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We propose a family of local PT -symmetric photonic lattices with transverse refraction index
gradient ω, where the emergence of stable Bloch-Zener oscillations are controlled by the interplay
of ω with the degree of non-Hermiticity γ of the lattice. In the exact PT -symmetric phase we
identify a condition between ω and γ for which a wavepacket self-imaging together with a cascade of
splittings and giant recombinations occurs at various propagation distances. The giant wavepacket
recombination is further enhanced by introducing local impurities.
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Introduction - Non-Hermitian wave physics and specif-
ically its parity-time (PT ) symmetric ramifications [1],
has attracted a lot of attention in recent years. The
main observation was that a non-Hermitian Hamiltonian
H that commutes with the joint PT -symmetric operator
may possess an entirely real spectrum. Specifically it was
shown that below a critical value γPT , of the gain/loss
parameter γ controlling the non-Hermiticity of H, the
spectrum is real and the eigenfunctions of H are eigen-
functions of the PT -symmetric operator. In the opposite
limit the spectrum becomes partially or completely com-
plex while the eigenfunctions cease to be eigenfunctions
of the PT operator. The first domain was coined the
exact PT -symmetric phase while the latter was coined
the broken PT -symmetric phase. The transition point
γ = γPT is characterized by an exceptional point (EP)
singularity where both the eigenfunctions and eigenval-
ues coalesce.

The impact of these ideas is well documented in var-
ious physical settings ranging from matter waves [2, 3]
and magnonics [4] to optics [5–18], electronics [19] and
acoustics [20]. Among the theoretical predictions [13],
and subsequent experimental realizations [8], was a new
type of Bloch Oscillations which were unstable. They
either amplified or attenuated since the propagating con-
stants at these PT -symmetric lattices became immedi-
ately complex (the system is at the broken PT -phase)
once a transverse refraction index gradient is introduced.

Here we introduce a class of photonic lattices, whose
building blocks are PT -symmetric dimers (see Fig. 1a),
with a transverse refractive index gradient ω. These
lattices respect a local PdT -symmetry associated with
each individual dimer. Despite the lack of global PT -
symmetry they have parameter domains for which their
eigenvalues are real (i.e. exact PT -phase). In this do-
main they support a class of stable PT -symmetric Bloch-
Zener oscillations which, allow for periodic wavepacket
self- imaging whenever the choice of the ω−γ parameters
imposes a commensurability relation between the period
of Zener tunneling and the period of Bloch-Oscillations.
These Bloch-Zener oscillations experience a cascade of
splittings and giant beam recombinations which are fur-
ther enhanced in the presence of localized defects.

Theoretical Model– We consider the photonic lattice of
Fig. 1a. Each waveguide supports only one propagat-
ing mode, while light is transferred between waveguides
via evanescent tunneling. The connectivity of the array
is such that each amplifying (dissipative) waveguide of
a dimer is coupled, with a coupling constant A

2 , to both
of the adjacent dimers’ dissipating (amplifying) waveg-
uide. In addition we assume an intra-dimer coupling α
[25]. An experimental implementation of the refraction
index gradient has been realized in Ref. [21, 22] for 1D
structures and for 2D structures in Ref. [23, 24]. The
diffraction dynamics of the evolving electric field ampli-
tude Ψn(z) = (an(z), bn(z))T of the nth dimer along the
propagation direction z, in the paraxial description, sat-
isfies the following equation

i
dan
dz

+ (nω − iγ)an + αbn +
A

2
(bn−1 + bn+1) = 0

i
dbn
dz

+ (nω + iγ)bn + αan +
A

2
(an−1 + an+1) = 0

(1)

where an(bn) is the field amplitude at the gain (loss) site
of the n-th dimer. Although the system described by Eq.
(1) does not respect a global PT -symmetry (due to the
index gradient), nevertheless there is a local PdT sym-
metry that it is satisfied by each individual dimer (i.e.
each dimer is PT -symmetric around its axis of symme-
try) [26]. A realization of the basic PT -symmetric unit
of our structure, i.e. the PT -dimer, (and how to control
the gain/loss parameter γ) was demonstrated in [6].
Spectral Analysis– It is instructive to start by studying

the dispersion relation of the system in the absence of the
transverse index gradient i.e. ω = 0. Using the Fourier
transformation an(z) = 1√

2π

∫ π
−π ãq(z)e

iqndq (similarly

for bn(z)) Eq. (1) takes the form:

i
d

dz

(
ãq(z)

b̃q(z)

)
=

(
iγ −vq
−vq −iγ

)(
ãq(z)

b̃q(z)

)
(2)

where vq = α + A cos(q). The dispersion relation Eσ(q)
(longitudinal propagation constants) is obtained by cal-
culating the eigenvalues of the 2× 2 matrix in Eq. (2):

Eσ(q) = σ
√

(α+A cos[q])2 − γ2 (3)
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FIG. 1: (Color online) (a) The photonic lattice (for ω = 0)
with PdT -symmetry [26]. Red (blue) waveguides indicate
waveguides with amplification (attenuation) [25]. (b) The as-
sociated dispersion relation for γ = 0 (blue), 0 ≤ γ ≤ γPT
(red), γ = γPT (black), and the solid/dashed green lines are
the real/imaginary part for γ > γPT .

