quite
difficult to generate a chaotic phase with bandwidth of
500 MHz, and thus M1 and M2 can be very small. In
the meanwhile, we choose the average photon number
n̄ = 10, and thus we have M1M2 ≪ 4/n̄. This makes it
reasonable to omit the

√
M1M2 terms in Eqs. (6), (7),

and (14). In order to check whether the phase shifts in-
duced by the phase shifters are in the chaotic regime, we
show in Fig. 4(b) the Lyapunov exponents of Colpitts cir-
cuits with different bandwidths. When the bandwidths
of the Colpitts circuits are smaller than 100 MHz, the
Lyapunov exponents of the Colpitts circuits are equal
0, which means that these circuits work in the periodic
regime. If we increase the bandwidths of the circuits, the
Colpitts circuits will then enter the chaotic regime if the
bandwidths are larger than 100 MHz which corresponds
to positive Lyapunov exponents (see Fig. 4(b)). This
is also confirmed by the phase diagrams and the power
spectra of the circuits with bandwidth of 100 MHz shown
in Figs. 4(c) and (d), and those of the circuits with band-
width of 500 MHz in Figs. 4(e) and (f).

In order to show the efficiency of entanglement dis-
tribution by the quantum CDMA network, we show in
Fig. 5 the fidelities F1 = 〈Ψ+

13|ρ13|Ψ+
13〉 (see Appendix

B) and F2 = 〈Ψ+
24|ρ24|Ψ+

24〉 versus the bandwidths of
the chaotic signals and the average photon number of
the probe fields n̄, where |Ψ+

13〉 (|Ψ+
24〉) is the desired

maximally-entangled state between atoms 1 and 3 (atoms
2 and 4); and ρ13 (ρ24) is the density operator of the
atoms 1 and 3 (atoms 2 and 4). In our simulations, we
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FIG. 4: (color online) (a) The factors M1, M2, and M ver-
sus the bandwidths of the Colpitts circuits without channel
noise. The green solid curve represents the factor M1. The
red dashed line denotes the curve for the factor M2. The
blue dash-dot curve shows the factor M =

√
M1M2. (b) The

Lyapunov exponents of the Colpitts circuits versus different
bandwidths of the circuits. (c), (d) are the phase diagram and
the power spectrum of the Colpitts circuit with bandwidth
100 MHz, and (e), (f) correspond to the phase diagram and
the power spectrum of the Colpitts circuit with bandwidth of
500 MHz.

take φ = π/3, where φ is the phase shift of the probe
fields induced by the qubit-cavity coupling. The trajec-
tories of the fidelity F1 versus the correction factor M
and the average photon number n̄ are given in Fig. 5(a).
We can see clearly that the fidelity F1 can be very high
if the factor M is small enough and n̄ is not too small
which corresponds to our previous analysis. If we fix
n̄ = 10 and increase the bandwidth of the signals, we
can see the increase of the fidelities F1 and F2 as desired
(see Fig. 5(b)). Both F1 and F2 grow very quickly to
approach 1 with the increase of the bandwidths of the
signals to be larger than 400 MHz, which corresponds to
a perfect entanglement distribution.

FIG. 5: (color online) (a) Fidelity F1 versus different values
of the correction factor M and the average photon number
n̄. (b) Trajectories of the fidelities F1 and F2 versus different
bandwidths of the signals. Both F1 and F2 can be very close
to the ideal case, i.e., F1, F2 ≈ 1 when the bandwidth of the
signal is larger than 400 MHz, which means that we efficiently
suppress the interference effects of our quantum CDMA net-
work induced by the crosstalk between different data streams.

IV. NONIDEAL CASE: EFFECTS OF THE

CHANNEL NOISE

In the previous sections, we consider the ideal case in
which the channel noises are omitted. To show the effi-
ciency of our method in more practical case, we consider
the effects of the channel noises in this section [59, 60].
The channel noises in quantum communication may come
from different sources, such as the vibration of the opti-
cal fiber used for transmitting quantum signals. Most
of the channel noises, especially those induced by the
fibers, are low-frequency noises with several to several
hundreds of kHz, which is far smaller than the charac-
teristic frequency of the information-bearing fields, and
also smaller than the frequency band of the chaotic phase
shifts introduced by the chaotic circuits which is typically
of several hundreds MHz. For these reasons, we can omit
the dynamical processes of the channel noises and simply
believe that they act as a beam splitter to extract energy
of the information-bearing field (see Fig. 6). As shown in
Fig. 6, the input-output relationship of the beamsplitter
BS3 used to represent the effects of the channel noises
can be written as

a7 =
√

1− ηa5 +
√
ηaNS, a8 =

√

1− ηa5 −
√
ηaNS,

(13)
where aNS represents the noise mode and η denotes the
decay rate induced by the noise. From Eqs. (1) to (6) and
Eq. (13), we can obtain the input-output relationship of
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the noisy quantum CDMA network as

a3 =

√
1− η

2
a1 +

√

(1− η)M1M2

2
a2 +

√

ηM1

2
aNS

+

√

M1

2
aBS,

a4 =

√
1− η

2
a2 +

√

(1− η)M1M2

2
a1 +

√

ηM2

2
aNS

−
√

M2

2
aBS.

