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This paper defines the fidelity of recovery of a tripartite quantum state on systems A, B, and C
as a measure of how well one can recover the full state on all three systems if system A is lost
and a recovery operation is performed on system C alone. The surprisal of the fidelity of recovery
(its negative logarithm) is an information quantity which obeys nearly all of the properties of the
conditional quantum mutual information I(A;B|C), including non-negativity, monotonicity with
respect to local operations, duality, invariance with respect to local isometries, a dimension bound,
and continuity. We then define a (pseudo) entanglement measure based on this quantity, which we
call the geometric squashed entanglement. We prove that the geometric squashed entanglement is
a 1-LOCC monotone (i.e., monotone non-increasing with respect to local operations and classical
communication from Bob to Alice), that it vanishes if and only if the state on which it is evaluated is
unentangled, and that it reduces to the geometric measure of entanglement if the state is pure. We
also show that it is invariant with respect to local isometries, subadditive, continuous, and normalized
on maximally entangled states. We next define the surprisal of measurement recoverability, which
is an information quantity in the spirit of quantum discord, characterizing how well one can recover
a share of a bipartite state if it is measured. We prove that this discord-like quantity satisfies
several properties, including non-negativity, faithfulness on classical-quantum states, invariance with
respect to local isometries, a dimension bound, and normalization on maximally entangled states.
This quantity combined with a recent breakthrough of Fawzi and Renner allows to characterize
states with discord nearly equal to zero as being approximate fixed points of entanglement breaking
channels (equivalently, they are recoverable from the state of a measuring apparatus). Finally, we
discuss a multipartite fidelity of recovery and several of its properties.

I. INTRODUCTION

The conditional quantum mutual information (CQMI)
is a central information quantity that finds numerous ap-
plications in quantum information theory [1, 2], the the-
ory of quantum correlations [3, 4], and quantum many-
body physics [5, 6]. For a quantum state ρABC shared
between three parties, say, Alice, Bob, and Charlie, the
CQMI is defined as

I(A;B|C)ρ ≡ H(AC)ρ +H(BC)ρ−H(C)ρ−H(ABC)ρ,
(1)

where H(F )σ ≡ −Tr{σF log σF } is the von Neumann
entropy of a state σF on system F and we unambigu-
ously let ρC ≡ TrAB{ρABC} denote the reduced den-
sity operator on system C, for example. The CQMI
captures the correlations present between Alice and Bob
from the perspective of Charlie in the independent and
identically distributed (i.i.d.) resource limit, where an
asymptotically large number of copies of the state ρABC
are shared between the three parties. It is non-negative
[7, 8], non-increasing with respect to the action of local
quantum operations on systems A or B, and obeys a du-
ality relation for a four-party pure state ψABCD, given
by I(A;B|C)ψ = I(B;A|D)ψ. It finds operational mean-
ing as twice the optimal quantum communication cost in

the state redistribution protocol [1, 2]. It underlies the
squashed entanglement [4], which is a measure of entan-
glement that satisfies all of the axioms desired for such a
measure [9–11], and furthermore underlies the quantum
discord [3], which is a measure of quantum correlations
different from those due to entanglement.

In an attempt to develop a version of the CQMI,
which could potentially be relevant for the “one-shot”
or finite resource regimes, we along with Berta [12] re-
cently proposed Rényi generalizations of the CQMI. We
proved that these Rényi generalizations of the CQMI re-
tain many of the properties of the original CQMI in (1).
While the application of these particular Rényi CQMIs
in one-shot state redistribution remains to be studied,
(however, see the recent progress on one-shot state re-
distribution in [13, 14]) we have used them to define a
Rényi squashed entanglement and a Rényi quantum dis-
cord [15], which retain several properties of the respec-
tive, original, von Neumann entropy based quantities.

One contribution of [12] was the conjecture that the
proposed Rényi CQMIs are monotone increasing in the
Rényi parameter, as is known to be the case for other
Rényi entropic quantities. That is, for a tripartite state
ρABC , and for a Rényi conditional mutual information
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Ĩα(A;B|C)ρ defined as [12, Section 6]

Ĩα(A;B|C)ρ ≡
1

α− 1
log
∥∥∥ρ1/2

ABCρ
(1−α)/2α
AC ρ

(α−1)/2α
C ρ

(1−α)/2α
BC

∥∥∥2α

2α
, (2)

[12, Section 8] conjectured that the following inequality
holds for 0 ≤ α ≤ β:

Ĩα(A;B|C)ρ ≤ Ĩβ(A;B|C)ρ. (3)

Proofs were given for this conjectured inequality when
the Rényi parameter α is in a neighborhood of one and
when 1/α+ 1/β = 2 [12, Section 8].

We also pointed out implications of the conjectured
inequality for understanding states with small condi-
tional quantum mutual information [12, Section 8] (later
stressed in [16]). In particular, we pointed out that the
following lower bound on the conditional quantum mu-
tual information holds as a consequence of the conjec-
tured inequality in (3) by choosing α = 1/2 and β = 1:

I(A;B|C)ρ ≥ − logF
(
ρABC ,RPC→AC (ρBC)

)
(4)

≥ 1

4

∥∥ρABC −RPC→AC (ρBC)
∥∥2

1
, (5)

where RPC→AC is a quantum channel known as the Petz
recovery map [17–20], defined as

RPC→AC(·) ≡ ρ1/2
ACρ

−1/2
C (·)ρ−1/2

C ρ
1/2
AC . (6)

The fidelity is a measure of how close two quantum states
are and is defined for positive semidefinite operators P
and Q as

F (P,Q) ≡
∥∥∥√P√Q∥∥∥2

1
. (7)

Throughout we denote the root fidelity by
√
F (P,Q) ≡

‖
√
P
√
Q‖1. The trace distance bound in (4) was conjec-

tured previously in [21] and a related conjecture (with a
different lower bound) was considered in [22].

The conjectured inequality in (4) revealed that (if it is
true) it would be possible to understand tripartite states
with small conditional mutual information in the follow-
ing sense: If one loses system A of a tripartite state ρABC
and is allowed to perform the Petz recovery map on sys-
tem C alone, then the fidelity of recovery in doing so will
be high. The converse statement was already established
in [12, Proposition 35] and independently in [23, Eq. (8)].
Indeed, suppose now that a tripartite state ρABC has
large conditional mutual information. Then if one loses
system A and attempts to recover it by acting on system
C alone, then the fidelity of recovery will not be high
no matter what scheme is employed (see [12, Proposi-
tion 35] for specific parameters). These statements are
already known to be true for a classical system C, but
the main question is whether the inequality in (4) holds
for a quantum system C.

II. SUMMARY OF RESULTS

When studying the conjectured inequality in (4), we
can observe that a simple lower bound on the RHS is
in terms of a quantity that we call the surprisal of the
fidelity of recovery :

− logF
(
ρABC ,RPC→AC (ρBC)

)
≥ IF (A;B|C)ρ (8)

≡ − logF (A;B|C)ρ,
(9)

where the fidelity of recovery is defined as

F (A;B|C)ρ ≡ sup
R
F (ρABC ,RC→AC (ρBC)) . (10)

That is, rather than considering the particular Petz re-
covery map, one could consider optimizing the fidelity
with respect to all such recovery maps. One of the main
objectives of the present paper is to study the fidelity of
recovery in more detail.

Note: After the completion of this work, we learned
of the recent breakthrough result of [23], in which the in-
equality I(A;B|C)ρ ≥ − logF (A;B|C)ρ was established
for any tripartite state ρABC ∈ S(HA ⊗ HB ⊗ HC).
Thus, for states with small conditional mutual informa-
tion (near to zero), the fidelity of recovery is high (near
to one). Note that our arXiv posting of the present work
(arXiv:1410.1441) appeared one day after the arXiv post-
ing of [23]. Furthermore note that the main result of [23]
is now an easy corollary of the more general result in [24].

A. Properties of the surprisal of the fidelity of
recovery

Our conclusions for IF (A;B|C)ρ are that it obeys
many of the same properties as the conditional mutual
information I (A;B|C)ρ:

1. (Non-negativity) IF (A;B|C)ρ ≥ 0 for any tri-
partite quantum state, and for finite-dimensional
ρABC , IF (A;B|C)ρ = 0 if and only if ρABC is a
short quantum Markov chain, as defined in [20]. A
short quantum Markov chain is a tripartite state
ρABC for which I(A;B|C)ρ = 0, and such a state
necessarily has a particular structure, as elucidated
in [20].

2. (Monotonicity) IF (A;B|C)ρ is monotone with
respect to quantum operations on systems A or B,
in the sense that

IF (A;B|C)ρ ≥ IF (A′;B′|C)ω , (11)

where ωABC ≡ (NA→A′ ⊗MB→B′) (ρABC) and
NA→A′ and MB→B′ are quantum channels acting
on systems A and B, respectively.
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3. (Local isometric invariance) IF (A;B|C)ρ is in-
variant with respect to local isometries, in the sense
that

IF (A;B|C)ρ = IF (A′;B′|C ′)σ , (12)

where

σA′B′C′ ≡ (UA→A′ ⊗ VB→B′ ⊗WC→C′) (ρABC) (13)

and UA→A′ , VB→B′ , and WC→C′ are isometric
quantum channels. An isometric channel UA→A′
has the following action on an operator XA:

UA→A′(XA) = UA→A′XAU
†
A→A′ , (14)

where UA→A′ is an isometry, satisfying

U†A→A′UA→A′ = IA.

4. (Duality) For a four-party pure state ψABCD, the
following duality relation holds

IF (A;B|C)ψ = IF (A;B|D)ψ. (15)

5. (Dimension bound) The following dimension
bound holds

IF (A;B|C)ρ ≤ 2 log |A| , (16)

where |A| is the dimension of the system A. If the
system A is classical, so that we relabel it as X,
then

IF (X;B|C)ρ ≤ log |X| . (17)

By a classical system X, we mean that ρXBC has
the following form:

ρXBC =
∑
x

pX(x)|x〉〈x| ⊗ ρxBC , (18)

for some probability distribution pX(x), orthonor-
mal basis {|x〉}, and set {ρxBC} of density operators.

6. (Continuity) If two quantum states ρABC and
σABC are close to each other in the sense
that F (ρABC , σABC) ≈ 1, then IF (A;B|C)ρ ≈
IF (A;B|C)σ.

7. (Weak chain rule) The chain rule for conditional
mutual information of a four-party state ρABCD is
as follows:

I (AC;B|D)ρ = I (A;B|CD)ρ + I (C;B|D)ρ . (19)

We find something weaker than this for IF , which
we call the weak chain rule for IF :

IF (AC;B|D)ρ ≥ IF (A;B|CD)ρ . (20)

Let us note here that, by inspecting the definitions,
the fidelity of recovery F (A;B|C)ρ and IF (A;B|C)ρ are
clearly not symmetric under the exchange of the A and
B systems, unlike the conditional mutual information
I(A;B|C)ρ. Thus we might also refer to IF (A;B|C)ρ
as the conditional information that B has about A from
the perspective of C.

B. Geometric squashed entanglement

Our next contribution is to define a (pseudo) entan-
glement measure of a bipartite state that we call the ge-
ometric squashed entanglement. To motivate this quan-
tity, recall that the squashed entanglement of a bipartite
state ρAB is defined as

Esq(A;B)ρ ≡
1

2
inf
ωABE

{I(A;B|E)ω : ρAB = TrE {ωABE}} , (21)

where the infimum is over all extensions ωABE of the
state ρAB [4]. The interpretation of Esq (A;B)ρ is that
it quantifies the correlations present between Alice and
Bob after a third party (often associated to an environ-
ment or eavesdropper) attempts to “squash down” their
correlations. In light of the above discussion, we define
the geometric squashed entanglement simply by replac-
ing the conditional mutual information with IF :

Esq
F (A;B)ρ ≡

1

2
inf
ωABE

{IF (A;B|E)ω : ρAB = TrE {ωABE}} . (22)

We also employ the related quantity throughout the pa-
per:

F sq(A;B)ρ ≡ sup
ωABE

{F (A;B|E)ρ : ρAB = TrE {ωABE}} ,
(23)

with the two of them being related by

Esq
F (A;B)ρ = −1

2
logF sq(A;B)ρ. (24)

We prove the following results for the geometric
squashed entanglement:

1. (1-LOCC Monotone) The geometric squashed
entanglement of ρAB does not increase with re-
spect to local operations and classical communi-
cation from Bob to Alice. That is, the following
inequality holds

Esq
F (A;B)ρ ≥ Esq

F (A′;B′)ω , (25)

where ωAB ≡ ΛAB→A′B′ (ρAB) and ΛAB→A′B′ is a
quantum channel realized by local operations and
classical communication from Bob to Alice. (Due
to the asymmetric nature of the fidelity of recovery,
we do not seem to be able to prove that the geomet-
ric squashed entanglement is an LOCC monotone.)
The geometric squashed entanglement is also con-
vex, i.e.,∑

x

pX(x)Esq
F (A;B)ρx ≥ Esq

F (A;B)ρ, (26)

where

ρAB ≡
∑
x

pX(x)ρxAB , (27)
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pX is a probability distribution and {ρxAB} is a set
of states.

