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Based on the Heisenberg-picture analog of the master equation, we develop a method for computing the exact
time dependence of noise-averaged observables for general noninteracting fermionic systems with noisy fluctu-
ations. Upon noise averaging, these fluctuations generate effective interactions, limiting analytical approaches.
While the short-time dynamics can be studied with Langevin-type numerical simulations, the long-time limit is
not amenable to such simulations. Our results provide access to this long-time limit. As a simple example, we
examine the fate of the fractional charge in cold-atom emulations of polyacetylene after stochastic driving. We
find that in a quantum quench to a fluctuating hopping Hamiltonian, the fractional charge remains robust for
hopping between different sublattices, while it becomes unstable in the presence of noisy hopping on the same
sublattice.

I. INTRODUCTION

Recent developments in atomic, molecular and optical
physics have made it possible to create optical-lattice incar-
nations of important many-body Hamiltonians with a large
degree of control and tunability [1]. Such systems exhibit re-
markable isolation from a thermal environment and can un-
dergo coherent unitary evolution in experimentally accessible
time scales. These developments have motivated numerous
studies of the nonequilibrium quantum dynamics of thermally
isolated systems [2]. These systems are, nevertheless, vulner-
able to noise-induced heating, which can originate from, e.g.,
amplitude fluctuations of the lasers forming the optical lattice.
Due to the temporal fluctuations of the Hamiltonian, the time
evolution is governed by a stochastic Schrödinger equation
(SSE).

Understanding the effects of noise in such systems is of
paramount importance both in designing experiments and in-
terpreting their results. Several publications have investigated
the heating dynamics due to such stochastic driving in spe-
cific systems such as harmonic traps [3, 4], Luttinger liq-
uids [5], transverse-field Ising chain [6, 7], and the Bose-
Hubbard model [8, 9], using various techniques and approxi-
mations (see also Ref. [10] for generic results on energy fluc-
tuations). However, the general problem remains unsolved
analytically and the numerics are limited to short time scales.

The main challenge for computing noise-averaged observ-
ables in systems governed by a many-body SSE stems from
effective interactions that arise, even in systems that are com-
pletely quadratic for each realization of noise, upon integrat-
ing out the noise. This severely limits the application of
field-theoretical techniques. Equivalently, one can formulate
a Lindblad-type master equation for the noise-averaged den-
sity matrix. However, the effective noise-induced interactions
make it necessary to work with an exponentially large Hilbert
space. (For linear Lindblad operators, such interactions are
not generated and the problem remains Gaussian [11].) For
quadratic Lindblad operators, an algebraic structure has been
found recently, which decouples the Lindblad equation [12–
14], allowing for significant progress. Direct numerical ap-
proaches to the problem through Langevin-type simulations

(assuming one can solve the dynamics numerically for each
realization of noise) are computationally demanding and can
not access the long-time limit.

Building on the results of Ref. [13], we argue in this paper
that a Heisenberg-picture analog of the master equation gives
the exact time dependence (including the long-time limit) of
the noise-averaged expectation values of most physical ob-
servables (e.g., energy, fermionic Green’s function, density-
density correlations, etc.) in systems of lattice fermions with
noisy quadratic Hamiltonians under the assumption is that the
fluctuations have white-noise character. This seemingly expo-
nential improvement in the Heisenberg picture originates from
the fact that the noise-averaged density matrix, which is cen-
tral to the Schrödinger picture, can give the expectation value
of any operator. The simplification in the Heisenberg picture
arises because our observables of interest have a few (e.g.,
2 for Green’s function and 4 for density-density correlation
functions) creation/annihilation operators. This is reminiscent
of the remarkable performance gains of the density-matrix-
renormalization-group algorithm in the Heisenberg picture,
where, instead of the entire state, only the observables of in-
terest are kept [15].

As an application of our formalism, we study a system rel-
evant to the emulation of polyacetylene (the simplest system
exhibiting topological properties and charge fractionalization)
in an optical lattice [16]. The domain walls in this system
bind a fractional charge. We compute the long-time limit of
the charge-density profile after driving the system with noisy
(and spatially disordered) hopping processes. We find that
the fractional charge is robust against noisy fluctuations in the
hopping processes as long as the fluctuations are limited to
hopping between sites on different sublattices. The presence
of noisy fluctuations in hopping on the same sublattice, on the
other hand, globally distorts the charge-density profile, hin-
dering the observation of the fractional charge.