If we further assume that the field aNS is in a vacuum
state, the output fields of the quantum CDMA network,
i.e., a3 and a4, are in the following coherent states

|α3〉 =

∣

∣

∣

∣

∣

√
1− η

2
α1 +

√

(1− η)M1M2

2
α2

〉

,

|α4〉 =

∣

∣

∣

∣

∣

√
1− η

2
α2 +

√

(1− η)M1M2

2
α1

〉

. (14)

a

a

a

a

a

a

a a

a

aBSNS

FIG. 6: (color online) Schematic diagram of quantum CDMA
network contains channel noise, where we use the beamsplitter
BS3 to introduce channel noise.

Recall that the i-th atom is in the superposition state
|ψi〉 = (|gi〉+ |ei〉) /

√
2, and the probe field entering the

cavity 1 (cavity 2) is a bright coherent light |α〉 with
average photon number n̄ = |α|2 ≫ 1. By omitting the
terms related to

√
M1M2 in Eq. (14), we can easily obtain

the state of the total system composed of the four atoms
and output fields of the quantum network as

|Ψ〉 =

(

1√
2
|Ψ+

13〉
∣

∣

∣

∣

√
1− η

2
α

〉

+
1

2
|g1g3〉

∣

∣

∣

∣

√
1− η

2
αe−iφ

〉

+
1

2
|e1e3〉

∣

∣

∣

∣

√
1− η

2
αeiφ

〉)

(

1√
2

∣

∣Ψ+
24

〉

∣

∣

∣

∣

√
1− η

2
α

〉

+
1

2
|g2g4〉

∣

∣

∣

∣

√
1− η

2
αe−iφ

〉

+
1

2
|e2e4〉

∣

∣

∣

∣

√
1− η

2
αeiφ

〉)

.

If the decay rate η induced by the channel noise is not
quite high and the probe fields are bright enough with
average photon number n̄ = |α|2 ≫ 1/ (1− η), we have

∣

∣

∣

∣

〈√
1− η

2
α

∣

∣

∣

∣

√
1− η

2
αe−iφ

〉∣

∣

∣

∣

2

= e−(1−η)n̄ sin2(φ/2) ≈ 0,

∣

∣

∣

∣

〈√
1− η

2
α

∣

∣

∣

∣

√
1− η

2
αeiφ

〉∣

∣

∣

∣

2

= e−(1−η)n̄ sin2(φ/2) ≈ 0,

∣

∣

∣

∣

〈√
1− η

2
αe−iφ

∣

∣

∣

∣

√
1− η

2
αeiφ

〉
∣

∣

∣

∣

2

= e−(1−η)n̄ sin2 φ ≈ 0,

which means that the three coherent states |√1− ηα/2〉,
|√1− ηαe−iφ/2〉, and |√1− ηαeiφ/2〉 are pairwise or-
thogonal and thus completely distinguishable. Thus we
can impose homodyne detections on the fields leaking out
of the cavities 3 and 4. If the corresponding measurement
outputs for the two probe fields are both

√
1− ηα/2, the

state of atoms 1 and 3 will collapse to the maximally-
entangled states |Ψ+

13〉 and that of the atoms 2 and 4 will
collapse to the maximally-entangled states |Ψ+

24〉. From
the above discussions, we can conclude that our method
is still valid if only the decay rate induced by the channel
noise is not quite high such that the decayed probe fields
are still bright enough.

However, if the decay rate η induced by the channel
noises is too high such that the average photon number
n̄ = |α|2 is comparable to 1/ (1− η), our entanglement
distribution strategy will not be so perfect. In this case,
we need to analyze the influence of noise on the fidelities
F1 and F2. Without loss of generality, let us focus on the
fidelity F1 = 〈Ψ+

13|ρ13|Ψ+
13〉 versus different decay rate η

and average photon number n̄. The discussion for the
fidelity F2 is quite similar and thus is omitted. We still
choose φ = π/3 and assume that the correction factors
M1 = M2 ≈ 0. With these system parameters, we show
in Fig. 7 how the decay rate η affects the entanglement
distribution. As can be seen from Fig. 7(a), fidelity F1

can be very high when η is small and the average pho-
ton number is not large. Figure 7(b) shows the curves of
the fidelity F1 versus η for several different cases. The
red solid curve represents the ideal case, i.e., F1 = 1,
which means that atoms 1 and 3 are in the maximally-
entangled state. The black dashed curve with plus signs
denotes the trajectory of the fidelity F1 with increasing
η ranging from 0 to 1. The blue asterisks dash-dot curve
shows the fidelity F1 versus η without the four EOMs in
our quantum CDMA network. By comparing these three
curves, we can see that the fidelity F1 will be greatly de-
creased if we move away the four EOMs in our quantum
CDMA network. In the meanwhile, with EOMs, we can
obtain a very high fidelity when the decay rate η is not
too high.
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FIG. 7: (color online) (a) Fidelity F1 versus different decay
rates η and the average photon number n̄. (b) Trajectories of
F1 versus η with fixed n̄ = 10. The black dashed curve with
plus signs shows the curve of the fidelity F1 realized by our
quantum CDMA network. The blue asterisks dash-dot curve
represents the curve of F1 when we the four EOMs are moved
away. It is shown that our strategy can still be valid when we
consider the channel noise if only the decay rate induced by
the channel noises is not too high.