2. (Local isometric invariance) Esq
F (A;B)ρ is in-

variant with respect to local isometries, in the sense
that

Esq
F (A;B)ρ = Esq

F (A′;B′)σ, (28)

where

σA′B′ ≡ (UA→A′ ⊗ VB→B′) (ρAB) (29)

and UA→A′ and VB→B′ are isometric quantum
channels.

3. (Faithfulness) The geometric squashed entangle-
ment of ρAB is equal to zero if and only if ρAB is
a separable (unentangled) state. In particular, we
prove the following bound by appealing directly to
the argument in [22]:

Esq
F (A;B)ρ ≥

1

512 |A|4
‖ρAB − SEP(A : B)‖41 , (30)

where the trace distance to separable states is de-
fined by

‖ρAB − SEP(A : B)‖1 ≡
inf

σAB∈SEP(A:B)
‖ρAB − σAB‖1 . (31)

4. (Reduction to geometric measure) The ge-
ometric squashed entanglement of a pure state
|φ〉AB reduces to the well known geometric mea-
sure of entanglement [25] (see also [26] and refer-
ences therein):

Esq
F (A;B)ψ = −1

2
log sup
|ϕ〉A
〈φ|AB (ϕA ⊗ φB) |φ〉AB (32)

= − log ‖φA‖∞ . (33)

Recall that the geometric measure of |φ〉AB is
known to be equal to

− log sup
|ϕ〉A,|ψ〉B

〈φ|AB (ϕA ⊗ ψB) |φ〉AB =

− log ‖φA‖∞ , (34)

where ‖A‖∞ is the infinity norm of an operator A,
equal to its largest singular value. (Note that the
above quantity is often referred to as the logarith-
mic geometric measure of entanglement. Here, for
brevity, we simply refer to it as the geometric mea-
sure.)

5. (Normalization) The geometric squashed entan-
glement of a maximally entangled state ΦAB is
equal to log d, where d is the Schmidt rank of ΦAB .
It is larger than log d when evaluated for a private
state [27, 28] of log d private bits.

6. (Subadditivity) The geometric squashed entan-
glement is subadditive for tensor-product states,
i.e.,

Esq
F (A1A2;B1B2)ω ≤ E

sq
F (A1;B1)ρ + Esq

F (A2;B2)σ ,

(35)
where ωA1B1A2B2

≡ ρA1B1
⊗ σA2B2

.

7. (Continuity) If two quantum states ρAB and σAB
are close in trace distance, then their respective
geometric squashed entanglements are close as well.

C. Surprisal of measurement recoverability

The quantum discord D(A;B)ρ is an information
quantity which characterizes quantum correlations of a
bipartite state ρAB , by quantifying how much correla-
tion is lost through the act of a quantum measurement
[3, 29] (we give a full definition later on). By a chain of
reasoning detailed in Section VI which begins with the
original definition of quantum discord, we define the sur-
prisal of measurement recoverability of a bipartite state
as follows:

DF (A;B)ρ ≡ − log sup
EA

F (ρAB , EA(ρAB)), (36)

where the supremum is over the convex set of entan-
glement breaking channels [30]. Since every entangle-
ment breaking channel can be written as a concatenation
of a measurement map followed by a preparation map,
DF (A;B)ρ characterizes how well one can recover a bi-
partite state after performing a quantum measurement
on one share of it. Equivalently, the quantity captures
how close ρAB is to being a fixed point of an entangle-
ment breaking channel.

We establish several properties of DF (A;B)ρ, which
are analogous to properties known to hold for the quan-
tum discord [31]:

1. (Non-negativity) This follows trivially because
the fidelity between two quantum states is always
a real number between zero and one.

2. (Local isometric invariance) DF

(
A;B

)
ρ

is in-

variant with respect to local isometries, in the sense
that

DF (A;B)ρ = DF (A′;B′)σ, (37)

where

σA′B′ ≡ (UA→A′ ⊗ VB→B′) (ρAB) (38)

and UA→A′ and VB→B′ are isometric quantum
channels.

3. (Faithfulness) DF (A;B)ρ is equal to zero if and
only if ρAB is a classical-quantum state (classical
on system A).
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4. (Dimension bound) DF (A;B)ρ ≤ log |A|.
5. (Normalization) DF (A;B)Φ for a maximally en-

tangled state ΦAB is equal to log d, where d is the
Schmidt rank of ΦAB .

6. (Monotonicity) The surprisal of measurement re-
coverability is monotone with respect to quantum
operations on the unmeasured system, i.e.,

DF (A;B)ρ ≥ DF

(
A;B′

)
σ
, (39)

where σAB′ ≡ NB→B′ (ρAB).

7. (Continuity) If two quantum states ρAB and σAB
are close in trace distance, then the respective
DF

(
A;B

)
quantities are close as well.

Finally, we use DF (A;B)ρ and a recent result of Fawzi
and Renner [23] to establish that the quantum discord of
ρAB is nearly equal to zero if and only if ρAB is an ap-
proximate fixed point of entanglement breaking channel
(i.e., if it is possible to nearly recover ρAB after perform-
ing a measurement on the system A). We then argue
that several discord-like measures appearing throughout
the literature [31] have a more natural physical ground-
ing if they are based on how far a given bipartite state
is from being a fixed point of an entanglement breaking
channel.

III. PRELIMINARIES

Norms, states, extensions, channels, and mea-
surements. Let B (H) denote the algebra of bounded
linear operators acting on a Hilbert space H. We restrict
ourselves to finite-dimensional Hilbert spaces throughout
this paper. For α ≥ 1, we define the α-norm of an oper-
ator X as

‖X‖α ≡ Tr{(
√
X†X)α}1/α. (40)

Let B (H)+ denote the subset of positive semi-definite
operators. We also write X ≥ 0 if X ∈ B (H)+. An
operator ρ is in the set S (H) of density operators (or
states) if ρ ∈ B (H)+ and Tr{ρ} = 1. The tensor
product of two Hilbert spaces HA and HB is denoted
by HA ⊗ HB or HAB . Given a multipartite density op-
erator ρAB ∈ S(HA ⊗ HB), we unambiguously write
ρA = TrB {ρAB} for the reduced density operator on sys-
tem A. We use ρAB , σAB , τAB , ωAB , etc. to denote gen-
eral density operators in S(HA ⊗HB), while ψAB , ϕAB ,
φAB , etc. denote rank-one density operators (pure states)
in S(HA ⊗HB) (with it implicit, clear from the context,
and the above convention implying that ψA, ϕA, φA are
mixed if ψAB , ϕAB , φAB are pure and entangled).

We also say that pure-state vectors |ψ〉 in H are states.
Any bipartite pure state |ψ〉AB in HAB is written in
Schmidt form as

|ψ〉AB ≡
d−1∑
i=0

√
λi |i〉A |i〉B , (41)

where {|i〉A} and {|i〉B} form orthonormal bases in HA
and HB , respectively, λi > 0 for all i,

∑d−1
i=0 λi = 1,

and d is the Schmidt rank of the state. By a maximally
entangled state, we mean a bipartite pure state of the
form

|Φ〉AB ≡
1√
d

d−1∑
i=0

|i〉A |i〉B . (42)

A state γABA′B′ is a private state [27, 28] if Alice and
Bob can extract a secret key from it by performing local
von Neumann measurements on the A and B systems of
γABA′B′ , such that the resulting secret key is product
with any purifying system of γABA′B′ . The systems A′

and B′ are known as “shield systems” because they aid in
keeping the key secure from any eavesdropper possessing
the purifying system. Interestingly, a private state of
log d private bits can be written in the following form
[27, 28]:

γABA′B′ = UABA′B′ (ΦAB ⊗ ρA′B′)U†ABA′B′ , (43)

where

UABA′B′ =
∑
i,j

|i〉 〈i|A ⊗ |j〉 〈j|B ⊗ U
ij
A′B′ . (44)

The unitaries can be chosen such that U ijA′B′ = V jA′B′ or

U ijA′B′ = V iA′B′ . This implies that the unitary UABA′B′
can be implemented either as

UABA′B′ =
∑
i

|i〉 〈i|A ⊗ IB ⊗ V iA′B′ (45)

or

UABA′B′ = IA ⊗
∑
i

|i〉 〈i|B ⊗ V iA′B′ . (46)

The trace distance between two quantum states ρ, σ ∈
S (H) is equal to ‖ρ− σ‖1. It has a direct operational
interpretation in terms of the distinguishability of these
states. That is, if ρ or σ is prepared with equal probabil-
ity and the task is to distinguish them via some quantum
measurement, then the optimal success probability in do-
ing so is equal to (1 + ‖ρ− σ‖1 /2) /2.

A linear map NA→B : B (HA) → B (HB) is posi-
tive if NA→B (σA) ∈ B (HB)+ whenever σA ∈ B (HA)+.
Let idA denote the identity map acting on a system A.
A linear map NA→B is completely positive if the map
idR ⊗ NA→B is positive for a reference system R of ar-
bitrary size. A linear map NA→B is trace-preserving
if Tr{NA→B (τA)} = Tr{τA} for all input operators
τA ∈ B (HA). If a linear map is completely positive and
trace-preserving (CPTP), we say that it is a quantum
channel or quantum operation. An extension of a state
ρA ∈ S (HA) is some state ΩRA ∈ S (HR ⊗HA) such
that TrR {ΩRA} = ρA. An isometric extension UNA→BE
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of a channel NA→B acting on a state ρA ∈ S(HA) is a
linear map that satisfies the following:

TrE
{
UNA→BEρA(UNA→BE)†

}
= NA→B (ρA) , (47)

U†NUN = IA, (48)

UNU
†
N = ΠBE , (49)

where ΠBE is a projection onto a subspace of the Hilbert
space HB ⊗HE .

IV. FIDELITY OF RECOVERY

In this section, we formally define the fidelity of re-
covery for a tripartite state ρABC , and we prove that
it possesses various properties, demonstrating that the
quantity IF (A;B|C)ρ defined in (8) is similar to the con-
ditional mutual information.

Definition 1 (Fidelity of recovery) Let ρABC be a
tripartite state. The fidelity of recovery for ρABC with
respect to system A is defined as follows:

F (A;B|C)ρ ≡ sup
RC→AC

F (ρABC ,RC→AC (ρBC)) . (50)

This quantity characterizes how well one can recover the
full state on systems ABC from system C alone if system
A is lost.

Proposition 2 (Non-negativity) Let ρABC be a tri-
partite state. Then IF (A;B|C)ρ ≥ 0, and for finite-

dimensional ρABC , IF (A;B|C)ρ = 0 if and only if ρABC
is a short quantum Markov chain, as defined in [20].

Proof. The inequality IF (A;B|C)ρ ≥ 0 is a consequence
of the fidelity always being less than or equal to one.
Suppose that ρABC is a short quantum Markov chain
as defined in [20]. As discussed in that paper, this is
equivalent to the equality

ρABC = RPC→AC (ρBC) , (51)

where RPC→AC is the Petz recovery channel. So this im-
plies that

F
(
ρABC ,RPC→AC (ρBC)

)
= 1, (52)

which in turn implies that F (A;B|C)ρ = 1 and hence
IF (A;B|C)ρ = 0. Now suppose that IF (A;B|C)ρ = 0.
This implies that

sup
RC→AC

F (ρABC ,RC→AC (ρBC)) = 1. (53)

Due to the finite-dimensional assumption, the space of
channels over which we are optimizing is compact. Fur-
thermore, the fidelity is continuous in its arguments.
This is sufficient for us to conclude that the supremum
is achieved and that there exists a channel RC→AC for
which F (ρABC ,RC→AC (ρBC)) = 1, implying that

ρABC = RC→AC (ρBC) . (54)

From a result of Petz [18], this implies that the Petz
recovery channel recovers ρABC perfectly, i.e.,

ρABC = RPC→AC (ρBC) , (55)

and this is equivalent to ρABC being a short quantum
Markov chain [20].