The outline of this paper is as follows. In Sec. II, we de-
velop the formalism for solving the Heisenberg-picture ana-
log of the master equation. Sec. III is focused on the fate of
the fractional charge in a noisy dimerized chain. We close the
paper in Sec. IV with a brief summary. More details are given
in three appendices.
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II. FORMALISM

A. General setup

We begin by discussing the general formulation of the prob-
lem. Consider a quantum quench described by the following
time-dependent Hamiltonian:

H(t) = H0, t < 0, (1)

H(t) = H1 +
∑

i

αi(t)Vi, t > 0, (2)

where all the time dependence for t > 0 is in the form of white
noise αi(t) with zero mean and second moment

αi(t)α j(t′) = δi jW2
i δ(t − t′). (3)

The system then evolves with an SSE

∂tρ(t) = −i

H1 +
∑

i

αi(t)Vi, ρ(t)

 , (4)

where ρ(t) is the density matrix for one realization of noise.
The above SSE is interpreted in the Stratonovich sense as we
are dealing with continuous processes. It simply describes an
ensemble of quantum evolutions. (Throughout the paper ~ is
set to unity.)

Given an initial density matrix ρ(0) at t = 0 (the same for
all realizations of noise), the goal is to find 〈O(t)〉 = tr

[
ρ(t)O

]
,

the noise-averaged expectation value of an operator O after the
system has evolved for a time t with the SSE (4) (the overline
indicates noise averaging). Each realization of noise evolves
the system deterministically, resulting in a unique quantum
expectation value 〈O(t)〉. These are then averaged over all
trajectories with their corresponding probabilities.

It is known in the theory of open quantum systems [17, 18]
that certain Lindblad-type master equations can be “unrav-
elled” into a set of quantum trajectories described by an
SSE [19, 20]. Such mapping then allows for tacking the mas-
ter equation numerically through Langevin-type simulations
of the SSE. Such numerical simulations are limited to short
time scales, but have proved useful in studying otherwise in-
tractable master equations. Our interest here is in thermally
isolated driven systems, where the SSE is the starting point.
It may thus appear that the connection to a master equation
is not very useful. However, a Heisenberg-picture analog of
the master equation can yield exact results for our systems of
lattice fermions. In addition to driven systems, our results can
also be applied to open systems, which can be unravelled into
the types of SSE considered in this work.

The master equation corresponding to SSE (4) is d
dtρ(t) =

−i
[
H1, ρ(t)

]
+ 1

2
∑

j W2
j

[
[V j, ρ(t)],V j

]
, which implies the fol-

lowing equation of motion for O(t):

d
dt

O(t) = i
[
H1,O(t)

]
+

1
2

∑
j

W2
j

[
[V j,O(t)],V j

]
, (5)

where O(t) = U†(t)OU(t) is the noise-averaged Heisenberg-
picture operator at time t (see Appendix. A for an elementary

derivation). Here U(t) is the evolution operator that depends
on the trajectory.

We focus on systems of lattice fermions. We assume we
have lattice with L sites and represent quadratic operators

P =
∑
i, j

Pi jc
†

i c j, (6)

where ci is the annihilation operator for a fermion on site i,
by L × L (i, j = 1 · · · L) matrices P through the shorthand
notation

P = Γ(P). (7)

Higher-order operators such as
∑

i jkl Ri jklc
†

i c jc
†

kcl can be rep-
resented by higher-rank tensors R.

