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The preparation of quantum states using short quantum circuits is one of the most promising
near-term applications of small quantum computers, especially if the circuit is short enough and
the fidelity of gates high enough that it can be executed without quantum error correction. Such
quantum state preparation can be used in variational approaches, optimizing parameters in the
circuit to minimize the energy of the constructed quantum state for a given problem Hamiltonian.
For this purpose we propose a simple-to-implement class of quantum states motivated by adiabatic
state preparation. We test its accuracy and determine the required circuit depth for a Hubbard
model on ladders with up to 12 sites (24 spin-orbitals), and for small molecules. We find that this
ansatz converges faster than previously proposed schemes based on unitary coupled clusters. While
the required number of measurements is astronomically large for quantum chemistry applications to
molecules, applying the variational approach to the Hubbard model (and related models) is found
to be far less demanding and potentially practical on small quantum computers. We also discuss
another application of quantum state preparation using short quantum circuits, to prepare trial
ground states of models faster than using adiabatic state preparation.

PACS numbers:

I. INTRODUCTION

Variational classes of states such as matrix product
states (MPS) [1], multiscale entanglement renormaliza-
tion (MERA) [2], and projected entangled pair states
(PEPS) [3] play a key role in studying many-body quan-
tum systems. An ideal class of states should be large
enough to approximate the ground state and it must be
possible to evaluate the energy and observables. Unfor-
tunately for many potential classes of states, including
PEPS, evaluation may be difficult on a classical com-
puter, and for other classes it can be very computation-
ally expense. However, on a quantum computer, large
classes of PEPS states can be prepared efficiently [4, 5],
(although likely not all PEPS can be prepared this way
[6]). Once the state is prepared, the energy and observ-
ables can be measured by sampling using short quan-
tum circuits. Similar quantum circuits exist for MPS and
MERA states [7]. Recently, Ref. 8 proposed variational
methods for studying quantum chemistry problems on a
quantum computer, and demonstrated one method on a
model with a four-dimensional Hilbert space.

Preparation of variational states is an attractive appli-
cation of small quantum computers, since many classi-
cally intractable states can be prepared with quite short
quantum circuits and thus do not pose stringent require-
ments on coherence times and gate fidelities. While vari-
ation over all possible states that can be produced by
quantum circuits of a given maximum depth (as done in
the demonstration experiments of Ref. 8) might sound
ideal, this approach does not scale efficiently. Ref. 8
also proposed using the unitary coupled cluster method
(UCC) [9], where variational states are prepared using
unitary evolution under a sum of fermionic terms includ-
ing c†pcq + h.c., c†pc

†
qcrcs + h.c., and higher order terms,

typically restricted to the case that creation operators
are on unoccupied orbitals in the Hartree-Fock state and
annihilation operators are on occupied (or vice-versa as
required by hermiticity). That approach involves many
parameters: even if truncated at the level of four fermion
operators, the number of variational parameters scales as
the number of occupied orbitals squared times the num-
ber of unoccupied orbitals squared, which at constant
filling fraction is the fourth power of the number of or-
bitals.

In this paper, we present an analysis of a different class
of variational states, that we term “Hamiltonian varia-
tional”, using a modest gate depth and a very modest
number of variational parameters compared to the sys-
tem size. We present a detailed numerical analysis of
this variational technique applied to a Hubbard model,
ranging up to systems of 12 sites (equivalently, 24 spin-
orbitals) at half-filling, to quantify its accuracy. The diffi-
culty in general increases with system size, but also fluc-
tuates in complicated ways, depending upon the spec-
trum of the non-interacting model. For certain cases,
including our largest size, the non-interacting model is
highly degenerate, leading to strong interaction effects
and a very poor overlap of an initial Slater determinant
state with the true ground state. We find that even then
the variational approach works well. Finally, we also an-
alyze the effects of sampling error in measuring energy
and give concrete estimates for time scales to implement
this procedure in practice.

The Hamiltonian variational method builds the varia-
tional state using rotations by terms in the Hamiltonian.
This is then very well suited for models such as the Hub-
bard model where there are few interactions terms, all of
which take a simple form; in contrast, for UCC applied to
the Hubbard model, the large number of possible terms
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c†pc
†
qcrcs + h.c. will lead to a much larger circuit depth

and further each term will take a more complicated form
than the simple interaction in the Hubbard model. So,
for comparison purposes, we instead apply both meth-
ods to several quantum chemistry systems also where the
number of terms in the Hamiltonian is comparable to the
number of possible four fermion terms. In this case, we
consider additionally several variants of UCC that we
term Rxx (different variants include different terms) de-
scribed below and we show that it is possible to improve
the UCC circuit depth by taking a very limited Trotter
number. While UCC shows a high accuracy on small
molecules, we find that this requires more evaluations.
Further, on larger molecules with stronger interaction, we
find that the accuracy of UCC and Rxx is worse than that
that obtained by the Hamiltonian variational method.
The class of variational states that we consider is in-

spired by both adiabatic state preparation and the quan-
tum optimization algorithm of Refs. 10, 11. Consider a
family of Hamiltonians H =

∑

a Jaha with the Ja be-
ing scalars and the ha being operators. Let J0

a and J1
a

be two choices of these Ja, with corresponding Hamil-
tonians H0, H1. Suppose it is easy to prepare a ground
state ΨI of H0 (for example, in our study of the Hubbard
model, H0 is non-interacting). Then, assuming that no
gap closes, it is possible to adiabatically evolve from ΨI

to the ground state of H1. If we break the annealing into
short time steps dt and evolve for a total time T , this an-
nealing is a sequence of (T/dt) different unitary rotations
by Hamiltonians interpolating between H0 and H1. This
could be implemented on a quantum computer using a
Trotter-Suzuki method which further decomposes this se-
quence into a sequence of unitary rotations by individual
terms in the Hamiltonian.
The idea of the variational method that we consider

is still restricted to a sequence of unitary rotations by
terms in the Hamiltonian, but considers arbitrary angles
for the rotations in the sequence, rather than choosing
them from a Trotterization of an annealing process. By
choosing these angles arbitrarily, this allows us to take a
much shorter sequence. Thus, we consider a trial state,
which we call the “Hamiltonian variational” state

ΨT = exp(iθnhan
) . . . exp(iθ2ha2

) exp(iθ1ha1
)ΨI , (1)

where larger n increases the accuracy. The angles θk
are variational parameters. The optimziation algorithm
of Refs. 10, 11 considered only rotation by two different
types of operators, while we consider rotation by a larger
number of terms.
If all the terms in the Hamiltonian have some symme-

try (such as spin-rotation symmetry), then ΨI and ΨT

transform in the same way under this symmetry. This
allows us to find ground states with different quantum
numbers by picking initial states ΨI with the desired
quantum number. In cases of symmetries such as trans-
lation invariance, it is helpful to try to construct the se-
quence of terms ak to approximately preserve this sym-
metry (see a more detailed discussion below).