Proposition 3 (Monotonicity) The fidelity of recov-
ery is monotone with respect to local operations on sys-
tems A and B, in the sense that

F (A;B|C)ρ ≤ F (A′;B′|C)τ , (56)

where τA′B′C ≡ (NA→A′ ⊗MB→B′) (ρABC). The above
inequality is equivalent to

IF (A;B|C)ρ ≥ IF (A′;B′|C)τ . (57)

Proof. For any recovery map RC→AC , we have that

F (ρABC ,RC→AC (ρBC)) ≤ F ((NA→A′ ⊗MB→B′) (ρABC), (NA→A′ ⊗MB→B′) (RC→AC (ρBC))) (58)

= F ((NA→A′ ⊗MB→B′) (ρABC), (NA→A′ ◦ RC→AC) (MB→B′ (ρBC))) (59)

≤ sup
RC→A′C

F ((NA→A′ ⊗MB→B′) (ρABC),RC→A′C (MB→B′ (ρBC))) (60)

= F (A′;B′|C)(N⊗M)(ρ) , (61)

where the first inequality is due to monotonicity of the
fidelity with respect to quantum operations. Since the

chain of inequalities holds for all RC→AC , it follows that

F (A;B|C)ρ = sup
RC→AC

F (ρABC ,RC→AC (ρBC)) (62)

≤ F (A′;B′|C)(N⊗M)(ρ) . (63)
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Remark 4 The physical interpretation of the above
monotonicity with respect to local operations is as fol-
lows: for a tripartite state ρABC , suppose that system A
is lost. Then it is easier to recover the state on systems
ABC from C alone if there is local noise applied to sys-
tems A or B or both, before system A is lost (and thus
before attempting the recovery).

Proposition 5 (Local isometric invariance) Let
ρABC be a tripartite quantum state and let

σA′B′C′ ≡ (UA→A′ ⊗ VB→B′ ⊗WC→C′) (ρABC), (64)

where UA→A′ , VB→B′ , and WC→C′ are isometric quan-
tum channels. Then

F (A;B|C)ρ = F (A′;B′|C ′)σ , (65)

IF (A;B|C)ρ = IF (A′;B′|C ′)σ . (66)

Proof. We prove the statement for fidelity of recov-
ery. We first need to define some CPTP maps that in-
vert the isometric channels UA→A′ , VB→B′ , andWC→C′ ,

given that U†A→A′ , V†B→B′ , and W†C→C′ are not neces-
sarily quantum channels. So we define the CPTP linear
map T UA′→A as follows:

T UA′→A (ωA′) ≡ U†A→A′ (ωA′)
+ Tr

{(
idA′ − U†A→A′

)
(ωA′)

}
τA, (67)

where τA is some state on system A. We define the maps
T VB′→B and T WC′→C similarly. All three maps have the
property that

T UA′→A ◦ UA→A′ = idA, (68)

T VB′→B ◦ VB→B′ = idB , (69)

T WC′→C ◦WC→C′ = idC . (70)

Let RC→AC be an arbitrary recovery map. Then

F (ρABC ,RC→AC (ρBC))

= F ((UA→A′ ⊗ VB→B′ ⊗WC→C′) (ρABC), (UA→A′ ⊗ VB→B′ ⊗WC→C′) (RC→AC (ρBC))) (71)

= F (σA′B′C′ , (UA→A′ ⊗WC→C′) (RC→AC (VB→B′ (ρBC)))) (72)

= F
(
σA′B′C′ , (UA→A′ ⊗WC→C′)

(
RC→AC

(
T WC′→C (VB→B′ ⊗WC→C′) (ρBC)

)))
(73)

≤ sup
RC′→A′C′

F (σA′B′C′ ,RC′→A′C′ ((VB→B′ ⊗WC→C′) (ρBC))) (74)

= F (A′;B′|C ′)σ . (75)

The first equality follows from invariance of fidelity with
respect to isometries. The second equality follows be-
cause RC→AC and VB→B′ commute. The third equality
follows from (70). The inequality follows because

(UA→A′ ⊗WC→C′) ◦ RC→AC ◦ T WC′→C (76)

is a particular CPTP recovery map from C ′ to A′C ′. The
last equality is from the definition of fidelity of recovery.

Given that the inequality

F (ρABC ,RC→AC (ρBC)) ≤ F (A′;B′|C ′)σ (77)

holds for an arbitrary recovery map RC→AC , we can con-
clude that F (A;B|C)ρ ≤ F (A′;B′|C ′)σ .

For the other inequality, let RC′→A′C′ be an arbitrary
recovery map. Then
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F (σA′B′C′ ,RC′→A′C′ (σB′C′))
≤ F

((
T UA′→A ⊗ T VB′→B ⊗ T WC′→C

)
(σA′B′C′) ,

(
T UA′→A ⊗ T VB′→B ⊗ T WC′→C

)
(RC′→A′C′ (σB′C′))

)
(78)

= F
(
ρABC ,

(
T UA′→A ⊗ T WC′→C

) (
RC′→A′C′

(
T VB′→B (σB′C′)

)))
(79)

= F
(
ρABC ,

(
T UA′→A ⊗ T WC′→C

) (
RC′→A′C′

((
T VB′→B ◦ VB→B′ ⊗WC→C′

)
(ρBC)

)))
(80)

= F
(
ρABC ,

(
T UA′→A ⊗ T WC′→C

)
(RC′→A′C′ (WC→C′ (ρBC)))

)
(81)

≤ sup
RC→AC

F (ρABC ,RC→AC (ρBC)) (82)

= F (A;B|C)ρ. (83)

The first inequality is from monotonicity of the fidelity
with respect to quantum channels. The first equal-
ity is a consequence of (68)-(70). The second equal-
ity is from the definition of σB′C′ . The third equality
follows from (70). The last inequality follows because(
T UA′→A ⊗ T WC′→C

)
◦ RC′→A′C′ ◦ WC→C′ is a particular

recovery map from C to AC. Given that the inequality
F (σA′B′C′ ,RC′→A′C′ (σB′C′)) ≤ F (A;B|C)ρ holds for
an arbitrary recovery map RC′→A′C′ , we can conclude
that F (A′;B′|C ′)σ ≤ F (A;B|C)ρ .

Remark 6 The only property of the fidelity used to prove
Propositions 3 and 5 is that it is monotone with respect to
quantum operations. This suggests that we can construct
a fidelity-of-recovery-like measure from any “generalized
divergence” (a function that is monotone with respect to
quantum operations).

Proposition 7 (Duality) Let φABCD be a four-party
pure state. Then

F (A;B|C)φ = F (A;B|D)φ, (84)

which is equivalent to

IF (A;B|C)φ = IF (A;B|D)φ. (85)

Proof. By definition,

F (A;B|C)φ = sup
R1

C→AC

F
(
φABC ,R1

C→AC (φBC)
)
. (86)

Let UR1

C→ACE be an isometric channel which extends
R1
C→AC . Since φABCD is a purification of φABC and

UR1

C→ACE (φBCA′D) is a purification of R1
C→AC (φBC),

we can apply Uhlmann’s theorem for fidelity to conclude
that

sup
R1

C→AC

F
(
φABC ,R1

C→AC (φBC)
)

= sup
UD→A′DE

sup
UR1

C→ACE

F
(
UD→A′DE (φABCD) ,UR1

C→ACE (φBCA′D)
)
. (87)

Now consider that

F (A;B|D)φ = sup
R2

D→AD

F
(
φABD,R2

D→AD (φBD)
)
. (88)

Let UR2

D→ADE be an isometric channel which extends R2
D→AD. Since φABCD is a purification of φABD and

UR2

D→ADE (φBDA′C) is a purification of R2
D→AD (φBD), we can apply Uhlmann’s theorem for fidelity to conclude

that

sup
R2

D→AD

F
(
φABD,R2

D→AD (φBD)
)

= sup
UC→A′CE

sup
UR2

D→ADE

F
(
UC→A′CE (φABCD) ,UR2

D→ADE (φBDA′C)
)
. (89)

By inspecting the RHS of (87) and the RHS of (89),
we see that the two expressions are equivalent so that
the statement of the proposition holds. Figure 1 gives

a graphical depiction of this proof which should help in
determining which systems are “connected together” and
furthermore highlights how the duality between the re-
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FIG. 1: This figure helps to illustrate the main idea behind the proof of Proposition 7 and furthermore highlights the dual role
played by an isometric extension of the recovery map on C and an Uhlmann isometry acting on system D (and vice versa).
When reading the figure from left to right, the isometry on the left corresponds to the recovery map and the isometry on the
right corresponds to the one from Uhlmann’s theorem, and the overlap between the left and right is understood as F (A;B|C).
When reading the figure from right to left, the isometries switch their roles and the overlap is understood as F (A;B|D). This
picture clarifies in a diagrammatic way how we get the duality relation F (A;B|C) = F (A;B|D).

covery map and the map from Uhlmann’s theorem is re-
flected in the duality for the fidelity of recovery.

Remark 8 The physical interpretation of the above du-
ality is as follows: beginning with a four-party pure state
φABCD, suppose that system A is lost. Then one can
recover the state on systems ABC from system C alone
just as well as one can recover the state on systems ABD
from system D alone.

Proposition 9 (Continuity) The fidelity of recovery
is a continuous function of its input. That is,
given two tripartite states ρABC and σABC such that
F (ρABC , σABC) ≥ 1− ε where ε ∈ [0, 1], it follows that

|F (A;B|C)ρ − F (A;B|C)σ| ≤ 8
√
ε, (90)

|IF (A;B|C)ρ − IF (A;B|C)σ| ≤ |A|x 8
√
ε, (91)

where x = 1 if system A is classical and x = 2 otherwise.

Proof. One of the main tools for our proof is the purified
distance [32, Definition 4], defined for two quantum states
as

P (ρ, σ) ≡
√

1− F (ρ, σ), (92)

and which for our case implies that

P (ρABC , σABC) ≤ √ε. (93)

From the monotonicity of the purified distance with re-
spect to quantum operations [32, Lemma 7], it follows
that

P (RC→AC (ρBC) ,RC→AC (σBC)) ≤ √ε, (94)

where RC→AC is an arbitrary CPTP linear recovery
map. By the triangle inequality for purified distance [32,
Lemma 5], it follows that

inf
RC→AC

P (ρABC ,RC→AC (ρBC))

≤ P (ρABC ,RC→AC (ρBC)) (95)

≤ P (ρABC , σABC) + P (σABC ,RC→AC (σBC))

+ P (RC→AC (σBC) ,RC→AC (ρBC)) (96)

≤ 2
√
ε+ P (σABC ,RC→AC (σBC)) . (97)

Given that RC→AC is arbitrary, we can conclude that

inf
RC→AC

P (ρABC ,RC→AC (ρBC))

≤ 2
√
ε+ inf

RC→AC

P (σABC ,RC→AC (σBC)) , (98)

which is equivalent to√
1− F (A;B|C)ρ ≤ 2

√
ε+

√
1− F (A;B|C)σ. (99)

Squaring both sides gives

1− F (A;B|C)ρ

≤ 4ε+ 4
√
ε
√

1− F (A;B|C)σ + 1− F (A;B|C)σ

≤ 8
√
ε+ 1− F (A;B|C)σ, (100)

where the second inequality follows because ε ∈ [0, 1] and
the same is true for the fidelity. Rewriting this gives

F (A;B|C)σ ≤ 8
√
ε+ F (A;B|C)ρ. (101)

The same approach gives the other inequality:

F (A;B|C)ρ ≤ 8
√
ε+ F (A;B|C)σ. (102)

By dividing (101) by F (A;B|C)ρ (which by Proposi-

tion 13 is never smaller than 1/ |A|2) and taking a loga-
rithm, we find that

log

(
F (A;B|C)σ
F (A;B|C)ρ

)
≤ log

(
1 +

8
√
ε

F (A;B|C)ρ

)
(103)

≤ 8
√
ε

F (A;B|C)ρ
(104)

≤ |A|x 8
√
ε. (105)

where we used that log (y + 1) ≤ y and the dimension
bound from Proposition 13. Applying this to the other
inequality in (102) gives that

log

(
F (A;B|C)ρ
F (A;B|C)σ

)
≤ |A|x 8

√
ε, (106)

from which we can conclude (91).
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Proposition 10 (Weak chain rule) Given a four-
party state ρABCD, the following inequality holds

IF (AC;B|D)ρ ≥ IF (A;B|CD)ρ . (107)

Proof. The inequality is equivalent to

F (AC;B|D)ρ ≤ F (A;B|CD)ρ , (108)

which follows from the fact that it is easier to recover
A from CD than it is to recover both A and C from D
alone. Indeed, let RD→ACD be any recovery map. Then

F (ρABCD,RD→ACD (ρBD))

= F (ρABCD, (RD→ACD ◦ TrC) (ρBCD)) (109)

≤ sup
RCD→ACD

F (ρABCD, (RCD→ACD) (ρBCD)) (110)

= F (A;B|CD)ρ . (111)

Since the chain of inequalities holds for any recovery map
RD→ACD, we can conclude (108) from the definition of
F (AC;B|D)ρ.