B. Simplifications in the Heisenberg picture

As mentioned in the introduction, we assume that the
Hamiltonian is quadratic. Even for a fully quadratic sys-
tem, the noise-averaged effective theory is interacting (see,
e.g, Refs. [6, 21, 22]). For simplicity, hereafter, we focus on
the case with only one such quadratic fluctuating term

V = Γ(V ) (8)

but the generalization to more quadratic noise terms is
straightforward. For the master equation governing the noise-
averaged density matrix, the Gaussian ansatz, which is char-
acteristic of noninteracting systems, breaks down. To see this
explicitly, we consider the evolution of ρ(t) with the master
equation with an initial density matrix that can be written as

ρ(0) = eΓ[S (0)] (9)

for an L × L matrix S (0) (corresponding to natural initial
states such as a thermal state with respect to a quadratic
H0). While the density matrix retains the form above [for a
time-dependent S (t)] for each realization of noise, the noise-
averaged density matrix will not. This follows from inserting
the ansatz eΓ[S (t)] in the master equation: the double commu-
tator gives a quartic form times eΓ[S (t)], while all other terms
produce a quadratic form times eΓ[S (t)] (see Appendix. B for
details). Consequently, the above ansatz can not satisfy the
master equation and the Wick’s theorem (which follows from
such Gaussian density matrices) and the free-fermion picture
do not survive the noise averaging.

Nevertheless, if we work in the Heisenberg picture with
an operator O that is a product of a finite number of cre-
ation/annihilation operators, as a consequence of the iden-
tity [23]

[Γ(A ),Γ(B)] = Γ([A ,B]), (10)

the double commutator in Eq. (5) does not generate higher-
order terms for any quadratic V . For a quadratic operator O
this follows directly from Eq. (10) and for higher-order oper-
ators from a combination of Eq. (10) and the operator identity
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[AB,C] = A[B,C] + [A,C]B. For example, a quartic opera-
tor can be expanded into products of quadratic operators (see
Appendix. C for details).

The above discussion indicates that for a quadratic operator
O = Γ(O), the ansatz

O(t) = Γ(O(t)) (11)

satisfies the equation of motion. We can cast the master equa-
tion into a simpler form by representing the L× L matrix O(t)
with a vector |O(t)〉 of length L2:

d
dt
|O(t)〉 = K|O(t)〉, (12)

for an L2 × L2 matrix

Kαβ,ηγ =i
(
H1αηδβγ −H1γβδαη

)
+

1
2

W2
(
2VαηVγβ − δαηV

2
γβ − δγβV

2
αη

)
,

(13)

with H1 = Γ(H1). Eq. (12) has a simple formal solution

|O(t)〉 = eK t | O(0)〉. (14)

C. Generic steady state for H1 , 0

At this point, the time dependence of 〈O(t)〉 can be readily
obtained by exponentiating the L2 × L2 matrix K as follows.
We diagonalize K as

K = UDU−1, (15)

where D = diag(d1, d2, . . . dL2 ). We can then write eK t =

Udiag(ed1t, ed2t, . . . edL2 )U−1.
As the matrix K is not generically Hermitian, it can have

complex eigenvalues. On physical grounds, we do not expect
K to have any eigenvalues with a positive real part. As these
would lead to the divergence of | O(t)〉 in the limit of t →
∞. Moreover, ed jt for all eigenvalues d j with a negative real
part decays to zero in the long-time limit. Therefore, the limit
of t → ∞ is dominated by eigenvalues d j with Re(d j) = 0.
Here we show that the matrix K in Eq. (13) has at least one
eigenvector with a vanishing eigenvalue. The eigenvector (of
length L2) with d j = 0 corresponds to the L×L identity matrix
11ηγ = δηγ: one can readily verify that∑

ηγ

(
H1αηδβγ −H1γβδαη

)
δηγ = 0, (16)∑

ηγ

(
2VαηVγβ − δαηV

2
γβ − δγβV

2
αη

)
δηγ = 0. (17)

If 11 is the only eigenvector of K with Re(d j) = 0, then the
t → ∞ fate of 〈O(t)〉 for quadratic operators is simple. Un-
like the case of H1 = 0 discussed in Sec. II D, for a generic
H1 , 0, there is no reason for the vanishing eigenvalue to be
degenerate (having another eigenvalue with a vanishing real
part would be a nongeneric accidental occurrence for H1 , 0,
which we do not consider here). The long-time limit of the

