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Fast method for evolving the Wigner function of an open quantum system
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The Wigner function is a useful tool for exploring the transition between quantum and classical
dynamics, as well as the behavior of quantum chaotic systems. Evolving the Wigner function for
open systems has proved challenging however; a variety of methods have been devised but suffer
from being cumbersome and resource intensive. Here we present an efficient fast-Fourier method
for evolving the Wigner function, that has a complexity of O(N logN) where N is the size of
the array storing the Wigner function. The efficiency, stability, and simplicity of this method
allows us to simulate open system dynamics previously thought to be prohibitively expensive. As
a demonstration we simulate the dynamics of both one-particle and two-particle systems under
various environmental interactions. For a single particle we also compare the resulting evolution
with that of the classical Fokker-Planck and Koopman-von Neumann equations, and show that the
environmental interactions induce the quantum-to-classical transition as expected. In the case of
two interacting particles we show that an environment interacting with one of the particles leads to
the loss of coherence of the other.

PACS numbers: 02.60.Cb,02.70.Hm,03.65.Ca

I. INTRODUCTION

The Wigner function is a useful tool in understand-
ing the relationship between quantum systems and their
classical counterparts [1–5], especially for chaotic systems
in which visualization in phase-space has been crucial in
enabling breakthroughs [6]. The Wigner function is also
very useful in studying the quantum-to-classical transi-
tion, the process in which classical dynamics emerges as
an effective theory from the underlying quantum mechan-
ics [7–12], and for which open systems play an important
role [13–17].

The equation of motion for the Wigner function is
known as Moyal’s equation, and can be written either as
an infinite-order partial differential equation or as an in-
tegral equation [18, 19]. Both forms are difficult to solve,
and as a result a plethora of numerical methods for evolv-
ing the Wigner function propagation have been devel-
oped. These have involved i) the integral form of Moyal’s
equation [20–25], ii) reduction of the Moyal equation to
a Boltzmann-like equation [26, 27], iii) propagation of
Gaussian and coherent states [28–31], iv) Monte Carlo
schemes in which the Wigner function is contracted by
averaging over stochastic trajectories of pure-states [32–
35], and v) evolving the density matrix in the coordinate
representation [36, 37].

In this paper we combine a recently developed, elegant
formalism for quantum mechanics in phase space [38, 39]
with the spectral split operator method [40]. The spec-
tral (fast Fourier transform) method is desirable because
it allows one to take advantage of excellent existing li-
braries, parallelizes well, and is efficient and highly sta-
ble. The versatility and effectiveness of the resulting nu-
merical method is illustrated by simulating decoherence
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and energy dissipation in single- and two-particle sys-
tems.

The rest of the paper is organized as follows. The
Hilbert phase space formalism that underlies the numer-
ical methods is introduced in Sec. II. In this section we
show how master equations for open systems are writ-
ten in this formalism, as well as the evolution equations
that describe classical motion. We also discuss the rela-
tionship between the equations describing the quantum
and classical evolution. The split-operator technique for
evolving the Wigner function is then presented in Sec.
III. In Secs. IV and V we illustrate the use of the split
operator technique by applying it to a number of exam-
ples. Section VI concludes with a brief summary.

II. FORMALISM

A. Hilbert phase-space

We first define the following notation. Given continu-
ous variables a and b, we will write the derivatives with
respect to these variables in the following compact form

∂a ≡
∂

∂a
, ∂2

a ≡
∂2

∂a2
, ∂2

ab ≡
∂2

∂a∂b
(1)

We will also use a to denote a continuous variable that is
distinct from a. As is common we will use hats to denote
quantum operators that correspond to classical observ-
ables. Thus, the position operator x̂ has a continuous
spectrum of eigenvalues given by the variable x, and the
corresponding momentum operator is p̂ ≡ −i~∂x. We
will not use a hat for the density operator, which we will
denote by ρ, and we will write the matrix elements of ρ in
the compact form ρxy = 〈x|ρ|y〉. Finally, for a function
f of two variables x and y, we will use the form f(x, y)
as well as the more compact form fxy.
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With the above notation the unitary evolution for the
quantum density operator ρ is given by [41]

i~ρ̇ = [Ĥ(x̂, p̂), ρ]. (2)

where [x̂, p̂] = i~ and Ĥ is the Hamiltonian. In particu-
lar, Eq.(2) in the position representation is

i~ ∂tρxx′ = [H (x,−i~∂x)−H (x′, i~∂x′)] ρxx′ . (3)