To be useful for variational state preparation, it must
be possible to optimize over the given parameters, with-
out getting stuck in false minima. In Sec. II D we discuss
techniques which succeed in finding good optima for the
Hubbard model using access to numerically exact values
of the energy obtained from a classical simulation. Such a
classical approach may be useful on a quantum computer
as it finds short circuits that prepare specific highly en-
tangled states, albeit limited to system sizes where clas-
sical simulation is possible.

To go beyond the limits of classical simulation on a
quantum computer one must measure the energy using
a quantum circuit. One way is to write the Hamiltonian
as a sum of sets of terms, so that all terms in a given
set commute with each other and then measure each set
in one run, doing many runs for each set of terms, with
the error in the energy going as the inverse square-root of
the number of samples. The required number of samples
to achieve high accuracy may be large and limiting the
number of samples significantly impacts the ability to
find the optimum as discussed later in Sec. II E.

Another way to measure energy is to to use phase es-
timation to compute the energies, rather than sampling.
In this case, the error in energy goes inversely with the
phase estimation time. This procedure still is probabilis-
tic, returning on each run an energy chosen randomly
from a distribution. Thus many runs are still required
to estimate the average energy. For many distributions,
this procedure provides much more acccurate access to
the energy for a given run time than sampling would, at
the cost of requiring longer coherence time. Additionally,
it allows one to optimize on the probability of finding the
ground state, rather than on the energy, which may im-
prove the optimization.

One may wonder why this would be useful, since if
phase estimation finds an energy equal to the ground
state, one knows that one has successfully prepared the
ground state and can now make a measurement, without
any need to improve the variational state. However, once
the optimum variational parameters are found, these pa-
rameters are classical information that can be used to
quickly re-create the state. This is useful if one wishes to
make many measurements on the state, if the measure-
ments destroy the state. Also, techniques in Ref. 12 show
how to quadratically speed up the sampling of properties
of the state, assuming access by measuring a projector
onto the state. However, if we have access to a projector
onto ΨI , then conjugating this projector by the unitaries
in Eq. (1) gives us a short-depth circuit which projects
ΨT . Finally, in many applications such as chemical re-
actions where one studies the same Hamiltonian along a
path of parameters, it may be possible to use the varia-
tional solution for a given Hamiltonian to find a solution
of a nearby Hamiltonian rapidly.
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II. THE HUBBARD MODEL

A. The Hubbard Hamiltonian

To study performance scaling across a range of sizes,
we consider a sequence of Hubbard models on N -sites,
with the sites arranged in a two-leg ladder (an N/2-by-2
square lattice) for N = 4, 6, 8, 10, 12. The Hamiltonian
of the Hubbard model is

H = −t
∑

〈i,j〉

∑

σ

tijc
†
i,σcj,σ + U

∑

i

c†i,↑ci,↑c
†
i,↓ci,↓, (2)

with t = 1, U = 2. Here c†i,σ and ci, σ create and annihi-
late an electron at site i with spin σ respectively. We use
periodic boundary conditions along the long “horizontal”
direction of the lattice which is N/2 sites long and open
boundary conditions in the short “vertical” direction so
that there are a total of N bonds in the horizontal direc-
tion and N/2 in the vertical direction, all with the same
strength. We write this as H = hh + hv + hU , where hh

is the sum of hopping terms in the horizontal direction,
hv is the sum of hopping terms in the vertical direction,
and hU is the repulsion term.

B. Ground state degeneracies and initial states

We studied the system at half-filling with a N electrons
on N sites. For an equal number of N/2 up and down
electrons the single particle spectrum for N = 4, 6, 10
has N/2− 1 states below the Fermi energy and is doubly
degenerate at the Fermi energy, giving a 22 = 4-fold de-
generate many-body ground state for the non-interacting
(U = 0) Hamiltonian.. For N = 8 the U = 0 Hamilto-
nian has a unique ground state, with N/2 states below
the Fermi energy and an excitation gap. For N = 12,
there are N/2− 2 single particle states below the Fermi
energy, and four states at the Fermi energy, so that for
N/2 up electrons and N/2 down electrons, the U = 0

ground state is
(

4
2

)2
= 36-fold degenerate. These differ-

ent degeneracies of the non-interacting problem impact
the difficulty of solving it. They also reduce the overlap of
a Slater determinant with the true ground state. The de-
generacies at N = 4 and 12 are due to the special choice
of the vertical coupling; for generic vertical coupling, de-
generacies are only seen for N = 4n + 2 = 6, 10, 14, . . .,
where n is a positive integer.
The spin of the ground state at U = 2 also depends

upon N . It is a singlet for N = 4n = 4, 8, 12, . . . and is
a triplet for N = 4n+ 2 = 6, 10, . . .. All the results that
we report below are for ΨI in the correct spin sector. In
the case of N = 6, 10 we did this by choosing N/2 + 1
up electrons and N/2− 1 down electrons. In that sector,
the free fermion ground state becomes non-degenerate.
Otherwise, we chose N/2 up electrons and N/2 down
electrons. To choose a unique ground state for N = 4, 12
we prepared the ground state of the Hamiltonian thh +

(1 − ǫ)thv for small ǫ > 0; this state is independent of ǫ
for ǫ small and this simply picks out one of the ground
states of H .

C. The variational ansatz

We choose the terms ak in Eq. (1) in a repeating pat-
tern and perform S repetitions, which we call “steps”,
In each step, we have three variational parameters,
θbh, θ

b
v, θ

b
U , where b = 1, . . . , S. We set

ΨT =

S
∏

b=1

(

UU (
θbU
2
)Uh(θ

b
h)Uv(θ

b
v)UU (

θbU
2
)
)

ΨI , (3)

where UX(θ) approximates exp(iθhX) for X ∈ {U, h, v}
and the product is ordered by decreasing b; we say “ap-
proximates” because for hh is a sum of non-commuting
terms and we therefore used a second-order Trotter-
Suzuki method to implement Uh, applying the terms in
sequence from left to right in each row and then revers-
ing the order. This Trotterization helps to approximately
preserve momentum, which is useful if ΨI has the right
momentum quantum numbers. For UU , Uv, we imple-
ment the exponential exactly. Each step of the ansatz
then is a second-order Trotter approximation to evo-
lution under H(b) ≡ θbUhU + θbvhv + θbhhh, (note that
[Uh, Uv] = 0; this property holds in general for free
fermion hopping terms on any square lattice because Uh

and Uv are diagonal operators in a basis for the Fock
space obtained from a momentum basis for single-particle
states).