V. CONCLUSIONS

In summary, we present a strategy to distribute quan-
tum entanglement between two pairs of users via a sin-
gle quantum channel. The interference of the quantum
signals from different senders are greatly suppressed by
introducing chaotic phase shifts to broaden the quan-
tum signals in the frequency domain. It is shown that
the two maximally-entangled states can be generated be-
tween two pairs of nodes even when we consider the chan-
nel noises. Our strategy is also hopeful to be applied to
other systems such as solid-state quantum circuits, and
it also provides new perspectives for the field of quantum
network control.
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Appendix A: CHAOTIC SYNCHRONIZATION OF

COLPITTS OSCILLATOR CIRCUITS

In the system we consider, each pair of EOMs is driven
by two standard chaotic Colpitts oscillator circuits [45],
which are synchronized by the Pecora-Carroll synchro-
nization strategy [46, 47], as shown in Fig. 8. The Col-
pitts chaotic synchronization circuit comprises of a trans-
mitter and a receiver. The transmitter is a standard Col-
pitts oscillator circuit, which will enter the chaotic regime
for particular system parameters. The receiver is a part
of the standard Colpitts oscillator circuit. In our design,
the system parameters of the Colpitts oscillator circuits,
such as the resistance R, the inductance L, the capaci-
tances C1 and C2, and the voltage VCC , are chosen as
R = 27.99 Ω, L = 17.5 nH, C1 = 13.1 pF, C2 = 12.7 pF,
and VCC = 15 V, under which the synchronized voltages
VC2 and ṼC2 are broadband chaotic signals with band-
widths of 500 MHz [46, 47].

2CV

R
CC
V

L

1C

2C 2CV0I

R
CC
V

L

1C

FIG. 8: (color online) Schematic diagram of the synchronized
chaotic Colpitts circuits which is composed of a transmitter
and a receiver. Here we adopt the Pecora-Carroll synchro-
nization strategy to synchronize the two chaotic Colpitts cir-
cuits [48].

Appendix B: CALCULATIONS OF THE

FIDELITIES OF ENTANGLED STATES

In this section, we will present the calculations of the
fidelity F1 = 〈Ψ+

13|ρ13|Ψ+
13〉. The calculations of the fi-

delity F2 = 〈Ψ+
24|ρ24|Ψ+

24〉 are similar to F1, so we omit it.
From Eq. (7), we see that if we consider the effect of the
correction factorM , the state of the system composed of
the atoms 1 and 2 and those two probe fields which enter



9

the cavities 3 and 4 is

|Φ〉 =
1

2
|g1g2〉

∣

∣

∣

∣

1

2
αe−iφ/2 +

1

2
Mαe−iφ/2

〉

∣

∣

∣

∣

1

2
αe−iφ/2 +

1

2
Mαe−iφ/2

〉

+
1

2
|g1e2〉

∣

∣

∣

∣

1

2
αe−iφ/2 +

1

2
Mαeiφ/2

〉

∣

∣

∣

∣

1

2
αeiφ/2 +

1

2
Mαeiφ/2

〉

+
1

2
|e1g2〉

∣

∣

∣

∣

1

2
αeiφ/2 +

1

2
Mαe−iφ/2

〉

∣

∣

∣

∣

1

2
αe−iφ/2 +

1

2
Mαeiφ/2

〉

+
1

2
|e1e2〉

∣

∣

∣

∣

1

2
αeiφ/2 +

1

2
Mαeiφ/2

〉

∣

∣

∣

∣

1

2
αeiφ/2 +

1

2
Mαeiφ/2

〉

.

Then we can obtain the state of the total system com-
posed of the four atoms and output fields of the quantum

network as

|Ψ〉 = e−i(Hqc
3

Hqc
4

)τ |Φ〉 1√
2
(|g3〉+ |e3〉)

1√
2
(|g4〉+ |e4〉).

After the homodyne detections imposed on the probe
fields leaking out of the cavities 3 and 4, we can obtain
the density operator ρ13 of the atoms 1 and 3 by trac-
ing out the degrees of freedom of atom 2, atom 4, and
the probe fields 3 and 4 by which the fidelity F1 can be
expressed as:

F1 = 〈Ψ+
13|ρ13|Ψ+

13〉

=
1

2
(〈e1g3|+ 〈g1e3|) ρ13 (|e1g3〉+ |g1e3〉)

=
1

2
+

1

2
e−|α|2M2(1−cosφ)/2,

where |Ψ+
13〉 is the maximally-entangled state between

atom 1 and atom 3 and the Hamiltonian Hqc
i is given in

Eq. (9). From Eq. (5), we can calculate the correction
factor M in respect of the bandwidths of the Colpitts
circuits (see Fig. 4(a)), by which we can obtain the curve
of F1 versus the bandwidths of the Colpitts circuits.
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