The linear change of variables,

x = x− ~
2 θ, x′ = x+ ~

2 θ, (4)

gives the new representation

Bxθ = 〈x− ~
2 θ|ρ|x+ ~

2 θ〉, (5)

with the new equation of motion

i~ ∂tBxθ =
[
H
(
x− ~

2 θ, i
[
∂θ − ~

2∂x
])

(6)

−H
(
x+ ~

2 θ, i
[
∂θ + ~

2∂x
])]

Bxθ. (7)

Since ~θ has the dimension of length, the function Bxθ
was named the “double configuration space representa-
tion” by Blokhintsev [42, 43]. Following Blokhintsev it is
possible to define the quantity p, with the dimensions of
momentum, as the conjugate variable to θ. In this way
we obtain the celebrated Wigner function, Wxp, related
to Bxθ through the Fourier transform:

Bxθ =

∫
Wxp e

−ipθdp, (8)

Wxp =
1

2π

∫
Bxθ e

ipθdθ. (9)

Note that while Bxθ is in general a complex valued func-
tion, Wxp is real and can be normalized according to∫

Wxp dx dp = 1. (10)

Nevertheless, considering that Wxp is not necessarily pos-
itive, it cannot be interpreted as a true probability dis-
tribution (see discussions below).

Using the above definitions we obtain the equation of
motion in phase space

i~ ∂tWxp =[H
(
x+ i~

2 ∂p, p−
i~
2 ∂x

)
(11)

−H
(
x− i~

2 ∂p, p+ i~
2 ∂x

)
]Wxp. (12)

The latter can be also expressed in terms of the Moyal
star defined as

Hxp ? Wxp ≡ Hxp exp
(
i~
2

←−
∂x
−→
∂p − i~

2

←−
∂p
−→
∂x

)
Wxp, (13)

where the arrows indicate the direction of the derivatives’
action, and we have written Hxp ≡ H(x, p). Employing
the following identities

Hxp ? Wxp = H
(
x+ i~

2

−→
∂p, p− i~

2

−→
∂x

)
Wxp, (14)

Wxp ? Hxp = H
(
x− i~

2

−→
∂p, p+ i~

2

−→
∂x

)
Wxp, (15)

the equation of motion (11) becomes

i~ ∂tWxp = Hxp ? Wxp −Wxp ? Hxp, (16)

which is Moyal’s equation [1, 18, 44].
An abstract formalism that is independent of the par-

ticular representation can be introduced by defining an

extended four-operator algebra x̂, p̂, θ̂, λ̂ satisfying the
following commutator relations [38, 39]:

[x̂, p̂] = 0, [x̂, λ̂] = i, [p̂, θ̂] = i, [λ̂, θ̂] = 0. (17)

We note that the commuting operators x̂ and p̂, repre-
senting position and momentum in the phase space, form
a basis for the Koopman-von Neumann representation of

classical mechanics [45–48]. The operators λ̂ and θ̂ are
known as the Bopp operators [13, 49]. The four oper-
ators (17) can be used to realize the usual canonically-
conjugate position and momentum coordinates via

x̂ = x̂− ~
2 θ̂, p̂ = p̂+ ~

2 λ̂, (18)

so that [x̂, p̂] = i~. Similarly, one can define a mirror
quantum algebra as

x̂′ = x̂+ ~
2 θ̂, p̂′ = p̂− ~

2 λ̂, (19)

obeying the commutation relation with the negative sign
[x̂′, p̂′] = −i~, while all the other commutators vanish:
[x̂, x̂′] = [x̂, p̂′] = [p̂′, p̂] = [p̂′, x̂] = 0.

The four operators x̂, θ̂, λ̂, and p̂ can be used to define
a Hilbert space that we will refer to as the “Hilbert phase
space” after [39]. Specifically, since the self-adjoint op-

erators x̂ and θ̂ (respectively λ̂ and p̂) commute, they
share a common orthonormal eigenbasis |xθ〉 (respec-
tively |λp〉). These bases are complete so naturally

1 =

∫
dxdθ|xθ〉〈xθ| =

∫
dλdp|λp〉〈λp|, (20)

where 〈λp|xθ〉 = exp(ipθ − ixλ)/(2π).
The position and momentum coordinates introduced

above, as well as their mirror counterparts allow Eq.(3)
to be rewritten in the more abstract form

i~
d

dt
|ρ〉 = [H (x̂, p̂)−H (x̂′, p̂′)] |ρ〉, (21)

where |ρ〉 is a ket belonging to the Hilbert phase space .