evolution operator eK t = UeDtU−1 can the be evaluated as
follows. In the t → ∞ limit, all the elements of the diago-
nal matrix eDt decay to zero except for the one corresponding
to d j = 0. Then the only column of U that survives in the
evolution operator is the one corresponding eigenvector |11〉.
As the matrix K is not generically Hermitian,U−1 , U† and
generic rows of U−1 are not the Hermitian conjugates of the
eigenvectors ofK . However, the row inU−1 that corresponds
to d j = 0 is indeed equal to 〈11| as 11 is both a right and a left
eigenvector of K with a vanishing eigenvalue. Thus, for the
generic case with only one eigenvector of K with Re(d j) = 0,
we can finally write

lim
t→∞

eK t = |11〉〈11|, (18)

which projects L × L matrices onto 1
L 11 (note that we assume

the state |11〉 is normalized).
We now consider the fate of the two-point functions O =

c†i c j under this generic drive. For i , j, the corresponding
matrix Oηγ = δiηδ jγ has no overlap with 11ηγ = δηγ and the
noise-averaged Green’s function decays to zero. For i = j, all
O have the same overlap with 11 (corresponding to the total
density) and the time evolution results in a uniform noise-
averaged density. In the following section we focus on a
quench with H1 = 0 and demonstrate that K will generically
have L vanishing eigenvalues in that case, leading to a differ-
ent generic behavior.

D. Explicit solution and nontrivial steady states for H1 = 0

In this section, we focus on a quantum quench, where H1 =

0 and K is, consequently, Hermitian. It turns out that in this
case the eigenvalues and eigenvectors of K in Eq. (13) are
related to those of the L × L matrix V and we only need to
diagonalize this smaller matrix. We write

V = U DU †, (19)

for a diagonal matrix D and a unitary U . Upon inserting the
above expression for V into Eq. (13) (for H1 = 0) and writing
the Kronecker δαη =

∑
σ UασU †

ση (and similarly for δγβ), we
obtain

Kαβ,ηγ = −
1
2

W2
∑
σλ

UασU †

λβ (Dσσ −Dλλ)2 U †
σηUγλ. (20)

The matrix eK t can now be simply written in terms of the
above diagonalized form, which leads to

Oαβ(t) =
∑
σληγ

UασU †

λβe
−W2

2 (Dσσ−Dλλ)2tU †
σηUγλOηγ, (21)

where we have used the boundary condition O(0) = O . Note
that none of the eigenvalues −W2

2 (Dσσ −Dλλ)2 of K are pos-
itive so O(t) does not diverge in the t → ∞ limit. Assuming
there are no degeneracies in the spectrum of V , the matrix
K has L vanishing eigenvalues for σ = λ (corresponding to
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FIG. 1. (a) The dimerized hopping model of Eq. (24). (b) A domain
wall configuration with fractional charge.

eigenvalues of eK t, which do not decay exponentially). The
limit of long times can then be easily accessed by setting these
decaying eigenvalues of eK t to zero. We then obtain

Oαβ(t → ∞) =
∑
σηγ

UασU †

σβU
†
σηUγσOηγ. (22)

We can now use Eq. (21) above and its t → ∞ limit (22) to
write the exact time dependence and the long-time limit of the
noise-averaged expectation value of an operator O = Γ(O) by
computing the expectation values of these explicit operators
with the initial state. For example, if H0 is quadratic and we
are initially in its ground state, we can write

〈O(t)〉 =

′∑
α

(
U †

0 O(t)U0

)
αα
, (23)

where the “prime” symbol indicates summing over the ini-
tially occupied single-particle levels in the ground state of
H0 = Γ(H0), and the unitary matrix U0 diagonalizes H0. For
the Green’s function 〈c†i c j〉, we have Oηγ = δiηδ jγ and a spe-
cial case i = j gives the local density.

III. THE STABILITY OF FRACTIONAL CHARGE

We now focus on a simple model (relevant to polyacety-
lene), which exhibits an interesting topological property,
namely, a fractional charge bound to domain walls [24, 25].
This model (without the domain wall at this point) has been
recently implemented in optical lattices [16]. As shown in
Fig. 1(b), we consider spinless fermions hopping on a one-
dimensional lattice, with the hopping amplitude modulated as
follows:

H0 =
∑

x

[
t + (−1)xt′

] (
c†xcx+1 + c†x+1cx

)
. (24)

For t′ = 0, the low-energy effective description of the system
consists of linearly dispersing massless Dirac fermions. The
term proportional to t′ opens a gap by making the fermions
massive (the sign of the mass is the same as the sign of t′). It is
well-known that the two signs of mass correspond to two topo-
logically distinct phases, and, thus, a domain wall [as shown
in Fig. 1(b)] entails a change in the mass sign, resulting in a
zero mode and fractional charge.