Proposition 11 (Conditioning on classical info.)
Let ωABCX be a state for which system X is classical:

ωABCX =
∑
x

pX(x)ωxABC ⊗ |x〉 〈x|X , (112)

where {|x〉X} is an orthonormal basis, pX is a probability
distribution, and each ωxABC is a state. Then the follow-
ing inequalities hold

√
F (A;B|CX)ω ≥

∑
x

pX (x)
√
F (A;B|C)ωx , (113)

IF (A;B|CX)ω ≤
∑
x

pX(x)IF (A;B|C)ωx . (114)

Proof. We first prove the inequality in (113). For any set
of recovery maps RxC→CA, define RCX→CXA as follows:

RCX→CXA (τCX) ≡∑
x

RxC→CA (〈x|X (τCX) |x〉X) |x〉 〈x|X , (115)

so that it first measures the system X in the basis
{|x〉 〈x|X}, places the outcome in the same classical reg-
ister, and then acts with the particular recovery map
RxC→CA. Then

[∑
x

pX(x)
√
F (ωxABC ,RxC→CA (ωxBC))

]2

= F

(∑
x

pX(x)ωxABC ⊗ |x〉 〈x|X ,
∑
x

pX(x)RxC→CA (ωxBC)⊗ |x〉 〈x|X

)
(116)

= F

(∑
x

pX(x)ωxABC ⊗ |x〉 〈x|X ,RCX→CXA
(∑

x

pX(x)ωxBC ⊗ |x〉 〈x|X

))
(117)

≤ F (A;B|CX)ω . (118)

Since the inequality holds for any set of individual recov-
ery maps {RxC→CA}, we obtain (113).

Finally, we recover (114) by applying a negative loga-
rithm to the inequality in (113) and exploiting convexity
of − log.

Proposition 12 (Conditioning on a product system)
Let ρABC = σAB ⊗ ωC . Then

F (A;B|C)ρ = F (A;B)σ ≡ sup
τA

F (σAB , τA ⊗ σB) ,

(119)

IF (A;B|C)ρ = IF (A;B)σ ≡ − logF (A;B)σ. (120)

Proof. Consider that, for any recovery map RC→AC
F (σAB ⊗ ωC ,RC→AC (σB ⊗ ωC))

= F (σAB ⊗ ωC , σB ⊗RC→AC (ωC)) (121)

≤ F (σAB , σB ⊗RC→A (ωC)) (122)

≤ sup
τA

F (σAB , σB ⊗ τA) . (123)

The first inequality follows because fidelity is monotone
with respect to a partial trace over the C system. The
second inequality follows by optimizing the second ar-
gument to the fidelity over all states on the A system.
Since the inequality holds independent of the recovery
map RC→AC , we find that

F (A;B|C)ρ ≤ F (A;B)σ. (124)
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To prove the other inequality F (A;B)σ ≤ F (A;B|C)ρ,
consider for any state τA that

F (σAB , τA ⊗ σB)

= F (σAB ⊗ ωC , τA ⊗ σB ⊗ ωC) (125)

= F (σAB ⊗ ωC , (PτA ⊗ idC) (σB ⊗ ωC)) (126)

≤ sup
RC→AC

F (σAB ⊗ ωC ,RC→AC (σB ⊗ ωC)) . (127)

The first equality follows because fidelity is multiplica-
tive with respect to tensor-product states. The second
equality follows by taking (idC ⊗ PτA) to be the recovery
map that does nothing to system C and prepares τA on
system A. The inequality follows by optimizing over all
recovery maps. Since the inequality is independent of the
prepared state, we obtain the other inequality

F (A;B)σ ≤ F (A;B|C)ρ. (128)

The equality IF (A;B|C)ρ = IF (A;B)σ follows by ap-
plying a negative logarithm to F (A;B|C)ρ = F (A;B)σ.
We note in passing that the quantity on the RHS in (120)
is closely related to the sandwiched Rényi mutual infor-
mation of order 1/2 [33–36].

Proposition 13 (Dimension bound) The fidelity of
recovery obeys the following dimension bound:

F (A;B|C)ρ ≥
1

|A|2
, (129)

which is equivalent to

IF (A;B|C)ρ ≤ 2 log |A| . (130)

If the system A is classical, so that we relabel it as X,
then the following hold

F (X;B|C)ρ ≥
1

|X| , (131)

IF (X;B|C)ρ ≤ log |X| . (132)

Examples of states achieving these bounds are ΦAB ⊗ σC
for (129)-(130) and ΦXB ⊗ σC for (131)-(132), where

ΦXB ≡
1

|X|
∑
x

|x〉 〈x|X ⊗ |x〉 〈x|B . (133)

Proof. Consider that the following inequality holds, sim-
ply by choosing the recovery map to be one in which we
do not do anything to system C and prepare the maxi-
mally mixed state πA ≡ IA/ |A| on system A:

F (A;B|C)ρ ≥ F (ρABC , πA ⊗ ρBC) (134)

=
1

|A|F (ρABC , IA ⊗ ρBC) (135)

≥ 1

|A|
[
Tr
{√

ρABC
√
IA ⊗ ρBC

}]2
. (136)

Taking a negative logarithm and letting φABCD be a pu-
rification of ρABC , we find that

IF (A;B|C)ρ

≤ log |A| − 2 log Tr
{√

ρABC
√
IA ⊗ ρBC

}
(137)

= log |A| −H1/2(A|BC)ρ (138)

= log |A|+H3/2(A|D)ρ (139)

≤ log |A|+H3/2(A)ρ (140)

≤ 2 log |A| . (141)

The first equality follows by recognizing that the sec-
ond term is a conditional Rényi entropy of order 1/2
[37, Definition 3] (see Appendix A for a definition). The
second equality follows from a duality relation for this
conditional Rényi entropy [37, Lemma 6]. The second
inequality is a consequence of the quantum data process-
ing inequality for conditional Rényi entropies [37, Lemma
5] (with the map taken to be a partial trace over system
D). The last inequality follows from a dimension bound
which holds for any Rényi entropy.

To see that ΦAB ⊗ σC has IF (A;B|C) = 2 log |A|, we
can apply Propositions 25 and 24.

For classical A system, we follow the same steps up to
(138), but then apply Lemma 42 in Appendix A to con-
clude that H1/2(A|BC) ≥ 0 for a classical A. This gives

(131)-(132). To see that ΦXB ⊗ σC has IF (X;B|C) =
log |X|, we apply Proposition 12 and then evaluate

F
(
ΦXB , τX ⊗ ΦB

)
=

∥∥∥∥∥
(∑

x

1√
|X|
|x〉 〈x|X ⊗ |x〉 〈x|B

)(
√
τX ⊗

1√
|X|

IB

)∥∥∥∥∥
2

1

=

[
1

|X|

∥∥∥∥∥
(∑

x

|x〉 〈x|X ⊗ |x〉 〈x|B

)
(
√
τX ⊗ IB)

∥∥∥∥∥
1

]2

=

[
1

|X|
∑
x

‖|x〉 〈x|X
√
τX‖1

]2

=

[
1

|X|
∑
x

√
〈x| τ |x〉

]2

≤ 1

|X|
∑
x

〈x| τ |x〉

=
1

|X| . (142)

Choosing τX maximally mixed then achieves the upper
bound, i.e.,

sup
τX

F
(
ΦXB , τX ⊗ ΦB

)
= F

(
ΦXB , πX ⊗ ΦB

)
(143)

=
1

|X| . (144)
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The following proposition gives a simple proof of the
main result of [23] when the tripartite state of interest is
pure:

Proposition 14 (Approximate q. Markov chain)
The conditional mutual information I(A;B|C)ψ of a
pure tripartite state ψABC has the following lower bound:

I(A;B|C)ψ ≥ − logF (A;B|C)ψ. (145)

Proof. Let ϕD be a pure state on an auxiliary system
D, so that |ψ〉ABC ⊗ |ϕ〉D is a purification of |ψ〉ABC .
Consider the following chain of inequalities:

I(A;B|C)ψ = I(A;B|D)ψ⊗ϕ (146)

= I(A;B)ψ (147)

≥ − logF (ψAB , ψA ⊗ ψB) (148)

≥ − logF (A;B)ψ (149)

= − logF (A;B|D)ψ⊗ϕ (150)

= − logF (A;B|C)ψ. (151)

The first equality follows from duality of conditional mu-
tual information. The second follows because system D
is product with systems A and B. The first inequality fol-
lows from monotonicity of the sandwiched Rényi relative
entropies [33, Theorem 7]:

D̃α(ρ‖σ) ≤ D̃β(ρ‖σ), (152)

for states ρ and σ and Rényi parameters α and β such
that 0 ≤ α ≤ β. Recall that the sandwiched Rényi rela-
tive entropy is defined as [33, 34]

D̃α(ρ‖σ) ≡ 2α

α− 1
log
∥∥∥σ(1−α)/2αρ1/2

∥∥∥
2α

(153)

whenever supp(ρ) ⊆ supp(σ), and it is equal to +∞ oth-
erwise. The following limit is known [33, 34]:

lim
α→1

D̃α(ρ‖σ) = D(ρ‖σ), (154)

where the quantum relative entropy is defined as
D(ρ‖σ) ≡ Tr{ρ[log ρ − log σ]} whenever supp(ρ) ⊆
supp(σ), and it is equal to +∞ otherwise. To arrive at
(148), we apply (152) with the choices α = 1/2, β = 1,
ρ = ψAB , and σ = ψA ⊗ ψB . The second inequality fol-
lows by optimizing over states on system A and applying
the definition in (120). The second-to-last equality fol-
lows from Proposition 12 and the last from Proposition 7.

V. GEOMETRIC SQUASHED
ENTANGLEMENT

In this section, we formally define the geometric
squashed entanglement of a bipartite state ρAB , and we
prove that it obeys the properties claimed in Section II.

Definition 15 (Geometric squashed entanglement)
The geometric squashed entanglement of a bipartite state
ρAB is defined as follows:

Esq
F (A;B)ρ ≡ −

1

2
logF sq(A;B)ρ, (155)

where

F sq(A;B)ρ

≡ sup
ωABE

{F (A;B|E)ρ : ρAB = TrE {ωABE}} (156)

The geometric squashed entanglement can equivalently
be written in terms of an optimization over “squashing
channels” acting on a purifying system of the original
state (cf. [4, Eq. (3)]):

Proposition 16 Let ρAB be a bipartite state and let
|ψ〉ABE′ be a fixed purification of it. Then

F sq(A;B)ρ = sup
SE′→E

F (A;B|E)S(ψ), (157)

where the optimization is over quantum channels SE′→E.

Proof. We first prove the inequality F sq(A;B)ρ ≥
supSE′→E

F (A;B|E)S(ψ). Indeed, for a given purifica-
tion ψABE′ and squashing channel SE′→E , the state
SE′→E (ψABE′) is an extension of ρAB . So it follows by
definition that

F (A;B|E)S(ψ) ≤ F sq(A;B)ρ. (158)

Since the choice of squashing channel was arbitrary, the
first inequality follows.

We now prove the other inequality

F sq(A;B)ρ ≤ sup
SE′→E

F (A;B|E)S(ψ). (159)

Let ωABE be an extension of ρAB . Let ϕABEE1
be a

purification of ωABE , which is in turn also a purification
of ρAB . Since all purifications are related by isometries
acting on the purifying system, we know that there exists
an isometry UωE′→EE1

(depending on ω) such that

|ϕ〉ABEE1
= UωE′→EE1

|ψ〉ABE′ . (160)

Furthermore, we know that

ωABE = TrE1

{
UωE′→EE1

ψABE′
(
UωE′→EE1

)†}
(161)

≡ SωE′→E (ψABE′) , (162)

where we define the squashing channel SωE′→E from the
isometry UωE′→EE1

. So this implies that

F (A;B|E)ω = F (A;B|E)Sω(ψ) (163)

≤ sup
SE′→E

F (A;B|E)S(ψ). (164)

Since the inequality above holds for all extensions, the
inequality in (159) follows.

The following statement is a direct consequence of
Proposition 3:
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Corollary 17 The geometric squashed entanglement is
monotone with respect to local operations on both systems
A and B:

Esq
F (A;B)ρ ≥ Esq

F (A′;B′)τ , (165)

where τA′B′ ≡ (NA→A′ ⊗MB→B′) (ρAB) and NA→A′
and MB→B′ are local quantum channels. This is equiv-
alent to

F sq(A;B)ρ ≤ F sq (A′;B′)τ . (166)

Proof. Let ωABE be an arbitrary extension of ρAB and
let

θA′B′E ≡ (NA→A′ ⊗MB→B′) (ωABE) . (167)

Then by the monotonicity of fidelity of recovery with
respect to local quantum operations, we find that

F (A;B|E)ω ≤ F (A′;B′|E)θ ≤ F sq (A′;B′)τ . (168)

Since the inequality holds for an arbitrary extension
ωABE of ρAB , we can conclude that (166) holds and (165)
follows by definition.

Proposition 18 The geometric squashed entanglement
is invariant with respect to local isometries, in the sense
that

Esq
F (A;B)ρ = Esq

F (A′;B′)σ, (169)

where

σA′B′ ≡ (UA→A′ ⊗ VB→B′) (ρAB) (170)

and UA→A′ and VB→B′ are isometric quantum channels.