We can realize x̂, p̂, θ̂, and λ̂ in terms of differential
operators. For example, the phase space representation
x-p is accomplished by

x̂ = x, p̂ = p, λ̂ = −i∂x, θ̂ = −i∂p, (22)

while, the x− θ representation requires

x̂ = x, p̂ = i∂θ, λ̂ = −i∂x, θ̂ = θ. (23)

Other representations can be constructed in a similar
fashion.
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The Hilbert phase space formalism conveniently unites
previously known results regarding phase-space distri-
bution functions. Considering the Hamiltonian form
Ĥ = 1

2m p̂2 + V (x̂), the abstract equation of motion for
the density matrix is

i~
d

dt
|ρ〉 =

[
~
m
p̂λ̂+ V

(
x̂− ~

2 θ̂
)
− V

(
x̂+ ~

2 θ̂
)]
|ρ〉,

(24)

for which the x − θ representation gives a linear partial
differential equation

i~ ∂t|ρ〉xθ =

[
~
m
∂2
xθ + V

(
x− ~

2 θ
)
− V

(
x+ ~

2 θ
)] |ρ〉

xθ
,

(25)

where |ρ〉
xθ
≡ 〈xθ|ρ〉. Since this differential equation is

the same as Eq.(7) we have [39]

B(x, θ) =
1√
~
|ρ〉

xθ
. (26)

Alternatively, the same equation in the usual phase space
is

i~∂t|ρ〉xp =

[
−i ~
m
p∂x + V + − V −

]
|ρ〉

xp
, (27)

where V ± = V
(
x± i~2∂p

)
and

W (x, p) =
1√
2π~

|ρ〉
xp
. (28)

Equations (25) and (27) illustrate the power of choos-
ing an appropriate representation: The equation of mo-
tion in the x − θ representation is a second order par-
tial differential equation with the same computational
complexity as the two-dimensional Schrödinger equation,
while the equation of motion in the x-p representation
is much more difficult to solve, as either a higher or-
der partial differential equation or an equally challenging
integro-differential equation [1].

In addition to W (x, p) [x-p phase space] and B(x, θ)
[x − θ space], the quantum state can be represented by
the functions A(λ, θ) and Z(λ, p) as

A(λ, θ) =

∫
dx e−iλxB(x, θ), (29)

Z(λ, p) =
1

2π

∫
dxdθ ei(pθ−λx)B(x, θ), (30)

where A(λ, θ) is known as the ambiguity function in

signal-processing [50], and Z(λ, p) can be regarded as the

double momentum space representation since ~λ has the

dimensionality of momentum. The connections among

all these functions are easily visualized in the following
diagram:

W (x, p) Z(λ, p)Fλ→xoo

B(x, θ)

Fθ→p

OO

A(λ, θ)

Fθ→p

OO

Fλ→xoo

(31)

where vertical arrows denote the θ → p partial Fourier
transforms ( Fθ→p), while horizontal arrows indicate the
λ→ x partial Fourier transforms( Fλ→x).

B. Open systems

Having reviewed the equations of motion for unitary
evolution in the Hilbert phase-space formalism, we now
show how to write various standard Markovian master
equations in this formalism. If a master equation that
describes the interaction with an environment is time-
independent then to preserve the positivity of the density
matrix it must have the Lindblad form. This means that
in addition to the unitary evolution the derivative of ρ
contains one or more additional terms of the form [41]

L[ρ] = AρA† − 1
2A
†Aρ− 1

2ρA
†A, (32)

where A can be any operator. For a single particle every
operator A can be written as a function of the position
and momentum operators, so we can write A(x̂, p̂). Fol-
lowing the steps leading to Eq.(21), each of the terms
in the Linblad form L[ρ] can be easily translated to
the Hilbert phase-space formalism by using the follow-
ing rules:

A(x̂, p̂)ρ ⇔ A(x̂, p̂)|ρ〉 (33)

ρA(x̂, p̂) ⇔ A(x̂′, p̂′)|ρ〉, (34)

and the fact that A(x̂, p̂) commutes with B(x̂′, p̂′) for
every A and B. That is, when any operator A(x̂, p̂) acts

to the right on ρ it acts on |ρ〉 as itself, and when it acts

to the left on ρ it acts on |ρ〉 as A(x̂′, p̂′). Note also that
in the Hilbert phase-space

A(x̂, p̂) = A

(
x̂− ~θ̂

2
, p̂+

~λ̂
2

)
, (35)

A(x̂′, p̂′) = A

(
x̂+

~θ̂
2
, p̂− ~λ̂

2

)
. (36)

As an example, the Lindblad operator for the Wigner
function is
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L[Wx,p] =