We focus on a quantum quench with H1 = 0 as in Sec. II D.
For the fluctuating component V , we consider local random
hopping for up to second neighbor

V =
∑

x

[
t1
x

(
c†xcx+1 + c†x+1cx

)
+ t2

x

(
c†xcx+2 + c†x+2cx

)]
, (25)
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FIG. 2. (a) the charge density profile in the ground state of Hamilto-
nian (24) with a domain wall as shown in Fig. 1(b). (b) The noise-
averaged charge density profile in the limit of t → ∞ for noisy
nearest-neighbor perturbations for H1 = 0. (c) The noise-averaged
charge density profile in the limit of t → ∞ for noisy perturbations
up to second neighbor for H1 = 0. (d) The same long-time-limit
density for the generic case of H1 , 0 discussed in Sec. II C.

where tb
x is drawn from a uniform distribution

[
−
Tb
2 ,
Tb
2

]
. As

for the operator O, we are interested in the local charge density
nx = c†xcx at site x. We choose the ground state of H0 as the
initial state, which corresponds to half filling (with L/2 parti-
cles in a system of L sites, where L is even). The total number
of fermions is then a constant of motion. In Fig. 2(a), we show
the numerically computed charge density profile for a system
of L = 400 sites with a domain wall in the middle. We set
the hopping t to unity and express all other hoping amplitudes
as dimensionless numbers in units of t. In Fig. 2(a), we used
t′ = 0.2 but the actual value is inessential. As expected, the
fractional charge bound to the domain wall is equal to 1/2.
Away from the domain wall and boundaries, the charge den-
sity is uniform 〈nx〉 = 1/2.

In Figs. 2(b) and 2(c), we show the long-time limit of the
noise-averaged charge density profile 〈nx(t → ∞)〉 computed
using Eqs. (22) and (23), respectively for the case of random
nearest neighbor hopping T1 = 1 and T2 = 0 and random first
and second neighbor hopping T1 = T2 = 1. Notice that the
overall scale of V and the strength of noise W can just affect
how fast the t → ∞ limit is reached but do not change the
steady-state profile, which only depends on eigenfunctions of
V . Interestingly, the fractional charge remains robust for fluc-
tuations in the nearest-neighbor hopping but becomes unstable
as soon as second-neighbor hopping processes are included.

This robustness is not a consequence of noise averaging and
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appears for each realization of noise. A hand-waving argu-
ment for the marked difference between Figs. 2(b) and 2(c)
can by made by considering 〈nx〉 in regions far away from the
domain wall or the boundaries (they should behave in a simi-
lar way to 〈nx〉 in an infinite system without a domain wall at
half filling). We consider two sublattices

ai ≡ c2i, bi = c2i+1. (26)

The Hamiltonians H0 and V for T2 = 0 have only terms
that connect two different sublattices and can be written as∑

i j

(
ti ja
†

i b j + H.c.
)
. However, V for T2 , 0 contains terms of

the form a†i a j and b†i b j. We now consider the transformation

ai → a†i , bi → −b†i , (27)

which for real ti j (that could be time-dependent) maps∑
i j

(
ti ja
†

i b j + H.c.
)

onto itself. Note that we do not have this

Hamiltonian symmetry in the presence of terms like a†i a j and
b†i b j, which flip sign for i , j under the transformation (27).
Also due to the particle-hole nature of the transformation, it
only applies to half-filled systems. Importantly, ni → 1 − ni
under (27). This implies that, if we do not have terms of type
a†i a j and b†i b j in the time-dependent Hamiltonian, in the bulk
of the system, the expectation value of ni must remain equal
to 1/2 during the evolution. This explains why a globally dis-
ordered density profile can only appear if sites on the same
sublattice are connected.