The sequence length can be reduced by combining

UU (
θb+1

U

2 )UU (
θb

U

2 ) = UU (
θb

U
+θb+1

U
)

2 ); other orderings, such
as first applying odd terms and then applying even terms
will slightly reduce the gate depth.

It is important to emphasize that we are not concerned
with Trotter error other than for a desire to preserve
quantum numbers such as momentum; while this choice
of unitaries gives evolution similar to the evolution un-
der H(b), we are optimizing the parameters for evolution
with these unitaries. If we instead did exact evolution
under a time-varying Hamiltonians (which is possible for
atomic quantum gases in optical lattices [13]), we would
instead optimize to a different optimum in the parame-
ters. We expect that the difference in these evolutions
can be largely absorbed into a small shift in the vari-
ational parameters. Alternatively, one can think that
instead of the terms hai

in Eq. (1) being chosen from the
terms hU , hv, hh they correspond to the terms hU , hv, as
well as all individual hopping terms that sum up to hh,
with all those hopping terms using the same parameter
in a given step.
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D. Optimization with Exact Energies

We first consider the case where we can exactly cal-
culate energies on a classical computer and use a simple
optimization procedure. Six points (a “point” is a set of
parameters) are chosen at random near the origin. For
each point, we first follow a greedy noisy search, where
we slightly perturb the values of the points, accepting
whenever this reduces the energy, for a total of 150 eval-
uations of the energy. We then use Powell’s conjugate
direction [14] method until it converges. After following
this procedure for each of the six points, we keep the
point whose energy is lowest at the end of the procedure,
and we discard the other five points. For the point we
keep, we alternate greedy noisy search and Powell search
until neither can find an improvement. Our greedy noisy
search uses a simple algorithm to determine step size:
every thirty trials we count the number of acceptances.
If that number is large, the step size is increased; if the
number is small, the step size is reduced.
We call this optimization algorithm the “global varia-

tional” method as it involves optimizing all parameters
simultaneously. Using the global variational approach
and an ansatz with S = 3, we obtain energy errors of
2.0 × 10−8, 0.019,0.029, 0.083, and 0.59 for N = 4, 6,
8, 10, and 12. Increasing S improves the error, but at
the larger sizes convergence was slow and results varied
greatly from run to run, suggesting that the minimiza-
tion was getting stuck in local minima. One clue to the
origin of this difficulty is that in some cases the energy
reduced but the overlap with the ground state also re-
duced. This is possible if it also reduces the amplitude
of some highly excited state but increases the amplitude
of a low excited state.
To overcome this problem, we used an alternative pro-

cedure to find the optimum. This procedure is inspired
by annealing and we call it the “annealed variational”
method. Let Hs = thH + thV + sUhU interpolate from
H0 to H1 by changing the coupling U . We use the same
ansatz (3), but we use a different procedure to select a
starting point for the search. We first do a single step
ansatz using as ΨI the ground state of H0 and target-
ting H1/S , using the same optimization as above, calling

the resulting parameters θ1X . We then use the ΨT from
that optimization as ΨI for another single step targetting
H2/S , giving θ2X . We continue, targetting H3/S , . . . ,, us-
ing ΨT from one step as ΨI for the next. This then gives
a trial state using S steps for H1 using parameters θbX for
b = 1, . . . , S. We call this state the result of sequential
optimization. We use those parameters as the starting
point for a further search as before (i.e., a global vari-
ational search using the sequential optimization as the
starting point), calling the resulting parameters the re-
sult of full optimization. (An alternate method that we
tried that in some cases worked better was to do a similar
anneal, but to target H1 on every step; thus, one would
parameters for a single step ansatz targetting H1; then
use that to do another step again targetting H1, and so

S ∆Es ∆Ef P s P f ∆Es ∆Ef P s P f

4 6

3 0.24 1.00 × 10−8 0.7180 1.0000 0.062 0.033 0.9821 0.9903

5 0.20 3.00 × 10−8 0.76289 1.0000 0.034 0.002 0.9912 0.9995

7 0.17 2.00 × 10−8 0.8021 1.0000 0.018 0.00033 0.9954 0.9999

9 0.15 7.00 × 10−8 0.8275 1.0000 0.013 0.00018 0.9967 1.0000

11 0.13 2.00 × 10−8 0.8460 1.0000 0.012 0.00011 0.9970 1.0000

8 10

3 0.1 0.033 0.9790 0.9934 0.13 0.083 0.9217 0.9374

5 0.042 0.0046 0.9906 0.9983 0.087 0.041 0.9388 0.9585

7 0.031 0.0030 0.9930 0.9989 0.066 0.022 0.9492 0.9710

9 0.024 0.0013 0.9947 0.9995 0.053 0.014 0.9566 0.9809

11 0.019 0.00089 0.9960 0.9997 0.042 0.012 0.9626 0.9841

13 0.015 0.00038 0.9968 0.9999 0.036 0.0069 0.9660 0.9929

15 0.013 0.00031 0.9973 0.9999 0.033 0.0052 0.9676 0.9959

17 0.012 0.00022 0.9976 0.9999 0.032 0.0032 0.9682 0.9983

19 0.010 0.00027 0.9978 0.9999 0.032 0.0017 0.9688 0.9993

8∗ 12

3 0.66 0.53 0.3889 0.5231 0.69 0.59 0.3046 0.4102

5 0.56 0.17 0.4620 0.8727 0.59 0.39 0.3576 0.6154

7 0.49 0.065 0.5164 0.9353 0.54 0.18 0.3958 0.8520

9 0.44 0.046 0.5600 0.9501 0.51 0.087 0.4256 0.9294

11 0.40 0.032 0.5969 0.9609 0.48 0.054 0.4483 0.9541

13 0.36 0.022 0.6280 0.9685 0.46 0.035 0.4667 0.9714

15 0.33 0.017 0.6551 0.9829 0.45 0.025 0.4836 0.9790

17 0.31 0.010 0.6799 0.9910 0.43 0.021 0.4997 0.9823

19 0.28 0.0083 0.7030 0.9935 0.42 0.015 0.5152 0.9883

TABLE I: Performance using the annealed variational
method. Numbers 4, 6, 8, 10, 12 indicate different values of
N . 8∗ is described in text. The left-hand column is number
of steps, S. Quantities ∆Es,∆Ef indicate error in ground
state energy after sequential and full optimization, respec-
tively. Quantities P s, P f indicate absolute squared ground
state overlap in those two cases, respectively.