[
A
(
x− ~

2 θ̂, p+ ~
2 λ̂
)
A†
(
x+ ~

2 θ̂, p−
~
2 λ̂
)
− 1

2A
†
(
x− ~θ̂

2 , p+ ~λ̂
2

)
A
(
x− ~θ̂

2 , p+ ~λ̂
2

)
− 1

2A
†
(
x+ ~θ̂

2 , p−
~λ̂
2

)
A
(
x+ ~θ̂

2 , p−
~λ̂
2

)]
Wx,p, (37)

where θ̂ = −i∂p and λ̂ = −i∂x.
We now give useful forms for two important master

equations. The first is decoherence in the basis of x for
which the master equation is [8, 10, 41]

L[ρ] = −D
~2

[x̂, [x̂, ρ]] =
2D

~2

(
x̂ρx̂− 1

2
x̂2ρ− 1

2
ρ x̂2

)
;

(38)

however, it has a particularly simple form in the Hilbert
phase space

L
[
|ρ〉

]
=
D

~2

[
2(x̂− ~θ̂/2)(x̂+ ~θ̂/2)

− (x̂− ~θ̂/2)(x̂− ~θ̂/2)

− (x̂+ ~θ̂/2)(x̂+ ~θ̂/2)
]
|ρ〉

=−Dθ̂2|ρ〉. (39)

As a result, Blokhintsev’s dynamical equation for a quan-
tum system undergoing decoherence in the position basis
reads

∂tBxθ =

[
−i
m
∂2
θx +

V − − V +

i~
−Dθ2

]
Bxθ, (40)

with V − = V (x− ~θ/2) and V + = V (x+ ~θ/2).
Another widely used master equation is the time-

independent approximation to the Caldeira-Legget
model [16, 41, 51, 52]. This master equation is not strictly
correct as it is not in the Lindblad form, but it is good
enough for many purposes to describe damping and ther-
malization of a harmonic oscillator [53]. It is given by

D̂[ρ] = − iγ
~

[x, [p, ρ]+]− 2mγkT

~2
[x, [x, ρ]], (41)

Here [p, ρ]+ denotes the anticommutator, γ is the damp-
ing coefficient and T is the temperature of a bath. The
Hilbert phase-space form of this master equation is

D̂|ρ〉 = 2γ(iθ̂p̂−mkT θ̂2)|ρ〉, (42)

and in the x− θ representation this becomes

∂tBxθ =

[
−i
m
∂2
xθ +

V − − V +

i~
− 2γθ (∂θ +mkTθ)

]
Bxθ.

(43)

C. Hilbert Phase Space and Classical Dynamics

Classical mechanics can be embedded in the Hilbert
phase space. As discussed in Ref. [39], when we take the
classical limit ~→ 0 of Eq.(24) we recover the Koopman-

von Neumann equation for the classical state |ρ〉 [45–48]

i
d

dt
|ρ〉 =

[
1

m
p̂λ̂− V ′(x̂)θ̂

]
|ρ〉, (44)

where the position and momentum are given by the com-
muting operators x̂ and p̂ [Eq.(17)]. In this limit the

x-p representation, Ψ(x, p) = 〈xp|ρ〉, is the classical
Koopman-Von Neumann “wave-function” which is essen-
tially the square root of the phase-space probability den-
sity. It has the differential equation

∂

∂t
〈xp|ρ〉 =

[
− 1

m
p
∂

∂x
+ V ′(x)

∂

∂p

]
〈xp|ρ〉, (45)

Equation (45) can be also obtained by taking the limit
~ → 0 of the Moyal equation (27) for the Wigner func-
tion W (x, p). The corresponding positive phase-space
probability density, ρ(x, p) = |Ψ(x, p)|2, can be properly
normalized ∫

ρ(x, p)dxdp = 1, (46)

and applying the chain rule to the definition of the den-
sity ρ(x, p) one obtains the Liouville equation of classical
mechanics, which strikingly is identical to that for the
classical wave-function Ψ(x, p) [48]. Since Eq.(45) is the
equation obeyed by the classical probability density it is
equivalent to an ensemble of Newtonian trajectories, as
can be shown via the method of characteristics.

The classical evolution leaves the following cumulative
function, time invariant

Cρ(γ, t) =

∫
ρ<γ

ρ(x, p, t) dxdp. (47)

This statement is proven by slicing the cumulative dis-
tribution for an arbitrarily small increment δγ

Cρ(γ + δγ, t)− Cρ(γ, t) =

∫
δR

ρ(x, p, t) dxdp ≈ γ
∫
δR

dxdp,

(48)

where δR is the region γ < ρ < γ+δγ. The latter integral
measures the phase space volume where ρ(x, p, t) ≈ γ,
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which is preserved according to Liouville’s theorem, im-
plying the time invariance of Cρ(γ, t).