Proof. From Corollary 17, we can conclude that

Esq
F (A;B)ρ ≥ Esq

F (A′;B′)σ. (171)

Now let T UA′→A and T VB′→B be the quantum channels de-
fined in (67). Again using Corollary 17, we find that

Esq
F (A′;B′)σ ≥ Esq

F (A;B)(T U⊗T V)(σ) (172)

= Esq
F (A;B)ρ, (173)

where the equality follows from (68)-(69).

Proposition 19 The geometric squashed entanglement
obeys the following classical communication relations:

Esq
F (AXA;B)ρ ≤ E

sq
F (AXA;BXB)ρ (174)

= Esq
F (A;BXB)ρ , (175)

for a state ρXAXBAB defined as

ρXAXBAB ≡
∑
x

pX(x) |x〉 〈x|XA
⊗ |x〉 〈x|XB

⊗ ρxAB .

(176)
These are equivalent to

F sq (AXA;B)ρ ≥ F sq (AXA;BXB)ρ (177)

= F sq (A;BXB)ρ . (178)

Proof. From monotonicity with respect to local opera-
tions, we find that

F sq (AXA;BXB)ρ ≤ F sq (AXA;B)ρ , (179)

F sq (AXA;BXB)ρ ≤ F sq (A;BXB)ρ . (180)

We now give a proof of the following inequality:

F sq (A;BXB)ρ ≤ F sq (AXA;BXB)ρ . (181)

Let

ρXAXBXEABE =∑
x

pX(x) |x〉 〈x|XA
⊗ |x〉 〈x|XB

⊗ |x〉 〈x|XE
⊗ ρxABE ,

(182)

where ρxABE extends ρxAB . Observe that ρXAXBXEABE

is an extension of ρXAXBAB and ρXBABE is an arbitrary
extension of ρXBAB . Let RE→AE be an arbitrary recov-
ery channel and let REXE→AXAEXE

be a channel that
copies the value in XE to XA and applies RE→AE to
system E. Consider that
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F (ρABXBE ,RE→AE (ρBXBE)) (183)

=

[∑
x

pX(x)
√
F (ρxABE ,RE→AE (ρxBE))

]2

(184)

= F

(∑
x

pX(x) |xxx〉 〈xxx|XAXBXE
⊗ ρxABE ,

∑
x

pX(x) |xxx〉 〈xxx|XAXBXE
⊗RE→AE (ρxBE)

)
(185)

= F (ρAXABXBEXE
,REXE→AXAEXE

(ρBXBEXE
)) (186)

≤ F sq (AXA;BXB)ρ . (187)

The first two equalities are a consequence of the following
property of fidelity:

√
F (τZS , ωZS) =

∑
z

pZ (z)
√
F (τzS , ω

z
S) , (188)

where

τZS ≡
∑
z

pZ (z) |z〉 〈z|Z ⊗ τzS , (189)

ωZS ≡
∑
z

pZ (z) |z〉 〈z|Z ⊗ ωzS . (190)

The third equality follows from the description of the
map REXE→AXAEXE

given above. The last inequal-
ity is a consequence of the definition of F sq because
ρAXABXBEXE

is a particular extension of ρABXBE and
REXE→AXAEXE

is a particular recovery map. Given
that the chain of inequalities holds for all recovery maps
RE→AE and extensions ρABXBE of ρABXB

, we can con-
clude that

F sq (A;BXB)ρ ≤ F sq (AXA;BXB)ρ . (191)

Remark 20 The inequalities in Proposition 19 demon-
strate that the geometric squashed entanglement is mono-
tone non-increasing with respect to classical communica-
tion from Bob to Alice, but not necessarily the other way
around. The essential idea in establishing the inequal-
ity F sq (A;BXB)ρ ≤ F sq (AXA;BXB)ρ is to give a copy
of the classical data to the party possessing the exten-
sion system and to have the recovery map give a copy
to Alice. It is unclear to us whether the other inequality
F sq (AXA;B)ρ ≤ F sq (AXA;BXB)ρ could be established,
given that the recovery operation only goes from an ex-
tension system to Alice, and so it appears that we have
no way of giving a copy of this classical data to Bob.

The following theorem is a direct consequence of Corol-
lary 17 and Proposition 19:

Theorem 21 (1-LOCC monotone) The geometric
squashed entanglement is a 1-LOCC monotone, in the
sense that it is monotone non-increasing with respect to
local operations and classical communication from Bob
to Alice.

Theorem 22 (Convexity) The geometric squashed en-
tanglement is convex, i.e.,∑

x

pX(x)Esq
F (A;B)ρx ≥ Esq

F (A;B)ρ, (192)

where

ρAB ≡
∑
x

pX(x)ρxAB . (193)

Proof. Let ρxABE be an extension of each ρxAB , so that

ωXABE ≡
∑
x

pX(x) |x〉 〈x|X ⊗ ρxABE (194)

is some extension of ρAB . Then the definition of
Esq
F (A;B)ρ and Proposition 11 give that

2Esq
F (A;B)ρ ≤ IF (A;B|EX)ω (195)

≤
∑
x

pX(x)IF (A;B|E)ρx . (196)

Since the inequality holds independent of each particular
extension of ρxAB , we can conclude (192).

Theorem 23 (Faithfulness) The geometric squashed
entanglement is faithful, in the sense that

Esq
F (A;B)ρ = 0 if and only if ρAB is separable. (197)

This is equivalent to

F sq(A;B)ρ = 1 if and only if ρAB is separable. (198)

Furthermore, we have the following bound holding for all
states ρAB:

Esq
F (A;B)ρ ≥

1

512 |A|4
‖ρAB − SEP(A : B)‖41 . (199)

Proof. We first prove the if-part of the theorem. So,
given by assumption that ρAB is separable, it has a de-
composition of the following form:

ρAB =
∑
x

pX(x) |ψx〉 〈ψx|A ⊗ |φx〉 〈φx|B . (200)
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Then an extension of the state is of the form

ρABE =
∑
x

pX(x) |ψx〉 〈ψx|A ⊗ |φx〉 〈φx|B ⊗ |x〉 〈x|E .

(201)
Clearly, if the system A becomes lost, someone who pos-
sesses system E could measure it and prepare the state
|ψx〉A conditioned on the measurement outcome. That
is, the recovery map RE→AE is as follows:

RE→AE (σE) =
∑
x

〈x|σE |x〉 |ψx〉 〈ψx|A ⊗ |x〉 〈x|E .

(202)
So this implies that

F (ρABE ,RE→AE (ρBE)) = 1, (203)

and thus F sq(A;B)ρ = 1.
The only-if-part of the theorem is a direct consequence

of the reasoning in [22]. We repeat the argument from
[22] here for the convenience of the reader. The reason-
ing from [22] establishes that the trace distance between
ρAB and the set SEP(A : B) of separable states on sys-
tems A and B is bounded from above by a function of
−1/2 logF sq(A;B)ρ and |A|. This will then allow us to
conclude the only-if-part of the theorem.

Let

ε ≡ −1

2
logF sq(A;B)ρ (204)

for some bipartite state ρAB and let

εω,R ≡ −
1

2
logF (ωABE ,RE→AE (ωBE)), (205)

for some extension ωABE and a recovery map RE→AE .
By definition, we have that

ε = inf
ω,RE→AE

εω,R. (206)

Then consider that

εω,R ≥
1

8
‖ωABE −RE→AE (ωBE)‖21 , (207)

where the inequality follows from a well known relation
between the fidelity and trace distance [38]. Therefore,
by defining δω,R =

√
8εω,R we have that

δω,R ≥ ‖ωABE −RE→AE (ωBE)‖1 (208)

= ‖ωABE − (RE→A2E ◦ TrA1) (ωA1BE)‖1 , (209)

where the systems A1 and A2 are defined to be isomor-
phic to system A. Now consider applying the same re-
covery map again. We then have that

δω,R ≥
∥∥(RE→A3E ◦ TrA2

) (ωA2BE)−©3
i=2

(
RE→AiE ◦ TrAi−1

)
(ωA1BE)

∥∥
1
, (210)

which follows from the inequality above and monotonicity of the trace distance with respect to the quantum operation
RE→A3E◦TrA2

. Combining via the triangle inequality, we find for k ≥ 2 that∥∥ωABE −©3
i=2

(
RE→AiE ◦ TrAi−1

)
(ωA1BE)

∥∥
1
≤ 2δω,R ≤ kδω,R. (211)

We can iterate this reasoning in the following way: For j ∈ {4, . . . , k} (assuming now k ≥ 4), apply the maps
RE→AjE◦TrAj−1

along with monotonicity of trace distance to establish the following inequalities:∥∥∥[©j
i=3

(
RE→AiE ◦ TrAi−1

)
(ωA2BE)

]
−
[
©j
i=2

(
RE→AiE ◦ TrAi−1

)
(ωA1BE)

]∥∥∥
1
≤ δω,R. (212)

Apply the triangle inequality to all of these to establish the following inequalities for j ∈ {1, . . . , k}:∥∥∥ωABE −©j
i=2

(
RE→AiE ◦ TrAi−1

)
(ωA1BE)

∥∥∥
1
≤ kδω,R, (213)

with the interpretation for j = 1 that there is no map applied. From monotonicity of trace distance with respect to
quantum operations, we can then conclude the following inequalities for j ∈ {1, . . . , k}:∥∥∥ρAB − TrE

{
©j
i=2

(
RE→AiE ◦ TrAi−1

)
(ωA1BE)

}∥∥∥
1
≤ kδω,R. (214)

Let γA1A2···AkBE denote the following state:

γA1A2···AkBE ≡ RE→AkE (· · · (RE→A2E (ωA1BE))) . (215)

(See Figure 2 for a graphical depiction of this state.)Then the inequalities in (214) are equivalent to the following
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FIG. 2: This figure illustrates the global state after performing a recovery map k times on system E.

inequalities for j ∈ {1 . . . , k}: ∥∥ρAB − γAjB

∥∥
1
≤ kδω,R, (216)

which are in turn equivalent to the following ones for any permutation π ∈ Sk:∥∥∥ρAB − TrA2···Ak

{
Wπ
A1A2···Ak

γA1A2···AkB

(
Wπ
A1A2···Ak

)†}∥∥∥
1
≤ kδω,R, (217)

with Wπ
A1A2···Ak

a unitary representation of the permutation π. We can then define γA1···AkB
as a symmetrized version

of γA1···AkB :

γA1···AkB
≡ 1

k!

∑
π∈Sk

Wπ
A1A2···Ak

γA1···AkB

(
Wπ
A1A2···Ak

)†
. (218)

The inequalities in (217) allow us to conclude that

kδω,R ≥
1

k!

∑
π∈Sk

∥∥∥ρAB − TrA2···Ak

{
Wπ
A1A2···Ak

γA1A2···AkB

(
Wπ
A1A2···Ak

)†}∥∥∥
1

(219)

≥
∥∥∥∥∥ρAB − TrA2···Ak

{
1

k!

∑
π∈Sk

Wπ
A1A2···Ak

γA1A2···AkB

(
Wπ
A1A2···Ak

)†}∥∥∥∥∥
1

(220)

=
∥∥ρAB − γA1B

∥∥
1
, (221)

where the second inequality is a consequence of the con-
vexity of trace distance. So what the reasoning in [22]
accomplishes is to construct a k-extendible state γA1B

that is kδω,R-close to ρAB in trace distance.

Following [22], we now recall a particular quantum
de Finetti result in [39, Theorem II.7’]. Consider a
state ωA1···AkB which is permutation invariant with re-
spect to systems A1 · · ·Ak. Let ωA1···AnB denote the
reduced state on n of the k A systems where n ≤ k.
Then, for large k, ωA1···AnB is close in trace distance
to a convex combination of product states of the form∫
σ⊗nA ⊗ τ (σ)B dµ(σ), where µ is a probability mea-

sure on the set of mixed states on a single A system and
{τ (σ)}σ is a family of states parametrized by σ, with the

approximation given by

2 |A|2 n
k

≥
∥∥∥∥ωA1···AnB −

∫
σ⊗nA ⊗ τ (σ)B dµ(σ)

∥∥∥∥
1

.

(222)
Applying this theorem in our context (choosing n = 1)
leads to the following conclusion:

2 |A|2
k
≥
∥∥∥∥γA1B −

∫
σA1
⊗ τ (σ)B dµ(σ)

∥∥∥∥
1

(223)

≥
∥∥γA1B − SEP(A1 : B)

∥∥
1
, (224)

because the state
∫
σA1
⊗ τ (σ)B dµ(σ) is a particular

separable state.
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We can now combine (221) and (224) with the triangle
inequality to conclude the following bound

‖ρAB − SEP(A : B)‖1 ≤
2|A|2
k

+ kδω,R. (225)

By choosing k to diverge slower than δ−1
ω,R, say as k =

|A|
√

2/δω,R, we obtain the following bound:

‖ρAB − SEP(A : B)‖1
≤ |A|

√
8δω,R (226)

= (512)
1/4 |A| ε1/4

ω,R. (227)

Since the above bound holds for all extensions and re-
covery maps, we can obtain the tightest bound by taking
an infimum over all of them. By substituting with (204)
and (205), we find that

‖ρAB − SEP(A : B)‖1 ≤
(512)

1/4 |A| (−1/2 logF sq(A;B)ρ)
1/4

, (228)

or equivalently

Esq
F (A;B)ρ = −1/2 logF sq(A;B)ρ (229)

≥ 1

512 |A|4
‖ρAB − SEP(A : B)‖41 . (230)

This proves the converse part of the faithfulness of the
geometric squashed entanglement.