on; this sometimes did better at a small number of steps
and also did slightly better at the given number of steps
on the N = 12 site model.)
The results of the annealed variational method are

listed in Tab. I. For S = 3, N > 4, this algorithm is
seen to be only marginally worse than the global varia-
tional method, but we found that it was faster at finding
the optimum (the number of energy evaluations required
depended on N , but the annealed variational method al-
ways required fewer than the original method, and in
some cases required a factor of five times fewer evalua-
tions). The most important advantage of the annealed
variational method is that it becomes significantly more
accurate than the global variational method for S > 3,
where now the error drops consistently with increasing
S, without the convergence issues seen using the global
variational method. While generally larger N is more
difficult, N = 4 shows worse performance than N = 6 ,
8, and 10 after sequential optimization and only shows
better performance after full optimization, perhaps due
to the degeneracy of the non-interacting Hamiltonian for
N = 4.
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An additional model shown in the table is called “8∗”.
This has eight sites with the same geometry as before,
but we change the hopping strength in the horizontal di-
rection to 1/

√
2 and change the sign on the horizontal

hoppings which are periodic, thus effectively inserting a
π-flux for hopping around a loop. The resulting single
particle spectrum has N/2 − 2 states below the Fermi
energy and four states at the Fermi energy, giving the
same many-body ground state degeneracy as for N = 12
sites. The flux model and N = 12 show very similar er-
rors and are both distinctly more difficult than the oth-
ers. Nonetheless, using only 33 parameters we obtain
over 95% overlap and with 45 parameters 97.9% over-
lap for N = 12, despite the Hilbert space having a much

larger dimension:
(

12
6

)2
= 853776 at the given filling. For

N = 10, a 93.7% overlap is obtained with only 9 param-
eters, in a 63504-dimensional space (symmetries such as
total spin slightly reduce this dimension).

E. Inexact Optimization: Gate Count and Run

Time

Next we consider the effects of sampling error assuming
one measures individual terms in the Hamiltonian on a
quantum computer, considering a tradeoff between run-
time and accuracy. Clearly, given a large enough number
of samples, one can reduce the statistical error to the
point that one can obtain the same accuracy as above.
However, for a smaller number of samples, it is useful to
modify the optimization algorithm. The trouble is that
a small change in a point leads to only a small change in
energy, and it thus requires a large number of samples to
determine whether or not the energy improves.
We thus used a different algorithm and tested it for

N = 8. Starting with all parameters equal to zero we
randomly order the parameters and try increasing or de-
creasing each parameter by a constant, looking for an im-
provement This is repeated (with parameters re-ordered
again randomly) with slightly changed constants, until
no further improvement is found. To determine if there
is an improvement, we sample at the given points un-
til the difference between the energies becomes twice the
standard deviation (or until a maximum number of sam-
ples is done). On an average over ten runs, we were able
to obtain more than 98% overlap with the ground state
using 506 different point evaluations and 8.5 ·105 average
samples per point, for 4.3× 107 total samples.
Now we wish to estimate the number of gates re-

quired to obtain a single sample, including preparing the
state ΨI , implementing the unitaries, and finally mea-
surement. ΨI is a Slater determinant and can be pre-
pared using Givens rotations [12] (using fewer gates than
the strategies in Ref. 15). The unitaries UU , Uh, Uv can
be implemented efficiently using Jordan-Wigner cancella-
tion techniques [16]. Finally, for measurement, the terms
in the Hamiltonian can be broken into at most four com-
muting sets. For N = 4n = 8, 12, . . . these are the Hub-

bard terms, the vertical hopping terms, and two sets
for the horizontal hopping terms. Slightly more com-
plicated divisions of the hopping terms are needed for
N = 4n + 2 = 6, 10, . . ., while a model with more hori-
zontal rows will require five sets.

The cost of implementing the unitaries dominates the
measurement cost. We can measure hU with a cost (in
gate count) that is almost identical to the cost to im-
plement UU ; see, for example, the discussion around
Fig. 12 of Ref. 12 and references therein. Similarly,
we can measure hv with cost almost identical to the
cost to implement Uv, while we can measure both sets
of commuting terms in hh with cost almost identical
to the cost to implement Uh. Hence, since in a single
run we only measure one of these four sets of terms
(i.e., hU or hv or one of the two terms in hh, as-
suming N = 4n), the measurement cost in a single
run is roughly one-quarter the cost of a single step

UU (
θb

U

2 )Uh(θ
b
h)Uv(θ

b
v)UU (

θb

U

2 ). In general, the cost of im-

plementing
∏S

b=1

(

UU (
θb

U

2 )Uh(θ
b
h)Uv(θ

b
v)UU (

θb

U

2 )
)

scales

linearly with S.

The Slater determinant can be prepared using Givens
rotations and the fast Fourier strategy [12], requiring on
the order of N log2(N) Givens rotations. These rota-
tions will involve sites which are further separated than
the nearest neighbor sites which appear in Uh, Uv, re-
quiring longer Jordan-Wigner strings; ignoring the cost
of the strings, the cost to execute these rotations will be
comparable to the cost to execute log2(N) rotations by
Uh or Uv. For fixed S, this would eventually dominate at
large N , but we expect that S will need to increase with
N too and that the dominant cost will remain the cost
of implementing the steps. Consider the case of N = 8,
for example. The initial ground state has two particles in
the zero momentum state in the horizontal direction, one
in the symmetric state in the vertical direction and one
in the anti-symmetric state. There are also two particles
in momentum states ±π/2 in the horizontal direction, in
the symmetric state in the vertical direction. We can pre-
pare the ground state as follows. Label sites in the top
row 1, 2, 3, 4 and label sites in the bottom row 5, 6, 7, 8
with 1 directly above 5, and so on. Initialize with par-
ticles in sites 1, 3, 4, 5. Then, applying Givens rotations
between pairs of sites 3, 7; 4, 8 to place particles initially
in sites 3, 4 in the symmetric state in the vertical direc-
tion. Next apply Givens rotations between pairs 1, 2;
5; 6 to bring the particle in site 1 into a symmetric state
between 1, 2 and the particle in site 5 into a symmetric
state between 5, 6. Again apply Givens rotations between
pairs 1, 3; 2, 4; 5, 7; 6, 8 so that now the particle initially
in site 1 is in a symmetric state between sites 1, 2, 3, 4
while the particle in site 5 is in a symmetric state be-
tween sites 5, 6, 7, 8. Thus, we have successfully occupied
both states with zero momentum in the horizontal di-
rection. This same procedure in fact also produces the
desired particles in momentum states ±π/2 so it prepares
the desired ground state. This uses a total of 8 Givens
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rotations. The gate count cost is comparable to that to
implement Uh and Uv.
For the case of quantum chemistry discussed below,