The same arguments establish the time independence
of the cumulative distribution

CΨ(γ, t) =

∫
Ψ<γ

Ψ(x, p, t) dxdp, (49)

for Koopman-von Neumann dynamics of real valued
states Ψ(x, p, t). Note that Ψ(x, p, t) is real for any time
time if and only if the initial condition is real. Con-
trary to classical mechanics, quantum propagation of the
Wigner function does not necessarily preserve the cumu-
lative function. For example, a typical effect of quantum
decoherence is the eventual elimination of any negativity
in the Wigner function,

NW (t) = CW (0, t) =

∫
W<0

W (x, p, t) dxdp. (50)

Modern developments and applications of the Koopman-
von Neumann classical mechanics can be found in, e.g.,
Refs. [38, 39, 48, 54–67].

The Fokker-Planck equation of open classical dynamics
can also be described in the present formalism

i∂tρ(x, p) =

[
1

m
pλ̂− V ′(x)θ̂ − iDθ̂2

]
ρ(x, p), (51)

where λ̂ and θ̂ are the differential operators defined in
Eq.(22). The classical limit of Eq.(40), governing quan-
tum decoherence, recovers Eq.(51) as further discussed
in Sec. IV.

III. SPECTRAL SPLIT-OPERATOR METHODS

The unitary time-evolution operator, underlying the
equation of motion (24), for a time increment dt is

Udt = exp

(
−idt

[
p̂λ̂

m
+
V − − V +

~

])
. (52)

This operator can be approximated using the Trotter
product [68] in the limit of a small time increment ei-
ther by the first-order scheme

Udt = exp

(
−idt
m
p̂λ̂

)
exp

(
−idt

~
(V − − V +)

)
+O(dt2),

(53)

or by the second-order scheme [40]

Udt = exp

(
−i dt

2m
p̂λ̂

)
exp

(
−idt

~
(V − − V +)

)
exp

(
−i dt

2m
p̂λ̂

)
+O(dt3). (54)

Both factorizations are advantageous for numerical evaluations since the time-evolution propagator is expressed as
a sequence of Fourier transforms F [see Eq.(31)] and element-wise multiplications. Thus, the first order scheme
propagates the state in the x-p representation according to

W (t+ dt) = Fλ→x exp

(
−idt
m
pλ

)
Fx→λθ→p exp

(
−idt

~
(V − − V +)

)
Fp→θW (t), (55)

where V ± = V
(
x± ~

2 θ
)

have now become scalar func-

tions, and Fx→λθ→p = Fθ→pFx→λ = Fx→λFθ→p is a se-

quence of two Fourier transforms defined in Eq.(31).
Numerical propagators for other representations of the
Hilbert phase space can be developed in a similar fash-
ion.

If the Wigner function W (t) at a given point in time is
stored in an array of length N = Np×Nx, then the total
complexity of the propagator Eq.(55) is O(N logN) since
it involves a sequence of two Fast Fourier Transforms [69]
ofO(N logN) complexity, and two element-wise multipli-
cations of O(N) complexity. The fast Fourier transform
does not exactly coincide with the formal definition of
the Fourier transform F because of the need to have one
more element with negative frequency than with positive

frequency. For convenience we thus give the propagators
explicitly in terms of discrete position and momentum
grids. We assume that both grids have an even number
of points given respectively by Np and Nx, and denote
the separation of the grid points by ∆x and ∆p. In par-
ticular the grids are given by xn and pn with

∆x =2Lx/Nx ∆p = 2Lp/Np (56)

xn =− Lx + n∆x, n = 0, . . . , Nx − 1, (57)

pm =− Lp +m∆p, m = 0, . . . , Np − 1, (58)

where Lx and Lp define the window of interest in the
phase space. The Wigner function is actually stored with
the grid elements in a different order, in that the negative
grid points are stored in the second half of the grid. This



6

order is given by Wkj = W (x̃j , p̃k) with

x̃j =

{
xj+Nx/2 for j = 0, . . . , Nx

2 − 1
xj−Nx/2 for j = Nx

2 , . . . , Nx − 1
(59)

and with the corresponding relationship between p̃k and
pm. Note that the Wigner function at the origin of the
coordinate system, W (0, 0), is now stored at the edge of
the grid as W00. The reason for this new grid ordering
is that it is the natural ordering upon which to apply
the fast Fourier transform. It is, of course, not the natu-
ral ordering to use in displaying the Wigner function, so
we transform from the j, k ordering to the n,m ordering
before plotting. This transformation is called an “FFT
shift” and is characterized for being a self-inverse func-
tion. It is usually provided in libraries that implement
the fast Fourier transform. However it should be noted
that some implementations of the “FFT shift” store an
extra copy of the Wigner function, which can be pro-
hibitively expensive, which is why the user may need to
make explicit use of Eq. (59). We provide a Python
implementation of the unitary propagation for a single-
particle in the supplemental material.