It may appear that the symmetry argument above is in-
consistent with the fact that there is fractional charge in the
ground state of H0 in Eq. (24) in the first place. How can we
have sites with 〈ni〉 , 1/2 if a Hamiltonian symmetry maps
ni to 1 − ni? In the presence of the domain wall, the ground
state is degenerate (there are two single-particle zero modes in
the spectrum and only one is occupied at half filling). There-
fore, unlike the case of a unique ground state, the ground state
is not invariant under the symmetry above and 〈ni〉 does not
need to equal 1 − 〈ni〉. However, we expect this symmetry ar-
gument to capture the essential difference between Figs. 2(b)
and 2(c) when applied to the bulk of the system. As shown
in Fig. 2(b), the generic case of H1 , 0 leads to a uniform
density (see Sec. II C for a discussion).

IV. SUMMARY

In summary, we studied, for systems of quadratic lattice
fermions, the dynamical effects of stochastic Hamiltonian
noise on the variations of observables. We argued that a
Heisenberg-picture approach to problem is more powerful
than a Schrödinger-picture master equation. Despite the fact
that the effective noise-averaged theory is a complex interact-
ing one, we were able to calculate the exact time dependence
using free-fermion techniques, providing access to the long-
time limit.

We applied our formalism to the stability of fractional
charge in a one-dimensional dimerized lattice with a domain

FIG. 3. Discretized version of a white-noise protocol. Each xn

is drawn from a uniform distribution [−
√

3 W
√
δt
,
√

3 W
√
δt

] and δt =

τ/N → 0.

wall, which is a promising candidate for realizing the phe-
nomenon of fractionalization in optical lattices. We found
an instability in the charge density profile in the presence
of fluctuating second-nearest neighbor hopping processes,
while the fractional charge remains robust after the quench
to a fluctuating Hamiltonian if the fluctuations are limited to
nearest-neighbor hopping. Application to the stability of frac-
tional charge in two-dimensional quadratic systems such as
graphene [26, 27] and frustrated itinerant magnets [28] calls
for future investigations. Also, extending our results to col-
ored noise as well as to fluctuations around time-dependent
Hamiltonians (for studying, e.g., the robustness of quantum
annealing and optimal-control protocols [29–34]) are of con-
siderable interest.
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Appendix A: Derivation of the Heisenberg equation

Here, we present an elementary derivation of the
Heisenberg-picture analog of the master equation. We can an-
alyze the problem by approximating the white noise with an
ensemble of discrete piece-wise constant protocols shown in
Fig. 3. The total time τ for the stochastic evolution is divided
into N intervals of length δt = τ/N with N → ∞ [αi(t) = xi

n is
assumed constant over interval n] and each xi

n is drawn from
a uniform distribution [−

√
3 Wi√

δt
,
√

3 Wi√
δt

] such that xi
n = 0 and

xi
nxi

m =
W2

i
δt δmn. It is convenient to further define

wi
n ≡ xi

n

√
δt, wi

n = 0, wi
nwi

m = W2
i δmn. (A1)

The noise-averaged expectation value of a time-
independent operator O at time τ is then given by

〈O(τ)〉 = tr
[
ρ(0)U†(τ)OU(τ)

]
, (A2)
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where the evolution operator U(τ) for a fixed {w j
n}

realization of noise can be written as U(τ) =

e−iH1δt−i
∑

j V jw
j
N

√
δt . . . e−iH1δt−i

∑
j V jw

j
1

√
δt, with e−iH1δt−i

∑
j V jw

j
n
√
δt

approximately given by

1 − i
∑

j

V jw
j
n

√
δt − iH1δt −

1
2

∑
jk

V jVkw j
nwk

nδt, (A3)

in the limit of N → ∞ (δt → 0). As the w j
n are uncorrelated

for different n, we can compute O(t + δt) by acting on O(t)
with Eq. (A3) and its Hermitian conjugate, respectively from
the left- and the right-hand side, and then performing a noise
averaging over only one set of stochastic variables w j

1. We ob-
tain three nonvanishing terms (to order δt), which involve an
even number of the same stochastic variable (and thus survive
the noise averaging): one from taking the two iVw j

1

√
δt terms

from the two sides and two others from taking one 1
2 V2

j w2
nδt

from each of the two sides. The above argument leads to the
following equation of motion for O(t):

d
dt

O(t) = i
[
H1,O(t)