Proposition 24 (Reduction to geometric measure)
Let φAB be a bipartite pure state. Then

Esq
F (A;B)φ = −1

2
log sup
|ϕ〉A
〈φ|AB (ϕA ⊗ φB) |φ〉AB (231)

= − log ‖φA‖∞ . (232)

Proof. Any extension of a pure bipartite state is of the
form φAB⊗ωE , where ωE is some state. Applying Propo-
sition 12, we find that

F (A;B|E)φ⊗ω = F (A;B)φ (233)

= sup
σA

F (φAB , σA ⊗ φB) (234)

= sup
|ϕ〉A
〈φ|AB (ϕA ⊗ φB) |φ〉AB . (235)

The last equality follows due to a convexity argument
applied to

F (φAB , σA ⊗ φB) = 〈φ|AB σA ⊗ φB |φ〉AB . (236)

Since the equality holds independent of any particular
extension of φAB , we obtain (231) upon applying a neg-
ative logarithm and dividing by two. The other equality

(232) follows because

〈φ|AB (ϕA ⊗ φB) |φ〉AB
= 〈φ|AB (ϕAφA ⊗ IB) |φ〉AB (237)

= Tr {|φ〉 〈φ|AB (ϕAφA ⊗ IB)} (238)

= Tr {φAϕAφA} (239)

= 〈ϕ|A φ2
A |ϕ〉A . (240)

Taking a supremum over all unit vectors |ϕ〉A then gives

Esq
F (A;B)φ = −1

2
log
∥∥φ2

A

∥∥
∞ , (241)

which is equivalent to (232).

Proposition 25 (Normalization) For a maximally
entangled state ΦAB of Schmidt rank d,

Esq
F (A;B)Φ = log d. (242)

Proof. This follows directly from (232) of Proposition 24
because ΦA = IA/d.

Proposition 26 For a private state γABA′B′ of log d
private bits, the geometric squashed entanglement obeys
the following bound:

Esq
F (AA′;BB′)γ ≥ log d. (243)

Proof. The proof is in a similar spirit to the proof of [40,
Proposition 4.19], but tailored to the fidelity of recovery
quantity. Recall (43)-(46). Any extension γABA′B′E of a
private state γABA′B′ takes the form:

γABA′B′E = UABA′B′ (ΦAB ⊗ ρA′B′E)U†ABA′B′ , (244)

where ρA′B′E is an extension of ρA′B′ . This is because
the state ΦAB is not extendible. Then consider that

F (AA′;BB′|E)γ = sup
R
F (γABA′B′E ,RE→AA′E (γBB′E)) ,

(245)
where RE→AA′E is a recovery map. From (43)-(46), we
can write

γABA′B′E =
1

d

∑
i,j

|i〉 〈j|A⊗|i〉 〈j|B⊗V iA′B′ρA′B′E
(
V jA′B′

)†
,

(246)
which implies that

γBB′E =
1

d

∑
i

|i〉 〈i|B ⊗ TrÂ′
{
V i
Â′B′

ρÂ′B′E
(
V i
Â′B′

)†}
.

(247)
So then consider the fidelity of recovery for a particular
recovery map RE→AA′E :
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F (γABA′B′E ,RE→AA′E (γBB′E))

= F

(
UABA′B′ (ΦAB ⊗ ρA′B′E)U†ABA′B′ ,

1

d

∑
i

|i〉 〈i|B ⊗RE→AA′E
(

TrÂ′
{
V i
Â′B′

ρÂ′B′E
(
V i
Â′B′

)†}))
(248)

= F

(
(ΦAB ⊗ ρA′B′E) , U†ABA′B′

[
1

d

∑
i

|i〉 〈i|B ⊗RE→AA′E
(

TrÂ′
{
V i
Â′B′

ρÂ′B′E
(
V i
Â′B′

)†})]
UABA′B′

)
, (249)

where the second equality follows from invariance of the fidelity with respect to unitaries. Then consider that

U†ABA′B′

[
1

d

∑
i

|i〉 〈i|B ⊗RE→AA′E
(

TrÂ′
{
V i
Â′B′

ρÂ′B′E
(
V i
Â′B′

)†})]
UABA′B′

=

IA ⊗∑
j

|j〉 〈j|B ⊗
(
V jA′B′

)†[1

d

∑
i

|i〉 〈i|B ⊗RE→AA′E
(

TrÂ′
{
V i
Â′B′

ρÂ′B′E
(
V i
Â′B′

)†})]×
IA ⊗∑

j′

|j′〉 〈j′|B ⊗ V
j′

A′B′

 (250)

=
1

d

∑
i

|i〉 〈i|B ⊗
(
V iA′B′

)†RE→AA′E (TrÂ′
{
V i
Â′B′

ρÂ′B′E
(
V i
Â′B′

)†})
V iA′B′ . (251)

If we trace over systems A′B′, the fidelity only goes up, so consider that the state above becomes as follows after
taking this partial trace:

1

d

∑
i

|i〉 〈i|B ⊗ TrA′B′
{(
V iA′B′

)†RE→AA′E (TrÂ′
{
V i
Â′B′

ρÂ′B′E
(
V i
Â′B′

)†})
V iA′B′

}
=

1

d

∑
i

|i〉 〈i|B ⊗ TrA′B′
{
RE→AA′E

(
TrÂ′

{
V i
Â′B′

ρÂ′B′E
(
V i
Â′B′

)†})}
(252)

=
1

d

∑
i

|i〉 〈i|B ⊗ TrA′
{
RE→AA′E

(
TrÂ′B′

{
V i
Â′B′

ρÂ′B′E
(
V i
Â′B′

)†})}
(253)

=
1

d

∑
i

|i〉 〈i|B ⊗ TrA′
{
RE→AA′E

(
TrÂ′B′

{
ρÂ′B′E

})}
(254)

=
1

d

∑
i

|i〉 〈i|B ⊗ TrA′ {RE→AA′E (ρE)} (255)

= πB ⊗RE→AE (ρE) , (256)

where πB is a maximally mixed state on system B. So
an upper bound on (249) is given by

F (ΦAB ⊗ ρE , πB ⊗RE→AE (ρE))

≤ F (ΦAB , πB ⊗RE→A (ρE)) (257)

= 1/d2. (258)

Since this upper bound is universal for any recovery map
and any extension of the original state, we obtain the
following inequality:

sup
γABA′B′E :

γABA′B′=TrE{γABA′B′E}

F (AA′;BB′|E)γ ≤ 1/d2. (259)

After taking a negative logarithm, we recover the state-
ment of the proposition.

Proposition 27 (Subadditivity) Let ωA1B1A2B2
≡

ρA1B1
⊗ σA2B2

. Then

Esq
F (A1A2;B1B2)ω ≤ E

sq
F (A1;B1)ρ + Esq

F (A2;B2)σ ,

(260)
which is equivalent to

F sq (A1;B1)ρ · F sq (A2;B2)τ ≤ F sq (A1A2;B1B2)ρ⊗τ .
(261)

Proof. Let ρA1B1E1
be an extension of ρA1B1

and let
τA2B2E2

be an extension of τA2B2
. Let R1

E1→A1E1
and
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R2
E2→A2E2

be recovery maps. Then

F
(
ρA1B1E1 ,R1

E1→A1E1
(ρB1E1)

)
· F
(
τA2B2E2 ,R2

E2→A2E2
(τB2E2)

)
= F

(
ρA1B1E1 ⊗ τA2B2E2 ,R1

E1→A1E1
(ρB1E1)⊗R2

E2→A2E2
(τB2E2)

)
(262)

≤ sup
ωA1A2B1B2E

sup
RE→A1A2E

{F (ωA1A2B1B2E ,RE→A1A2E (ωB1B2E)) : ρA1B1 ⊗ τA2B2 = TrE {ωA1A2B1B2E}} (263)

= F sq (A1A2;B1B2)ρ⊗τ . (264)

Since the inequality holds for all extensions ρA1B1E1
and

τA2B2E2
and recovery maps R1

E1→A1E1
and R2

E2→A2E2
,

we can conclude that

F sq (A1;B1)ρ · F sq (A2;B2)τ ≤ F sq (A1A2;B1B2)ρ⊗τ .
(265)

By taking negative logarithms and dividing by 1/2, we
arrive at the subadditivity statement for Esq

F .

Proposition 28 (Continuity) The geometric squashed
entanglement is a continuous function of its input. That
is, given two bipartite states ρAB and σAB such that
F (ρAB , σAB) ≥ 1− ε where ε ∈ [0, 1], then the following
inequalities hold

|F sq(A;B)ρ − F sq(A;B)σ| ≤ 8
√
ε, (266)

|Esq
F (A;B)ρ − Esq

F (A;B)σ| ≤ 4 |A|2√ε. (267)

Proof. This is a direct consequence of the continuity of
fidelity of recovery (Proposition 9). Letting σABE be an
arbitrary extension of σAB , [32, Corollary 9] implies that
there exists an extension ρABE of ρAB such that

F (ρABE , σABE) ≥ 1− ε. (268)

By Proposition 9, we can conclude that

F (A;B|E)σ ≤ F (A;B|E)ρ + 8
√
ε (269)

≤ F sq(A;B)ρ + 8
√
ε. (270)

Given that the extension of σAB is arbitrary, we can con-
clude that

F sq(A;B)σ ≤ F sq(A;B)ρ + 8
√
ε. (271)

A similar argument gives that

F sq(A;B)ρ ≤ F sq(A;B)σ + 8
√
ε, (272)

from which we can conclude (266). We then obtain (267)
by the same line of reasoning that led us to (91).

VI. FIDELITY OF RECOVERY FROM A
QUANTUM MEASUREMENT

In this section, we propose an alternative measure of
quantum correlations, the surprisal of measurement re-
coverability, which follows the original motivation behind

the quantum discord [3]. However, our measure has a
clear operational meaning in the “one-shot” setting, be-
ing based on how well one can recover a bipartite quan-
tum state if one system is measured. We begin by recall-
ing the definition of the quantum discord and proceed
from there with the motivation behind the newly pro-
posed measure.

Definition 29 (Quantum discord) The quantum dis-
cord of a bipartite state ρAB is defined as the difference
between the quantum mutual information of ρAB and the
classical correlation [41] of ρAB:

D(A;B)ρ ≡ I(A;B)ρ − sup
{Λx}

I (X;B)σ (273)

= inf
{Λx}

[I(A;B)ρ − I (X;B)σ] , (274)

where {Λx} is a POVM with Λx ≥ 0 for all x and∑
x Λx = I and σXB is defined as

σXB ≡
∑
x

|x〉 〈x|X ⊗ TrA {ΛxAρAB} . (275)

We now recall how to write the quantum discord in
terms of conditional mutual information as done explic-
itly in [42] (see also [12] and [15]). Let MA→X denote
the following measurement map:

MA→X (ωA) ≡
∑
x

Tr {ΛxAωA} |x〉 〈x|X . (276)

Using this, we can write (275) as σXB = MA→X(ρAB).
Now, to every measurement mapMA→X , we can find an
isometric extension of it, having the following form:

UMA→XE |ψ〉A ≡
∑
x

|x〉X |x, y〉E 〈ϕx,y|A |ψ〉A , (277)

where the vectors
{
|ϕx,y〉A

}
are part of a rank-one re-

finement of the POVM {ΛxA}:

ΛxA =
∑
y

|ϕx,y〉 〈ϕx,y| . (278)

(In the above, we are taking a spectral decomposition of
the operator ΛxA.) Thus,

MA→X (ωA) = TrE
{
UMA→XE (ωA)

}
, (279)
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where

UMA→XE (ωA) ≡ UMA→XE (ωA)
(
UMA→XE

)†
. (280)

Let σXEB denote the following state:

σXEB = UMA→XE (ρAB) . (281)

We can use the above development to rewrite the ob-
jective function of the quantum discord in (274) as fol-
lows:

I(A;B)ρ − I (X;B)σ = I (XE;B)σ − I (X;B)σ (282)

= I (E;B|X)σ . (283)

So this means that we can rewrite the discord in terms
of the conditional mutual information as

D(A;B) = inf
{Λx}

I (E;B|X)σ , (284)

with the state σXEB understood as described above, as
arising from an isometric extension of a measurement
map applied to the state ρAB . We are now in a position
to define the surprisal of measurement recoverability:

Definition 30 (Surprisal of meas. recoverability)
We define the following information quantity:

DF (A;B)ρ ≡ inf
{Λx}

IF (E;B|X)σ , (285)

where we have simply substituted the conditional mutual
information in (284) with IF . Writing out the right-hand
side of (285) carefully, we find that

DF (A;B) =

−log sup
UMA→XE ,
RX→XE

F
(
UMA→XE(ρAB),RX→XE (MA→X(ρAB))

)
,

(286)

where MA→X is defined in (276), UMA→XE is defined in
(277), and UMA→XE is defined in (280).