In the case of other representations, e.g., x−θ, the grid
discretization step size ∆θ is given by

∆θ = 2π/Lp, Lθ = ∆θNp/2; (60)

whereas in the λ− p representation

∆λ = 2π/Lx, Lλ = ∆λNx/2. (61)

If the system’s initial condition is given by a wave func-
tion known analytically, then B(x, θ) can be readily con-
structed by Eq.(5), whereas the calculation of the cor-
responding Wigner distribution requires an additional
Fourier transform (9).

A. Solving master equations

The split-operator method presented above can be
extended to handle non-unitary open quantum system
dynamics. For example, the first-order split-operator
method for evolving the master equation given in Eq.(39)
is

W (t+ dt) = Fλ→x exp

(
− idt
m
pλ

)
Fx→λθ→p exp

(
− idt

~
[
V − − V +

]
− dtDθ2

)
Fp→θW (t). (62)

Similar techniques can be used for solving the classical Liouville equation [70–72], and can be extended to the
Koopman-von Neumann equation (45). However, Liouville-like equations can only be solved exactly for a finite time
on a fixed grid, due to the development of increasingly fine structure, know as velocity filamentation [73]. This issue
can be handled by filtering the phase-space distribution so as to remove high-frequency (spatial) structure. In the x-θ
representation this results in the following propagation scheme for ρ(t) and Ψ(t) [74, 75]{

ρ(t+ dt)

Ψ(t+ dt)

}
= Fλ→x exp

(
− idt
m
pλ

)
Fx→λθ→p exp

(
−idtV ′(x)− δDθ2

)
Fp→θ

{
ρ(t)

Ψ(t)

}
, (63)

valid for both the classical probability density ρ(x, p) and
the Koopman-von Neumann wave function Ψ(x, p). This
propagator is equivalent to the evolution of the Fokker-
Planck equation (51); the diffusion term in the Fokker-
Planck equation washes out the fine structure. A simi-
lar numerical trick is used to develop efficient numerical
methods for the Hamiltonian-Jacobi equation [76].

The Caldeira-Legget master equation, Eq.(41), can be
implemented by separating the effects of decoherence and
dissipation. The second term in Eq.(41), generating de-
coherence, has already been treated in Eq.(62). The first
term in Eq.(41) describes energy exchange with the bath,
and could be evaluated by specially designed finite dif-
ference schemes [37, 77, 78], although these require large
grid sizes to achieve numerical stability.

To overcome this limitation we now present a stable
method enabling, for the first time, higher dimensional
simulations (see Sec.V). The time evolution induced by

a general dissipator operator Ĉ is

|ρ(t+ dt)〉 = edtĈ|ρ(t)〉
=
(

1 + dt Ĉ[1 + dt Ĉ/2]
)
|ρ(t)〉+O(dt3).

(64)

For the energy exchange term in the Caldeira-Legget

model, Eq.(41), we have Ĉ = 2iγθ̂p̂. Using Eq.(64) we
can propagate the Wigner function in two steps as

W (t+ dt) = W (t) + 2idtγ θ̂p̂W (1)(t), (65)

W (1)(t) = W (t) + idtγ θ̂p̂W (t) (66)

where a sequence of θ → p Fourier transforms is used to
calculate the required operator product:

θ̂p̂W (t) = Fθ→p θFp→θ pW (t). (67)
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We note that the second-order scheme (65) is sufficient
for the simulations in Sec. IV and V; nevertheless, higher
order corrections can be recursively included if needed.