]
+

1
2

∑
j

W2
j

[
[V j,O(t)],V j

]
. (A4)

Appendix B: Evolution of the density matrix

We consider the time evolution of the density matrix of
form ρ(t) = eΓ[S (t)], where S (t) is an L × L matrix, with a
deterministic quadratic Hamiltonian Γ[H (t)]:

ρ̇ = −i
[
Γ(H ), ρ

]
, (B1)

where the “dot” symbol represents the time derivative. Com-
bining Eq. (7) with the Baker-Campbell-Hausdorff formula
eXYe−X = Y + [X,Y] + 1

2! [X, [X,Y]] + 1
3! [X, [X, [X,Y]]] + . . . ,

leads to the identity

eΓ(X )Γ(Y )e−Γ(X ) = Γ
(
eX Y e−X

)
. (B2)

Using the identity above, we can write[
Γ(H ), eΓ(S )

]
= Γ(H − eS H e−S )eΓ(S ). (B3)

Also, the identity

d
dt

eX(t) =

∫ 1

0
dueuX(t)Ẋ(t)e(1−u)X(t), (B4)

where u is a dummy integration variable, together with
Eq. (B2) implies that the ansatz ρ(t) = eΓ[S (t)] satis-
fies the equation of motion (B1) if H − eS H e−S =

i
∫ 1

0 dueuS Ṡ e−uS .
However, if we consider the noise-averaged density

matrix ρ(t), we have to add a double commutator
W2

2

[[
Γ(V ), eΓ(S )

]
,Γ(V )

]
to the right-hand side of the equa-

tion of motion. Using Eq. (B3), the double commutator gives
a quartic operator times eΓ[S (t)]:

[[
Γ(V ), eΓ(S )

]
,Γ(V )

]
=

[
Γ(V − eS V e−S )Γ(eS V e−S ) − Γ(V )Γ(V − eS V e−S )

]
eΓ(S ), (B5)

while, as we saw above, all the other terms reduce to quadratic
operators times eΓ[S (t)], indicating that the ansatz eΓ[S (t)]

breaks down when applied to the noise-averaged density ma-
trix. Here we are assuming that S does not commute with V
and V − eS V e−S , 0 (the dynamics is trivial if they com-
mute).

Appendix C: Closure of algebra for more general operators

We first consider the case of quartic charge-conserving op-
erators. We start with the commutation relation[

c†i c j, c
†

kcl

]
= δ jkc†i cl − δilc

†

kc j,

which gives[
c†i c jc

†

kcl, c†pcq

]
=δlpc†i c jc

†

kcq − δkqc†i c jc†pcl

+ δ jpc†i cqc†kcl − δiqc†pc jc
†

kcl.

The above expression then implies that for R =∑
i jkl Ri jklc

†

i c jc
†

kcl, we have

[R,Γ(V )] =
∑
i jkl

Ti jlkc†i c jc
†

kcl,

with

Ti jlk ≡
∑
α

(
Ri jkαVαl −Ri jαlVkα + RiαklVα j −RαiklViα

)
.

Similarly, the closure of algebra holds if we have pairing
terms. If we define a more general quadratic form

Γp(A ,B,C ,D) ≡
∑

i j

Ai jc
†

i c j + Bi jc
†

i c†j + Ci jcic j + Di jcic
†

j ,

for L × L matrices A . . .D , we can show that[
Γp(A ,B,C ,D),Γp(A ′,B′,C ′,D ′)

]
= Γp(A ′′,B′′,C ′′,D ′′),
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where

A ′′ = [A ,A ′] − [A ,D ′T ] + BAS C ′ −B′AS C ,

B′′ = A B′AS
−A ′BAS + BAS D ′ −B′AS D ,

C ′′ = C AS A ′ − C ′AS A + DC ′AS
−D ′C AS ,

D ′′ = [D ,D ′] − [D ,A ′T ] + C B′AS
− C ′BAS ,

with BAS ≡ B −BT , where T denotes matrix transpose.
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[12] M. Žnidarič, JSTAT , L05002 (2010).
[13] V. Eisler, JSTAT , P06007 (2011).
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