This quantity has a similar interpretation as the orig-
inal discord, as summarized in the following quote from
[3]:

“A vanishing discord can be considered as an
indicator of the superselection rule, or — in
the case of interest — its value is a mea-
sure of the efficiency of einselection. When
[the discord] is large for any measurement,
a lot of information is missed and destroyed
by any measurement on the apparatus alone,
but when [the discord] is small almost all the
information about [the system] that exists in
the [system–apparatus] correlations is locally
recoverable from the state of the apparatus.”

Indeed, we can rewrite DF as characterizing how well
a bipartite state ρAB is preserved when an entanglement-
breaking channel [30] acts on the A system:

Proposition 31 For a bipartite state ρAB, we have the
following equality:

DF (A;B) = − log sup
EA

F (ρAB , EA(ρAB)) , (287)

where the optimization on the right-hand side is over the
convex set of entanglement-breaking channels acting on
the system A.

Proof. We begin by establishing that

sup
UMA→XE ,
RX→XE

F
(
UMA→XE(ρAB),RX→XE (MA→X(ρAB))

)
≤ sup
EA

F (ρAB , EA (ρAB)) . (288)

Let MA→X be any measurement map, let UMA→XE be
an isometric extension for it, and let RX→XE be any
recovery map. Let TXE→A denote the following quantum
channel:

TXE→A (γXE) ≡
(
UM

)†
γXEU

M

+ Tr
{(
I − UM

(
UM

)†)
γXE

}
σA, (289)

where σA is some state on the system A. Observe that(
TXE→A ◦ UMA→XE

)
(ρAB) = ρAB . (290)

Then consider that

F
(
UMA→XE (ρAB) ,RX→XE (MA→X(ρAB))

)
≤ F

(
TXE→A

(
UMA→XE(ρAB)

)
, TXE→A (RX→XE (MA→X(ρAB)))

)
(291)

= F (ρAB , TXE→A (RX→XE (MA→X (ρAB)))) (292)

≤ sup
EA

F (ρAB , EA (ρAB)) . (293)

The first inequality is a consequence of the monotonicity
of fidelity with respect to quantum operations and the

last follows because any entanglement breaking channel
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can be written as a concatenation of a measurement fol-
lowed by a preparation. In the third line, the measure-
ment isMA→X and the preparation is TXE→A◦RX→XE .

We now prove the other inequality:

sup
UMA→XE ,
RX→XE

F
(
UMA→XE (ρAB) ,RX→XE (MA→X(ρAB))

)
≥ sup
EA

F (ρAB , EA (ρAB)) . (294)

Let EA be any entanglement-breaking channel, which
consists of a measurement MA→X followed by a prepa-
ration PX→A. Let UMA→XE be an isometric extension of
the measurement map. Then consider that

F (ρAB , EA(ρAB))

= F (ρAB ,PX→A (MA→X(ρAB))) (295)

= F
(
UMA→XE (ρAB) ,UMA→XE (PX→A (MA→X (ρAB)))

)
(296)

≤ sup
UMA→XE ,
RX→XE

F
(
UMA→XE(ρAB),RX→XE (MA→X(ρAB))

)
,

(297)

where the inequality follows because UMA→XE ◦ PX→A is
a particular recovery map. So (294) follows and this con-
cludes the proof.

The proof follows the interpretation given in the quote
above: the measurement mapMA→X is performed on the
A system of the state ρAB , which is followed by a recovery
map PX→A that attempts to recover the A system from
the state of the measuring apparatus. Since the measure-
ment map has a classical output, any recovery map acting
on such a classical system is equivalent to a preparation
map. So the quantity DF (A;B) captures how difficult it
is to recover the full bipartite state after some measure-
ment is performed on it, following the original spirit of
the quantum discord. However, the quantity DF (A;B)
defined above has the advantage of being a “one-shot”
measure, given that the fidelity has a clear operational
meaning in a “one-shot” setting. If DF

(
A;B

)
is near

to zero, then F (ρAB , (PX→A (MA→X (ρAB)))) is close
to one, so that it is possible to recover the system A by
performing a recovery map on the state of the appara-
tus. Conversely, if DF (A;B) is far from zero, then the
measurement recoverability is far from one, so that it is
not possible to recover system A from the state of the
measuring apparatus.

The observation in Proposition 31 leads to the follow-
ing proposition, which characterizes quantum states with
discord nearly equal to zero.

Proposition 32 (Approximate faithfulness) A bi-
partite quantum state ρAB has quantum discord nearly
equal to zero if and only if it is an approximate fixed point
of an entanglement breaking channel. More precisely, we
have the following: If there exists an entanglement break-
ing channel EA and ε ∈ [0, 1] such that

‖ρAB − EA(ρAB)‖1 ≤ ε, (298)

then the quantum discord D(A;B)ρ obeys the following
bound

D(A;B)ρ ≤ 4h2(ε) + 8ε log |A| , (299)

where h2(ε) is the binary entropy with the property that
limε↘0 h2(ε) = 0. Conversely, if the quantum discord

D(A;B)ρ obeys the following bound for ε ∈ [0, 1]:

D(A;B)ρ ≤ ε, (300)

then there exists an entanglement breaking channel EA
such that

‖ρAB − EA(ρAB)‖1 ≤ 2
√
ε. (301)

Proof. We begin by proving (298)-(299). Since any en-
tanglement breaking channel EA consists of a measure-
ment mapMA→X followed by a preparation map PX→A,
we can write EA = PX→A ◦MA→X . Then consider that

D(A;B)ρ = I(A;B)ρ − sup
{Λx}

I (X;B)σ (302)

≤ I(A;B)ρ − I (X;B)M(ρ) (303)

≤ I(A;B)ρ − I(A;B)P◦M(ρ) (304)

= I(A;B)ρ − I(A;B)E(ρ) (305)

≤ 4h2(ε) + 8ε log |A| . (306)

The first inequality follows because the measurement
given by MA→X is not necessarily optimal. The second
inequality is a consequence of the quantum data process-
ing inequality, in which quantum mutual information is
non-increasing with respect to the local operation PX→A.
The last equality follows because EA = PX→A ◦MA→X .
The last inequality is a consequence of the Alicki-Fannes
inequality [9].

We now prove (300)-(301). The Fawzi-Renner inequal-
ity I(A;B|C)ρ ≥ − logF (A;B|C)ρ which holds for any
tripartite state ρABC [23], combined with other obser-
vations recalled in this section connecting discord with
conditional mutual information, gives us that there ex-
ists an entanglement breaking channel EA such that

D(A;B)ρ ≥ − logF (ρAB , EA(ρAB)) (307)

≥ − log

(
1− 1

4
‖ρAB − EA (ρAB)‖21

)
(308)

≥ 1

4
‖ρAB − EA (ρAB)‖21 , (309)

where the second inequality follows from well known rela-
tions between trace distance and fidelity [38] and the last
from − log (1− x) ≥ x, valid for x ≤ 1. This is sufficient
to conclude (300)-(301).

Remark 33 The main conclusion we can take from
Proposition 32 is that quantum states with discord nearly
equal to zero are such that they are recoverable after per-
forming some measurement on one share of them, making
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precise the quote from [3] given above. In prior work [43,
Lemma 8.12], quantum states with discord exactly equal
to zero were characterized as being entirely classical on
the system being measured, but this condition is perhaps
too restrictive for characterizing states with discord ap-
proximately equal to zero.

Remark 34 In prior work, discord-like measures of the
following form have been widely considered throughout the
literature [31]:

inf
χAB∈CQ

∆ (ρAB , χAB) , (310)

inf
χAB∈CC

∆ (ρAB , χAB) , (311)

where CQ and CC are the respective sets of classical-
quantum and classical-classical states and ∆ is some suit-
able (pseudo-)distance measure such as relative entropy,
trace distance, or Hilbert-Schmidt distance. The larger
message of Proposition 32 is that it seems more reason-
able from the physical perspective argued in this section
and in the original discord paper [3] to consider discord-
like measures of the following form:

inf
EA

∆ (ρAB , EA (ρAB)) , (312)

inf
EA,EB

∆ (ρAB , (EA ⊗ EB) (ρAB)) , (313)

where the optimization is over the convex set of entan-
glement breaking channels and ∆ is again some suitable
(pseudo-)distance measure as mentioned above. One can
understand these measures as being a special case of the
proposed measures in [44], but we stress here that we ar-
rived at them independently through the line of reasoning
given in this section.

We now establish some properties of the surprisal of
measurement recoverability:

Proposition 35 (Local isometric invariance)
DF (A;B)ρ is invariant with respect to local isometries,
in the sense that

DF (A;B)ρ = DF (A′;B′)σ, (314)

where

σA′B′ ≡ (UA→A′ ⊗ VB→B′) (ρAB) (315)

and UA→A′ and VB→B′ are isometric CPTP maps.

Proof. Let EA be some entanglement-breaking channel.
Let T UA′→A and T VB′→B denote the CPTP maps defined
in (67). Then from invariance of fidelity with respect to
isometries and the identities in (68)-(69), we find that

F (ρAB , EA(ρAB))

= F ((UA→A′ ⊗ VB→B′) (ρAB), (UA→A′ ⊗ VB→B′) (EA(ρAB))) (316)

= F
(
(UA→A′ ⊗ VB→B′) (ρAB),

(
UA→A′ ◦ EA ◦ T UA′→A

)
[(UA→A′ ⊗ VB→B′) (ρAB)]

)
(317)

≤ sup
EA′

F ((UA→A′ ⊗ VB→B′) (ρAB), EA′ ((UA→A′ ⊗ VB→B′) (ρAB))) . (318)

Since the inequality is true for any entanglement breaking channel EA, we find after applying a negative logarithm
that

DF (A;B)ρ ≥ DF

(
A;B

)
(U⊗V)(ρ)

. (319)

Now consider that

F ((UA→A′ ⊗ VB→B′) (ρAB), EA′ [(UA→A′ ⊗ VB→B′) (ρAB)])

= F (UA→A′(ρAB), (EA′ ◦ UA→A′) (ρAB)) (320)

≤ F
((
T UA′→A ◦ UA→A′

)
(ρAB),

(
T UA′→A ◦ EA′ ◦ UA→A′

)
(ρAB)

)
(321)

= F
(
ρAB ,

(
T UA′→A ◦ EA′ ◦ UA→A′

)
(ρAB)

)
(322)

≤ sup
EA

F (ρAB , EA (ρAB)) . (323)

Since the inequality is true for any entanglement breaking
channel EA′ , we find after applying a negative logarithm

that

DF (A;B)ρ ≤ DF

(
A;B

)
(U⊗V)(ρ)

, (324)
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which gives the statement of the proposition.

Proposition 36 (Exact faithfulness) The surprisal
of measurement recoverability DF

(
A;B

)
ρ

is equal to

zero if and only if ρAB is a classical-quantum state,
having the form

ρAB =
∑
x

pX(x) |x〉 〈x|A ⊗ ρxB , (325)

for some orthonormal basis {|x〉}, probability distribution
pX(x), and states {ρxB}.
Proof. Suppose that the state is classical-quantum.
Then it is a fixed point of the entanglement breaking
map

∑
x |x〉 〈x|A (·) |x〉 〈x|A, so that the fidelity of mea-

surement recovery is equal to one and its surprisal is equal
to zero. On the other hand, suppose that DF (A;B)ρ = 0.
Then this means that there exists an entanglement break-
ing channel EA of which ρAB is a fixed point (since
F (ρAB , EA (ρAB)) = 1 is equivalent to ρAB = EA (ρAB)),
and furthermore, applying the fixed point projection

EA ≡ lim
K→∞

1

K

K∑
k=1

EkA (326)

leaves ρAB invariant. The map EA has been character-
ized in [45, Theorem 5.3] to be an entanglement breaking
channel of the following form:

EA (·) =
∑
x

Tr {ΛxA (·)}σxA, (327)

where the states σxA have orthogonal support, ΛxA ≥ 0,
and

∑
x ΛxA = I. Applying this channel to ρAB then gives

a classical-quantum state, and since ρAB is invariant with
respect to the action of this channel to begin with, it must
have been classical-quantum from the start.