IV. SINGLE-PARTICLE SYSTEMS

In this section, we apply the numerical methods de-
veloped in Sec. III to propagate a single-particle under
various interactions with the environment. We consider
the model for vibrational diatomic molecular dynamics:
a particle with mass m = 58752 a.u. (we will use atomic
units (a.u.) throughout) moving in a Morse potential
given by

V (x) = V0[exp(−2a[x− re])− 2 exp(a[x− re])], (68)

with V0 = 0.6 eV = 0.0220 a.u., a = 2.5 a.u. and re =
−4.7 a.u. The Wigner function for the initial state is
shown in Fig. 1(a). This initial state corresponds to
the first exited state of the Morse potential displaced by
x0 = 4.3 a.u., and is given by

ψ1(x) = NzL−n−1/2e−z/2
(

1− L exp(−a[x− x0])

L− 1

)
,

(69)

where L =
√

2mV0/a and N is a normalization con-
stant. This state possesses significant negativity, defined
in Eq.(50), and we propagate it according to three differ-
ent dynamical equations: i) unitary evolution, Eq.(24),
resulting in the final state shown in Fig.1 (b); ii) deco-
herent dynamics given by Eq.(40), resulting in the final
state shown in Fig.1(c); iii) Evolution under the Caldeira-
Legget master equation, Eq.(43), resulting in the final
state given in Fig.1(d).

These simulations provide an opportunity to observe
the emergence of the classical world as a result of the
interactions with the environment [7–12]. In particular
they illustrate how decoherence eliminates the negative
regions of the Wigner function. The final state under
purely unitary evolution in Fig. 1(b) contains significant
negativity (50), while the states in the presence of inter-
actions with the environment evolve to entirely positive
states as seen in Figs 1(c) and 1(d).

We also propagated the initial state shown in Fig. 1(a)
using i) the classical Koopman-von Neumann evolution,
Eq.(45), regularized to handle the velocity filamentation
(see the discussion in Sec. III ), and ii) the Fokker-Planck
evolution (51) with the same diffusion coefficient as used
for the open-system evolution shown Fig. 1(c). The re-
sult of the Koopman-von Neumann evolution is shown in
Fig. 2(a) and that of the Fokker-Planck equation is shown
in Fig. 2(b). A comparison of the final states in Fig. 1

and Fig. 2 shows that a quantum state undergoing de-
coherence converges to the solution of the Fokker-Planck
equation, rather than to the corresponding Koopman-
von Neumann state. The reason for this is that the deco-
herence is a measurement process and induces quantum
back-action noise that is equivalent to diffusion, and the
Fokker-Planck equation correctly includes this diffusion.
The classical limit is defined as that in which the action of
a system is sufficiently large that the decoherence needed
to transform the motion into classical dynamics induces
diffusion that is negligible in comparison. In that case
the open-system dynamics converges to the Koopman-
von Neumann evolution (equivalently the classical Liou-
ville evolution) because the effect off the diffusion is neg-
ligible. We note that the color scales in Figs. 1 and 2 dif-
fer due to the different normalization conventions for the
Wigner function (10) and the Koopman-von Neumann
state (46).

While the quantum evolution has a bound on the
smallest structure in the phase space [79], the Koopman-
von Neumann evolution develops an ever finer structure,
even for a non-chaotic classical system (see Fig. 2(b)).
As a result the Koopman-von Neumann simulations re-
quired significantly larger grids than either the quantum
or Fokker-Planck simulations.

The need to regularize the Koopman-von Neumann
propagator, Eq.(63), is illustrated in Fig. 3, where we
can see that without regularization the propagator fails
to maintain the negativity (Eq.(50)), while the regular-
ized version, in which a small amount of decoherence is
added, keeps the negative area approximately constant
for long times. In addition, Fig. 3 shows that a larger
decoherence rate quickly eliminates all the negativity.

V. TWO-PARTICLE SYSTEMS

A two-particle quantum system in phase space involves
four degrees of freedom (i.e., x, px, y, and py), and has
rarely been simulated even for closed system dynamics
[24, 34]. Here we study open system dynamics within
the Caldeira-Legget master equation, which has never
been attempted, to the best of our knowledge. Even so,
we are able to run these simulations on a typical desk-
top machine. To do this an efficient use of memory be-
comes critical, and because of this we perform the com-
putations employing single precision arithmetic (32 bit
floats). We use a grid which is 128× 192× 128× 192 and
occupies 4.7GB of memory. Two copies of the state are
needed according to Eq.(65). The resulting simulation of
the Caldeira-Legget evolution remains numerically sta-
ble even for the time increment dt = 0.01a.u., which is
unattainable by alternative methods [37, 77, 78].