the initial state is much simpler. It is a product state
and so the cost to prepare is negligible compared to that
to implement the unitaries.
A gate count estimate shows that about 1000 gates

are required for S = 2 at N = 8 for a single run. This
includes the cost to prepare ΨI , to implement the unitary
rotations to create ΨT , and to perform measurement. To
measure all terms, this must be multiplied by 4 as each
run will give a measurement of the terms in one of the
four commuting sets of terms. To give a rough estimate,
if we ignore the possibility of parallelizing the circuits
and assume a gate time of 1µs the total time would be
4.3× 107× 4× 1000× 10−6 seconds, or roughly 47 hours.
This could be further improved using several devices in
parallel to sample. Note that any given run requires only
about 1000 gates, and thus poses only moderate demands
on gate fidelities.

III. QUANTUM CHEMISTRY

A. The electronic structure Hamiltonian

We finally apply the method to three problems in quan-
tum chemistry, where there are more terms than in the
Hubbard model. Using the Born-Oppenheimer approx-
imation by assuming that the nuclei behave classically
and are localized, the Hamiltonian for the electronic de-
grees in second quantized form

H =
∑

pq

hpqc
†
pcq +

∑

pqrs

hpqrsc
†
pc

†
qcrcs (4)

has the most general form for two-body interactions, due
to the long range nature of the Coulomb interaction. The
indices p, q, r and s refer to spin-orbitals, combining the
orbital and spin index.
As most basis sets used in quantum chemistry are

non-orthogonal we follow the standard procedure [17]
of first performing a (classical) Hartree-Fock calculation
and then use the Hartree-Fock orbitals as an orthogonal
basis set. On classical computers we can only simulate
quantum algorithms for very small basis molecules.
Specifically we consider HeH+ which has two elec-

trons, using a P321 basis with NSO = 8 spin orbitals,
H2O which has 10 electrons, in an STO-6G basis with
NSO = 14, and BeH2 which has 6 electrons in a basis
with NSO = 14. We use the Psi4 [18] quantum chem-
istry package to perform the Hartree Fock calculation
and compute the matrix elements of the Hamiltonian (4).
We also consider artificial hydrogen chains HN , where we
space hydrgen atoms along a line with distances of either
0.4614Å or 2Å. We used the global variational approach
to optimize parameters for HeH+, H2O, and BeH2 and
we used the annealed variational approach to optimize

S ∆E [mHa] P ∆E [mHa] P ∆E [mHa] P

HeH+ H2O BeH2

1 7.8 0.9970 23 0.9886 22 0.9825

2 1.7 0.9992 9.5 0.9950 6.6 0.9935

3 0.59 0.9998 7.6 0.9955 6.3 0.9937

4 0.26 0.9999 6.8 0.9959 5.8 0.9939

5 0.088 0.9999 3.2 0.9980 4.23 0.9954

6 0.14 0.9999 3.1 0.9982 1.85 0.9977

TABLE II: Variational Method applied to HeH+ and H2O.
∆E is the error in the ground state energy, P is absolute
squared overlap with ground state. Note that the energy is
slightly worse for HeH+ at S = 6 than at S = 5; this indi-
cates that the optimization algorithm did not find the true
minimum in this case.

HN . All numbers reported for all methods are the best
result obtained from three runs; due to randomness in
the search the results differ slightly between runs.

B. Variational ansatz for quantum chemistry

We considered two differents ansatzes for quantum
chemistry. In the first ansatz, used for HeH+, H2O,
BeH2, instead of using (O)(N4

SO) variational parameters
in our ansatz, we group the matrix elements into three
terms H = Hdiag +Hhop +Hex, where

Hdiag =
∑

p

ǫpc
†
pcp +

∑

p,q

hpqqpc
†
pcpc

†
qcq (5)

is a sum of diagonal terms,

Hhop =
∑

pq

hpqc
†
pcq +

∑

prq

hprrqc
†
pcqc

†
rcr (6)

contains normal and correlated hopping terms and

Hex =
∑

pqrs

hpqrsc
†
pc

†
qcrcs (7)

for p, q, r, s all distinct contains all other exchange terms.
As our final ansatz we use

ΨT =

S
∏

b=1

(

Uex(
θbex
2

)Uhop(
θbhop
2

) (8)

×Udiag(θ
b
diag)Uhop(

θbhop
2

)Uex(
θbex
2

)
)

ΨI ,

where UX(θ) approximates exp(iθHX) for X ∈
{ex, hop, diag}, up to Trotterization error. The initial
state ΨI is chosen to be the ground state ofHdiag and the
basis is a Hartree-Fock basis so that HhopΨI = 0. The
unitary Udiag(θ) = exp(iθHdiag) can be implemented ex-
actly since all terms commute. We implemented the uni-
tary Uhop(θ) using an “interleaved” term ordering [16],
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approximating it as a product Uhop(θ) =
∏

p<q Upq(θ) in
arbitrary order, with

Upq(θ) = exp

[

iθ

(

hpqc
†
pcq +

∑

r

hprrqc
†
pc

†
rcrcq + h.c.

)]

,

(9)
where all terms in the exponential commute with each
other. The term Uhop appears twice in Eq. (8) for each
step; in a slight abuse of notation, the order of terms was
reversed in the two different applications. The unitary
Uex(θ) was approximated as a product over factors

Upqrs(θ) = exp
[

iθ
(

hpqrsc
†
pc

†
rqcrcs + h.c.

)]

, (10)

in an arbitrary order. The term Uex also appears twice
in Eq. (8) for each step; in another slight abuse of nota-
tion, the order of terms was reversed in the two different
applications. Thus, in each step the unitary applied is
a second-order Trotter approximation to evolution under
H(b) ≡ θbexHex) + θbhopHhop + θbdiagHdiag.
The second ansatz was used for the HN chains. In this

case we used four parameters. We did this by further
dividing Hex into a sum of two terms Hex = Ho +Hrest,
where Ho includes the terms in Hex which do not anni-
hilate the Hartree-Fock state (the “o” indicates that this
is based on occupancy of the orbital in the Hartree-Fock
state) and Hrest includes the remaining terms. We then
used separate parameters to control Ho, Hrest. Thus, the
final ansatz was

ΨT =

S
∏

b=1

(

Uo(
θbo
2
)Urest(

θbrest
2

)Uhop(
θbhop
2

) (11)

×Udiag(θ
b
diag)Uhop(

θbhop
2

)Urest(
θbrest
2

)Uo(
θbo
2
)
)

ΨI ,

Our results for the three benchmark molecules using
various numbers of steps S are shown in Table II.