Proposition 37 (Dimension bound) The surprisal
of measurement recoverability obeys the following
dimension bound:

DF (A;B)ρ ≤ log |A| , (328)

or equivalently,

sup
EA

F (ρAB , EA (ρAB)) ≥ 1

|A| . (329)

Proof. The idea behind the proof is to consider an entan-
glement breaking channel EA that completely dephases
the system A. Let ∆A denote such a channel, so that

∆A (·) ≡
∑
i

|i〉 〈i|A (·) |i〉 〈i|A , (330)

where {|i〉A} is some orthonormal basis spanning the
space for the A system. Let a spectral decomposition
of ρAB be given by

ρAB =
∑
x

pX(x) |ψx〉 〈ψx|AB , (331)

where pX is a probability distribution and {|ψx〉AB} is a
set of pure states. We then find that

DF (A;B)ρ

≤ − logF
(
ρAB ,∆A(ρAB)

)
(332)

= −2 log
√
F
(
ρAB ,∆A (ρAB)

)
(333)

≤
∑
x

pX(x)
[
−2 log

√
F
(
ψxAB ,∆A (ψxAB)

)]
(334)

=
∑
x

pX(x)
[
− log 〈ψx|AB ∆A (ψxAB) |ψx〉AB

]
(335)

=
∑
x

pX(x)

[
− log

∑
i

[〈i|A ψxA |i〉A]
2

]
(336)

≤ log |A| . (337)

The second inequality follows from joint concavity of the
root fidelity

√
F and convexity of − log. The last equal-

ity is a consequence of a well known expression for the
entanglement fidelity of a channel (see, e.g., [46, Theo-
rem 9.5.1]). The last inequality follows by recognizing

− log
∑
i

[〈i|A ψxA |i〉A]
2

(338)

as the Rényi 2-entropy of the probability distribution
〈i|A ψxA |i〉A and from the fact that all Rényi entropies
are bounded from above by the logarithm of the alpha-
bet size of the distribution, which in this case is log |A|.

Given that the Rényi 2-entropy of the marginal of
a bipartite pure state is an entanglement measure, the
following proposition demonstrates that the surprisal of
measurement recoverability reduces to an entanglement
measure when evaluated for pure states.

Proposition 38 (Pure states) Let ψAB be a pure
state. Then

DF (A;B)ψ = − log Tr
{
ψ2
A

}
. (339)

Proof. For a pure state ψAB , consider that

DF (A;B)ψ

= − log sup
EA

F (ψAB , EA (ψAB)) (340)

= − log sup
|φx〉,|ϕx〉:
‖|φx〉‖2=1,∑
x|ϕx〉〈ϕx|=I

∑
x

|〈ϕx|A ψA |φx〉A|
2
, (341)

where the optimization in the second line is over pure-
state vectors |φx〉 and corresponding measurement vec-
tors |ϕx〉 satisfying

∑
x |ϕx〉 〈ϕx| = I. The second equal-

ity follows from the formula for entanglement fidelity
(see, e.g., [46, Theorem 9.5.1]) and the fact that the
Kraus operators of an entanglement-breaking channel
have the special form {|φx〉 〈ϕx|}x with |φx〉 pure quan-
tum states and

∑
x |ϕx〉 〈ϕx| = I [30]. Consider for all
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such choices, we have that∑
x

|〈ϕx|A ψA |φx〉A|
2

=
∑
x

〈ϕx|A ψA |φx〉 〈φx|A ψA |ϕx〉A (342)

≤
∑
x

〈ϕx|A ψ2
A |ϕx〉A (343)

=
∑
x

Tr
{
|ϕx〉 〈ϕx|A ψ2

A

}
(344)

= Tr
{
ψ2
A

}
, (345)

where the inequality follows from the operator inequality
|φx〉 〈φx|A ≤ IA. However, a particular choice of Kraus
operators {|φx〉 〈ϕx|}x is {|ψx〉 〈ψx|}x, where {|ψx〉}x is
the set of eigenvectors of ψA. For this choice, we find
that ∑

x

|〈ψx|A ψA |ψx〉A|
2

= Tr
{
ψ2
A

}
, (346)

so that we can conclude that

sup
|φx〉,|ϕx〉:

∑
x|ϕx〉〈ϕx|=I

∑
x

|〈ϕx|A ψA |φx〉A|
2

= Tr
{
ψ2
A

}
. (347)

Proposition 39 (Normalization) The surprisal of
measurement recoverability DF

(
A;B

)
Φ

is equal to log d
for a maximally entangled state ΦAB with Schmidt rank
d.

Proof. This is a direct consequence of Proposition 38
and the fact that ΦA = IA/d.

Proposition 40 (Monotonicity) The surprisal of
measurement recoverability is monotone with respect to
quantum operations on the unmeasured system, i.e.,

DF (A;B)ρ ≥ DF

(
A;B′

)
σ
, (348)

where σAB′ ≡ NB→B′ (ρAB).

Proof. Intuitively, this follows because it is easier to
recover from a measurement when the state is noisier to
begin with. Indeed, let EA be an entanglement breaking
channel. Then

F (ρAB , EA(ρAB)) ≤ F (σAB′ , EA (σAB′)) (349)

≤ sup
EA

F (σAB′ , EA (σAB′)) , (350)

where the first inequality is due to the fact that EA com-
mutes with NB→B′ and monotonicity of the fidelity with
respect to quantum channels. Since the inequality holds

for all entanglement breaking channels, we can conclude
that

sup
EA

F (ρAB , EA (ρAB)) ≤ sup
EA

F (σAB′ , EA (σAB′)) .

(351)
Taking a negative logarithm gives the statement of the
proposition.

With a proof nearly identical to that for Proposi-
tion 28, we find that DF (A;B)ρ is continuous:

Proposition 41 (Continuity) DF (A;B) is a continu-
ous function of its input. That is, given two bipartite
states ρAB and σAB such that F (ρAB , σAB) ≥ 1−ε where
ε ∈ [0, 1], then the following inequalities hold∣∣∣∣sup

EA
F (ρAB , EA (ρAB))− sup

EA
F (σAB , EA (σAB))

∣∣∣∣
≤ 8
√
ε, (352)∣∣DF (A;B)ρ −DF

(
A;B

)
σ

∣∣ ≤ |A| 8√ε. (353)

VII. MULTIPARTITE FIDELITY OF
RECOVERY

We state here that it is certainly possible to generalize
the fidelity of recovery to the multipartite setting. In-
deed, by following the same line of reasoning mentioned
in the introduction (starting from the Rényi conditional
multipartite information [12, Section 10.1] and under-
standing the α = 1/2 quantity in terms of several Petz
recovery maps), we can define the multipartite fidelity of
recovery for a multipartite state ρA1···AlC as follows:

F (A1;A2; · · · ;Al|C)ρ =

sup
R1

C→A1C ,
...,

Rl−1
C→Al−1C

F
(
ρA1···AlC ,R1

C→A1C ◦ · · · ◦ Rl−1
C→Al−1C

(ρAlC)
)
.

The interpretation of this quantity is as written: systems
A1 through Al−1 of the state ρA1···AlC are lost, and one
attempts to recover them one at a time by performing
a sequence of recovery maps on system C alone. We
can then define a quantity analogous to the multipartite
conditional mutual information as follows:

IF (A1;A2; · · · ;Al|C)ρ ≡ − logF (A1;A2; · · · ;Al|C)ρ,
(354)

and one can easily show along the lines given for the
bipartite case that the resulting multipartite quantity is
non-negative, monotone with respect to local operations,
and obeys a dimension bound.

We leave it as an open question to develop fully a mul-
tipartite geometric squashed entanglement, defined by re-
placing the conditional multipartite mutual information
in the usual definition [47] with IF given above. One
could also explore multipartite versions of the surprisal
of measurement recoverability.
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VIII. CONCLUSION

We have defined the fidelity of recovery F (A;B|C)ρ
of a tripartite state ρABC to quantify how well one can
recover the full state on all three systems if system A is
lost and the recovery map can act only on system C. By
taking the negative logarithm of the fidelity of recovery,
we obtain an entropic quantity IF (A;B|C)ρ which obeys
nearly all of the entropic relations that the conditional
mutual information does. The quantities F (A;B|C)ρ and
IF (A;B|C)ρ are rooted in our earlier work on seeking
out Rényi generationalizations of the conditional mutual
information [12]. Whereas we have not been able to prove
that all of the aforementioned properties hold for the
Rényi conditional mutual informations from [12], it is
pleasing to us that it is relatively straightforward to show
that these properties hold for IF (A;B|C)ρ.

Another contribution was to define the geometric
squashed entanglement Esq

F (A;B)ρ, inspired by the orig-
inal squashed entanglement measure from [4]. We proved
that Esq

F (A;B)ρ is a 1-LOCC monotone, is invariant with
respect to local isometries, is faithful, reduces to the well
known geometric measure of entanglement [25, 26] when
the bipartite state is pure, normalized on maximally en-
tangled states, subadditive, and continuous. The ge-
ometric squashed entanglement could find applications
in “one-shot” scenarios of quantum information theory,
since it is fundamentally a one-shot measure based on the
fidelity. (The fidelity is said to be a “one-shot” quantity
because it has an operational meaning in terms of a single
experiment: it is the probability with which a purifica-
tion of one state could pass a test for being a purification
of the other state.)

Our final contribution was to define the surprisal of
measurement recoverability DF (A;B)ρ, a quantum cor-
relation measure having physical roots in the same vein
as those used to justify the definition of the quantum dis-
cord. We showed that it is non-negative, invariant with
respect to local isometries, faithful on classical-quantum
states, obeys a dimension bound, and is continuous. Fur-
thermore, we used this quantity to characterize quantum
states with discord nearly equal to zero, finding that such
states are approximate fixed points of an entanglement
breaking channel.

From here, there are several interesting lines of in-
quiry to pursue. It is clear that generally IF (A;B|C) 6=
IF (B;A|C): can we quantify how large the gap can be
between them in general? Can we prove a stronger chain
rule for the fidelity of recovery? If something along these
lines holds, it might be helpful in establishing that the
geometric squashed entanglement is monogamous or ad-
ditive. (At the very least, we can say that geometric
squashed entanglement is additive with respect to pure
states, given that it reduces to the geometric measure
of entanglement which is clearly additive by inspecting
(232).) Is it possible to improve our continuity bounds to
attain “asymptotic continuity”? Can one show that geo-
metric squashed entanglement is nonlockable [40]? Pre-
liminary evidence from considering the strongest known

locking schemes from [48] suggests that it might not be
lockable. We are also interested in a multipartite geomet-
ric squashed entanglement, but we face similar challenges
as those discussed in [49] for establishing its faithfulness.
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Appendix A: Appendix

Given a state ρ, a positive semidefinite operator σ, and
α ∈ [0, 1) ∪ (1,∞), we define the Rényi relative entropy
as

Dα(ρ‖σ) ≡ 1

α− 1
log Tr

{
ρασ1−α} , (A1)

whenever the support of ρ is contained in the support
of σ, and it is equal to +∞ otherwise. The conditional
Rényi entropy of a bipartite state ρAB is defined as

Hα(A|B)ρ ≡ −Dα(ρAB‖IA ⊗ ρB). (A2)

(See, e.g., [37] for details of these definitions.) This leads
us to the following lemma:

Lemma 42 Let ρXB be a classical-quantum state, i.e.,
such that

ρXB ≡
∑
x

p(x) |x〉 〈x|X ⊗ ρxB , (A3)

where p(x) is a probability distribution and {ρxB} is a set
of quantum states. For α ∈ [0, 1) ∪ (1, 2],

Hα (X|B) ≥ 0. (A4)

Proof. This follows because it is possible to copy clas-
sical information, and conditional entropy increases with
respect to the loss of a classical copy. Consider the fol-
lowing extension of ρXB :

ρXX̂B ≡
∑
x

p(x) |x〉 〈x|X ⊗ |x〉 〈x|X̂ ⊗ ρxB . (A5)

Then we show that Hα(X|X̂B) = 0 for all α ∈ [0, 1) ∪
(1,∞). Indeed, consider that
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Hα(X|X̂B)

=
1

1− α log Tr


(∑

x

p(x) |x〉 〈x|X ⊗ |x〉 〈x|X̂ ⊗ ρxB

)α IX ⊗(∑
x′

p (x′) |x′〉 〈x′|X̂ ⊗ ρx
′

B

)1−α (A6)

=
1

1− α log Tr

{∑
x

pα (x) |x〉 〈x|X ⊗ |x〉 〈x|X̂ ⊗ (ρxB)
α
∑
x′

p1−α (x′) IX ⊗ |x′〉 〈x′|X̂ ⊗
(
ρx
′

B

)1−α
}

(A7)

=
1

1− α log Tr

{∑
x

p(x) |x〉 〈x|X ⊗ |x〉 〈x|X̂ ⊗ ρxB

}
(A8)

= 0. (A9)

Then for α ∈ [0, 1) ∪ (1, 2], the desired inequality is a
consequence of quantum data processing [37, Lemma 5]:

Hα(X|B) ≥ Hα(X|X̂B) = 0. (A10)
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[18] Dénes Petz. Sufficiency of channels over von Neumann
algebras. Quarterly Journal of Mathematics, 39(1):97–
108, 1988.
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