The two particle Wigner function, W (x, px, y, py), ex-
pressed through the density matrix
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FIG. 1. (Color online) Various quantum dynamics in the Morse potential V (x) given in Eq.(68). The contour lines represent
level sets of the classical energy H(x, p) = p2/(2m) + V (x). (a) The initial Wigner function (WF) at t = 0 a.u. (b) The WF at
time t = 40, 400 a.u. after unitary evolution employing Eq.(55). (c) The WF at t = 40, 400 a.u. after unitary evolution with
additional decoherence in the position basis. The diffusion coefficient is D = 2.70 × 10−3 a.u. and we use the propagator in
Eq.(62). (d) The WF at time t = 40, 400 a.u. after unitary evolution with energy damping given by the Caldeira-Legget model
with temperature T = 300K, diffusion D = 2.70 × 10−3 a.u. and inverse damping coefficient γ−1 = 41, 341 a.u. = 1 ps. All
these simulations were performed with a grid of 512 × 1024.

FIG. 2. (Color online) (a) Koopman-von Neuman state classically propagated at t = 40400 a.u., with regularization diffusion
coefficient δD = 1.5×10−6 a.u. in a grid 768×6144. (b) Corresponding classical state propagated according to the Fokker-Planck
equation with decoherence (diffusion) coefficient equal to D = 2.61 × 10−3 a.u. in a grid 512 × 1024.

W2(x, px, y, py) =
1

(2π)2

∫
〈x− ~

2
θx, y −

~
2
θy|ρ|x+

~
2
θx, y +

~
2
θy〉 eipxθx+ipyθydθxdθy, (70)

can be reduced to the following single particle Wigner
functions,

Wx(x, px) =

∫
W2 dydpy, Wy(y, py) =

∫
W2 dxdpx,

(71)
which are more easily visualized. Note that even if the
two particle state is pure the reduced states may be
mixed. The purity of an arbitrary state in the phase

space is given by

P = 2π

∫
W 2(x, p)dxdp, (72)

where the maximum value P = 1 is attained for pure
states solely.

Here we simulate a two particle system evolving in the
anharmonic potential

V (x, y) =
1

2

(
x2 + y2

)
+

1

10

(
x4 + y4 + xy

)
, (73)
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FIG. 3. Negativity as a function of time for i) the regularized
Koopman-von Neumann propagation with decoherence coef-
ficient δD = 1.5 × 10−6 a.u. (dashed line), ii) Koopman-von
Neumann propagation without regularization (solid line), The
regularized Koopman-von Neumann propagator maintains an
approximately constant negativity, contrary to the monotonic
increase given by the un-regularized version.

where the first particle interacts with an environment and
as result is subject to the Caldeira-Leggett master equa-
tion, Eq.(43). The Caldeira-Leggett dynamics is simi-
lar to a position measurement as it decoheres the sys-
tem in the position basis. We chose D = 0.04 a.u. and
γ = 1./12.5 a.u.. The second particle does not interact
with the environment, and is only affected by the latter
through its interaction with the first particle. Such cou-
pled systems play an important role in describing quan-
tum measurements [12, 80–83]. The initial state is chosen
to be an antisymmetric pure entangled state [Figs. 4(a)]

ψF (x, y) =
1√
2

[ψ1(x)ψ2(y)− ψ1(y)ψ2(x)] , (74)

where ψ1(x) is a Gaussian centered at x = 1, and ψ2(x) is
another Gaussian centered at y = −1. Both reduced sin-
gle particle Wigner functions are identical for this state.
However, due to the environment interaction with the
first particle, the reduced Wigner functions Wx and Wy

are not equal at later times, and this is shown in Fig. 4(b)
and (c). Moreover, Wy has a larger negativity than Wx,
indicating that it preserves more of its initial quantum
nature. Figure 5 shows how the purity of both reduced
states evolves with time.

VI. CONCLUSION

We have presented a flexible and powerful numerical
toolbox for simulating open quantum systems in terms
of the Wigner function. These methods significantly re-

duce the numerical resources required for exact simula-
tion of open systems in phase space, and the method
we have presented for solving the Caldeira-Leggett mas-
ter equation enjoys higher stability than currently avail-
able methods. Illustrative examples were provided for
single- and two-particle systems that can be evaluated on
a typical desktop computer. In these examples we illus-
trated the emergence of a positive Wigner function as a
result of decoherence and compared it with the classical
Koopman-von Neumann and Fokker-Planck evolutions.
These simulations confirm that quantum evolution with
decoherence approaches classical Fokker-Planck dynam-
ics.

Acknowledgments. The authors acknowledge financial
support from (HR) NSF CHE 1058644, (RC) DOE DE-
FG02-02-ER-15344 and (DB) ARO-MURI W911-NF-11-
1-2068.
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FIG. 4. (a) Initial reduced fermionic-like state for both particles (Wx = Wy). (b) Reduced state Wx at t = 5.0 a.u.. (c)
Reduced state Wy at t = 5.0 a.u..
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