C. Unitary Coupled Cluster Ansatz

We have also performed simulations using UCC [9]
for comparison as well as variants. UCC method fixes
ΨT = exp(T )ΨI , for T an anti-Hermitian operator. The
variational parameters are contained in the choice of T .
Ref. 8 proposes using a Trotter-Suzuki method to im-
plement the transformation exp(T ). This increases the
depth of the circuit, which we wish to avoid. We have
found in our simulations that more accurate results are
in fact obtained using large Trotter steps, with the most
accurate results obtained using between two and four
second-order Trotter-Suzuki steps; all results reported
below are for two such steps. The method thus differs
from the usual UCC, although we continue to refer to it
as such. We used similar optimization procedures as be-
fore, exactly evaluating (to numerical error) the energy
as a function of parameters.

We set

T =
∑

p<q

(Tpqc
†
pcq − h.c.) +

∑

p<q,r<s

(Tpqrsc
†
pc

†
qcrcs − h.c.),

(12)
using all possible quadratic and quartic terms which are
compatbile with the symmetries of the system. We con-
sidered two cases, taking the parameters Tpq, Tpqrs either
all real or all imaginary. More accurate results were found
using real choices; this is likely due to the fact that the
wavefunction is real. More flexibility could be obtained
by using general complex values, but at the cost of a fur-
ther increase in parameters. In the real case, we can drop
diagonal terms such as c†pcp. Thus, all runs reported are
for the choice of real parameters.
Further, in the UCC method, one considers only terms

in which all creation operators act on orbitals which are
unoccupied in the Hartree-Fock state and all annihilation
operators act on orbitals which are occupied, or vice-
versa as required by Hermiticity; equivalently, these are
the terms which do not annihilate the Hartree-Fock state.
In our numerics, we considered three alternative possibil-
ities for a total of four possible choices of terms to keep.
One choice we call RAA, in which all terms are kept (the
“A”s refer to keeping all quadratic and all quartic terms,
while the “R” refers to T being real). Another choice
we call ROO, in which now we keep only quadratic and
quartic terms which do not annihilate the Hartree-Fock
state (the “O” refers to “occupation”, as whether or not
the term is kept depends upon the occupation number).
The choice ROO is precisely the same as UCC. The next
choice we term RNO, where no quadratic terms are kept
and quartic terms are kept only if they do not annihi-
late the Hartree-Fock state (the “N” refers to “none”);
this choice has the fewest terms. The last choice is RAO,
where all quadratic terms are kept and only quartic terms
are kept if they do not annihilate the Hartree-Fock state.
Thus, in decreasing order of number of terms kept, they
are RAA, RAO, ROO, RNO. The variants can be collec-
tively termed Rxx.
For molecules, to find terms compatible with symme-

tries, we included all terms which had nonzero coefficients
in the Hamiltonian (this should work for small molecules,
while for large molecules some terms compatible with
symmetry will have a small enough coefficient that they
get truncated). The results are shown in Table ??. Note
that for HeH+, H2O, all methods are able to find the
ground state to very high accuracy. This may be due
to the large number of parameters compared to Hilbert
space dimension. For RAA, for HeH+, there are 192 pa-
rameters in the imaginary case (almost as many in the
real case) compared to a Hilbert space dimension of 64
with the given number of up and down electrons (possi-
bly further reduced by symmetry) while for H20 there are
595 parameters compared to a Hilbert space dimension
of 441. This is an obstacle that we encounter when trying
to simulate small molecules on a classical computer. The
number of variational parameters in this method grows as
N4

SO while the Hilbert space dimension grows exponen-
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HeH+ H2O BeH2

RAA 3.2× 10−4 3.3× 10−2 0.16

RAO 5.3× 10−3 4.4× 10−2 0.41

ROO 1.3× 10−2 5.9× 10−2 0.42

RNO 0.42 0.36 0.66

TABLE III: Rxx methods applied to various small molecules.
Table shows energy error in mHa. Note that ROO is the same
as UCC.

tially with NSO at fixed filling fraction; eventually the
exponential growth beats the polynomial (indeed, this is
the whole reason for interest in a quantum computer),
but since the number of parameters grows at such a high
power of NSO, one needs fairly large systems to see this.
The other methods have smaller numbers of parameters;
some slight accuracy loss can be seen in RNO.
The reduction in the number of terms when going

from RAA to RNO or ROO depends upon the specific
molecule. At half-filling, for molecules with NSO spin-
orbitals with NSO >> 1, the number of quartic in RAA
is proportional to N4

SO and will be much larger than the
number of quadratic terms. Roughly 1/8-th of these
terms will be retained in RAO, RNO, or ROO; to see
this, note that a term is retained if p, q both correspond
to unoccupied orbitals and r, s both to occupied (which
occurs with probability 1/24 = 1/16 if one selects p, q, r, s
randomly at half-filling) or p, q are both occupied and
r, s are both unoccupied (which also occurs with proba-
bility 1/16). This leads thus to a constant factor gain;
away from half-filling the constant factor improvement
becomes larger.
For BeH2, the Hilbert space dimension is 1225, com-

pared to 595 terms for RAA and so the Hilbert state
dimension is smaller than the number of terms, but still
comparable. For BeH2, RAA is able to achieve an energy
error of 0.157 mHa, at the cost of over 2 × 105 energy
evaluations. A smaller number of evaluations leads to re-
duced accuracy; the accuracy improves most rapidly up
to roughly 2×104 evaluations with an error of roughly 0.5
mHa at that point. In contrast, the Hamiltonian varia-
tional method used between 5000−10000 evaluations for
the data above. For a given number of evaluations in
the optimization procedure, in general RAA had slightly
improved energy than the methods with fewer terms.

D. Hydrogen chains

Real applications will be concerned with molecules
with larger NSO. In order to access this regime we turn
to a different system, HN chains, varying the number of
atoms from N = 2 to N = 10; this allows us to test scal-
ing by considering a sequence of different system sizes, all
at fixed filling fraction and with similar couplings. For
N = 2, 4 and 6 the number of terms in RAA exceeds
the Hilbert space dimension, while for N = 8 there are

∆E [mHa] P ∆E [mHa] P ∆E [mHa] P

H6 H8 H10

RAA 0.4 0.995 51 0.786 152 0.578

RAO 8.03 0.976 54 0.797 89 0.674

ROO 10 0.979 54 0.787 80 0.697

RNO 13 0.974 50 0.817 69 0.746

H Var 3 21 0.947 35 0.904 51 0.892

H Var 6 3.0 0.982 7.3 0.959 11 0.960

H Var 9 0.97 0.984 2.6 0.965 3.6 0.967

TABLE IV: Variational methods applied to hydrogen chains.
Left-hand column gives method. Rxx refers to Rxx meth-
ods with ROO=UCC while H Var 3, 6, 9 refer to Hamiltonian
variational with S = 3, 6, 9.

2964 terms with a Hilbert space dimension of 4900 and
for N = 10 there are 7230 terms with a Hilbert space
dimension of N = 63504. We performed simulations at
separations of either 0.4614Å or 2Å between the atoms.
For the smaller spacings, there is a much higher over-
lap between the true ground state and the Hartree-Fock
ground state, while for the larger spacing, the overlap be-
comes much smaller; this is similar to the Hubbard chain
at small U/t compared to large U/t.
The results are shown in Table IV. In general, for

larger N , the Hamiltonian variational method is able to
obtain significantly higher overlap (the use of four param-
eters improves this; with only three parameters, a larger
S is required to attain the same accuracy).
For H6, increasing the number of terms in Rxx leads

to improved performance: RAA outperforms RAO which
outperforms ROO which outperforms RNO on measures
of energy. However, for H8, H10, the reverse is true, with
RNO having the highest overlap of any Rxx method.
When we consider the energy accuracy as a function of
number of evaluations, we find that at a given number
of evaluations RAA generally performs better (often by
only a small amount). However, the methods with fewer
parameters are often able to continue the optimization
out for more steps before getting stuck. We do not fully
understand the mechanism for this, but one possibility
is that once the optimization routine gets very close to
a local minimum, it is likely that motion in a random
direction will hurt the energy. Methods with more pa-
rameters are more likely to move in an incorrect direction
simply due to the increased dimensionality of the search
space and hence will be more likely to fail to find an im-
provement once very close to the minimum. One possible
improvement then would be to run RNO until it found
its optimum; then, take that endpoint as a starting point
for an ROO or RAA search; this requires investigation.
An interesting further feature of the convergence is

that the improvement in energy is rather rapid initially
and then transitions to a routine with much slower im-
provement. For example, for H10, the energy for the var-
ious Rxx versions has an error of ∼ 0.2 after roughly
5× 104 evaluations, followed by a very gradual improve-
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ment, with the RNO numbers above occuring after over
2.5× 105 evaluations.
As N increases, we find that the annealed variational

approach gets increasingly better than the UCC; the
UCC shows good performance at small sizes, perhaps
due to the large number of parameters compared to the
Hilbert space dimension, but gets increasingly less accu-
rate at large sizes and is more difficult to optimize. For
the smaller spacing, Rxx performed relatively better but
a similar trend was found.
A more flexible method for quantum chemistry is to

use multiple steps (as in the Hamiltonian variational ap-
proach) but allow every term to have a separate pa-
rameters (as in UCC); we call such method TRxx for
“time-dependent Rxx”, where the “time” refers to differ-
ent steps. Optimizing all these parameters may become
difficult. Note that for Hubbard, the unitary coupled
cluster method requires a large increase in circuit depth
compared to the Hamiltonian variational approach due
to all the additional terms in T and hence it is likely to
not be suitable for that context unless particularly useful
choices of a small number of terms in T can be found.
The Hamiltonian variational approach can be regarded
as a useful choice of which terms to take and how to vary
them.

IV. RESOURCE ESTIMATES FOR PRACTICAL

APPLICATIONS

We want to end with a discussion about resource re-
quirements for practical applications that might go be-
yond what can currently be done classically.

A. Hubbard model

For the Hubbard model interesting results can be ob-
tained for lattice sizes beyond 10 × 10, and thus with
N ≥ 100 sites, which requires about 200 qubits (or
slightly more for ancillas if we want to parallelize the
circuits). As the circuits to implement the various terms
in the Hamiltonian can be efficiently parallelized [12], the
parallel circuit depth will not substantially increase ex-
cept for the potential need to go to a larger number of
steps S. In order to be competitive to the best classi-
cal variational wave functions and distinguish competing
ground states (such as stripe oder versus uniform super-
conducting ground states) we need to aim for an error of
ǫ ≈ 10−3t in the energy per site [19].
Assuming a variance of order 1 for the measurement

of the hopping terms c†i,σcj,σ + c†j,σci,σ and a reduced

variance of order 1/U for the double occupancy term

c†i,↑ci,↑c
†
i,↓ci,↓ (due to a suppression of double occupancy

to about t/U for large U) we get an error estimate of

ǫ2 ≈ U2 t/U

MN
+ 4t2

1

MN
, (13)

assuming M measurements for each of five terms (double
occupancy, horizontal and vertical hopping for each of the
spins) and using that we can perform N measurements
in parallel in each of the runs. This is consistent with
the number of samples that was found to be necessary
comparing this to the values measures for small systems
in Sec. II E. Using relevant values of t = 1, U = 8,
N = 100, we obtain M ≈ 12/ǫ2N ≈ 120, 000 samples for
each of the five terms, or about a total of 600,000 samples
per energy evaluation. Again assuming gate times of or-
der 1µs, as in Sec. II E, the total estimated times needed
to achieve convergence remains of the order of days when
parallelizing the circuits, even considering that larger S
and more energy evaluations might be required. While
not trivial on a small quantum computer, this is poten-
tially practical in the not too distant future.

B. Quantum chemistry

For quantum chemistry applications the required re-
sources will be more demanding. Writing the Hamilto-

nian as H =
∑Nterms

i=1 hiOi, where Nterms is the number
of terms, and the numbers hi the coefficients of the terms
Oi we obtain for the error

ǫ2 =
∑

i

|hi|2Var(Oi)

Mi
, (14)

assuming Mi measurements of each of the operators Oi,
where Var(. . .) denotes the variance in the measurement
of the operator for the given trial state. Minimizing the
error for a total number of measurements M , we choose
Mi ∝ |hi|, and bounding the variances by Var(Oi) ≤ 1
we get

M ≈ (
∑

i |hi|)2

ǫ2
(15)

As the variances of the (large) diagonal terms ǫp and
hpqqp will be small for orbitals where the occupation num-
ber is close to 1 or to 0 (this holds for all orbitals in the
molecules studied above), we will drop these terms from
the error estimates and consider just the off-diagonal
terms in the following order of magnitude estimate. Some
of the off-diagonal terms have small variance. For exam-
ple, any term hpq in which p, q both have occupation
number close to 1 or close to 0 will have small variance.
However many off-diagonal terms have large variance; for
example, a term hpq where p has occupation number close
to 1 and q has occupation number close to 0 has large
variance. Hence, as a rough estimate, we treat the vari-
ance of the off-diagonal as a constant of order unity.
We find for the sums of matrix elements

∑

i |hi| the
values 11.3Ha for HeH+, 12.3Ha for BeH2 and 36Ha for
H2O, which results in 108 to 109 required samples for each
energy evaluation to achieve an error of 1mHa. This is
about a factor 1000 larger than for the Hubbard model,
which already needed on the order of a few days to be
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optimized at an assumed 1µs gate time and measurement
time. Considering additionally that the circuits are more
complex, this will require a massively parallel cluster of
quantum computers to perform the simulations for small
molecules in a reasonable time.
Moving from these toy problems that can easily be sim-

ulated classically to a more challenging problem, such
as Fe2S2 in a small single particle basis (STO-3G with
N = 112 spin-orbitals) we have

∑

i |hi| ≈ 3kHa, thus re-
quiring about 1013 samples per energy evaluation. Even
assuming that still only about 106 energy evaluations
could be sufficient to optimize the ansatz, the required
number of 1019 total samples is too large for the vari-
ational algorithm to be practical in this form. For this
model, a single instance of the Hamiltonian circuit is on
the order of 2 × 108 gate executions, which is an esti-
mate of the cost to prepare a sample using either a UCC
method truncated at all four fermi terms or the Hamilto-
nian variational method. This amounts to a total of 1026

gate operations assuming 20 − 30 commuting terms are
measured on each sample. This estimate assumed that
all of the energy evaluations in the optimization were
conducted at the same accuracy as the final estimate; po-
tentially some of the earlier energy evaluations could be
conducted at lower energy accuracy, but following a noisy
search to the minimum may require that many steps of
the evaluation be conducted at higher accuracy than the
final evaluation, since we have found that often only a
very small improvement in energy is obtained on each
step of the search.

V. DISCUSSION

We have presented a method of constructing vari-
ational states for arbitrary Hamiltonians, and tested
it numerically. Preparation of quantum states using
short quantum circuits is likely the lowest hanging
fruit for small quantum computers to achieve quantum
supremacy, and outperforming classical computers. No
expensive quantum error correction may be needed if the
gate fidelity is high enough to allow a short quantum
circuit to succeed in preparing a state.
We find that a modest number of parameters enables

us to obtain a very large overlap with the ground state,
helping reduce the number of evaluations required to ob-
tain good values of the parameters. Of course, the mini-
mum possible circuit depth is attained simply by declar-
ing the class of variational states to be “all states that can
be constructed with unitary quantum circuits of given
depth”. However, this would require an impractical op-
timization. The method here allows us a flexible class of
states with a small number of parameters, with the cir-
cuits chosen from the terms in the Hamiltonian. We find
that for larger systems with stronger interactions, this
approach is able to obtain significantly higher overlap
than ansatz wave functions based on the unitary coupled
cluster formalism or its Rxx variants.

Although the state preparation is fast, the number of
measurements required to estimate the energy with suf-
ficient accuracy is a huge challenge. While the estimates
for interesting quantum chemistry applications are astro-
nomical and the variational algorithm for these problems
thus impractical in its current form, the demands for the
Hubbard model are less challenging. There, the smaller
number of terms, limited energy range and translation
invariance help reduce the required number of measure-
ments to make a quantum variational approach poten-
tially practical, although still demanding.

We have also given a detailed numerical simulation of
UCC and Rxx for a variety of systems, obtaining better
understanding of its convergence properties. Further, we
have shown that small Trotter numbers suffice, reducing
circuit depth for this algorithm.

A less demanding application may be to use these
ansatz wave functions for state preparation, which uses
shorter circuits than would be needed if one instead pre-
pared the state by adiabatic preparation. We have at-
tempted to compare this by optimizing the parameters in
an anneal for the Hubbard model: we consider an anneal
using a linear path from the model at U = 0 to the final
model at U = 2. This linear path was implemented by
discrete time steps dt on the quantum computer, evolving
using a second order Trotter-Suzuki for each time step
(hence, the individual rotations in this Trotter-Suzuki
evolve by time step dt/2. Thus, there are two parame-
ters that quantify the anneal: the total annealing time
T , and the time step dt. The ratio T/dt is the number
of second order Trotter-Suzuki steps that must be imple-
mented. We optimized these two parameters separately
to obtain the minimum ratio that achieved 0.99 or higher
overlap with the ground state. For the N = 8 model, this
minimum was 8, to be compared to S = 3 to attain this
accuracy using the variational method. For N = 12, the
minimum was 640, to be compared to S = 19 using the
variational method (the table shows only 0.9883 over-
lap for S = 19, but slightly higher overlap was obtained
by targetting H1 on every step in this case). We expect
that larger system sizes may lead to even more significant
gains in depth.

This state preparation may be useful for measuring
properties of the states, in particular when combined
with the quadratic speedup of Ref. 12. Additionally, this
state preparation may be useful for annealing to even
larger states. For example, if we construct a short circuit
to create a Hubbard model ground state on 12 sites (and
indeed, one outcome of this work is that we have been
able to find such a circuit using a classical computer),
then one could create two or more copies of this ground
state and then anneal from the Hubbard Hamiltonian de-
scribing 24 sites partitioned into 2 decoupled sets of 12
sites to the Hubbard Hamiltonian for 24 coupled sites.
This is an example of the “joining” procedure of Ref. 12,
using the variational method to simplify the creation of
the decoupled systems.

We optimized the parameters by a search procedure
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which treated the energy as a function of parameters of
a black-box function to be optimized. It is in fact possible
to also determine the derivative of this function using a
quantum circuit, but this requires roughly doubling the
depth of the circuit. It is not clear whether or not access
to the derivative would improve the optimization.
One might further speculate whether optimizing over

parameters by searching would be useful for the opti-
mization problems of Refs. 10, 11, improving over the
performance of an adiabatic algorithm. Further numeri-
cal work may help answer this.
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