where q ∈ (−π, π] and σ = ± indicates the upper/lower
band. For γ = 0 the minimal spacing between the two
bands δ = 2(α−A) occurs at q = ±π. As γ increases the
minimal band separation shrinks until the edges touch
at γ → γPT = α − A where an EP degeneracy occurs
(see Fig. 1b). For γ > γPT we enter the broken PT -
symmetric phase and the eigenvalues appear in complex
conjugate pairs. Below we will focus our analysis on the
parameter domain for which the spectrum is real (exact
PT -symmetric phase). In this domain, the eigenvectors
|σ〉 of the 2× 2 matrix of Eq. (2) take the form

|σ〉 =

√
−σ√

2 cos θ

[
e−iσθ/2

−σeiσθ/2
]

; θ = arcsin

(
− γ

vq

)
(4)

and they are also eigenvectors of the PT -operator [1].
When ω 6= 0 the two bands are replaced by two in-

terleaving Wannier-Stark ladders E±n = E±0 + nω where
n = 0,±1, · · · . The offsets E±0 determine the relative en-
ergy distance between the two ladders and can be eval-
uated numerically from a direct diagonalization of the
effective Hamiltonian H that describes the paraxial prop-
agation of our system Eq. (1). In contrast to the ω = 0
case, the system possess multiple exceptional points.

Let us look at the case A = 0. In this case the longitu-
dinal propagation constants E±n are organized in doublets
associated with the nth isolated dimer:

E±n = E±0 + nω; E±0 = ±
√
α2 − γ2 (5)

For ω > 2α the spectrum is non-degenerate for any value

of γ 6= α (for γ = α we have multiple EP degeneracies).
However for ω = 2α we have a degeneracy at γ = 0,
where E±n = E∓n±1. For ω = α another (simple) degen-

eracy develops at γ = 0 where now E±n = E∓n±2. At the
same time the previous degeneracy at γ = 0 for ω = 2α,

”evolves” towards γ = α
√
3
2 . It is straightforward to show

that for ωm = 2α
m , where m = 1, 2, 3, ..., degeneracies

with more remote dimers occur at γ = 0 while the pre-
vious ones evolve towards larger values of γ. The index
m, defining the number of degeneracies for A = 0, will
be used below in order to delineate the ω−A parameter
space of our system, Eq. (1), into broken PT - symmetry
(i.e. unstable) regions occurring as γ increases.

In Fig. 2a, we present a density plot for γmin
PT , asso-

ciated with the first EP, versus ω and A. The purple
horizontal lines indicate the ωm-values discussed previ-
ously. For each such domain, we plot in Figs. 2b- 2d, a
typical spectral behavior (for fixed A,ω) of the eigenen-
ergies of the system Eq. (1) versus γ. Thus the number
of instability regions is described approximately by the
index m. Although this description is good for A � α,
for large A-values a more refined analysis of the number
of instability regions is needed.

FIG. 2: (Color online) Numerical results for: (a) the first EP
of the system for α = 1, versus ω and A; (b-d) The real (black)
and imaginary (blue) spectra in domains 1, 2, 3 for A = 0.5
and α = 1. In (b) ω = 2.5, in (c) ω = 1.5 and in (d) ω = 0.85.
(e) shows the spectrum for A = 0.6, ω = 0.231 associated
with the parameters used in Fig. 3. The perpendicular solid
(dashed) lines indicate the values of γ = 0.405(γ = 0.443)
associated with Fig. 3(b,c). The sub-figures in (a) are plots of
Eq. (5, 6) respectively for the same parameters as (b) and (c).
The purple lines indicate the ωm-values separating domains
with different number of instability regions (see text).

The domain m = 1 (one instability region, see Fig.
2b, can be understood within the framework of a single
dimer, see Eq. (5). The latter is also plotted at the inset
in Fig. 2a. Domain m = 2, can be analyzed using two
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coupled dimers subjected to a gradient ω:

H = −


n̄ω − iγ α 0 A

2
α n̄ω + iγ A

2 0
0 A

2 (n̄− 1)ω − iγ α
A
2 0 α (n̄− 1)ω + iγ


Direct diagonalization of the above Hamiltonian gives:

En = E±0 + nω; E±0 = ±
√
X ± Y +

1

2
ω (6)

where X ≡ (A2 )2 + α2 − γ2 + (ω2 )2, and Y ≡√
A2α2 + (α2 − γ2)ω2. Eq. (6) is plotted in the inset

of Fig. 2a and it describes qualitatively the features
(i.e. two instability domains) shown in Fig. 2c associated
with the system Eq. (1). Other domains m = 3, 4, · · ·
can be explained by analyzing a system of three, four,
etc. coupled dimers. Below we will concentrate only in
the parameter space for which the system is in the exact
PT -symmetric phase (stable domains) [27].

Dynamics– To study the dynamics, we have numer-
ically simulated the propagation of a broad Gaussian
beam for different values of γ ≤ γPT . We have assumed
a normal incident, so that at the input plane z = 0 the
beam has excited mainly the first band in a spectral in-
terval around q0 ≈ 0. We first consider the case of γ = 0
where the band-gap δ = 2(α−A) is large enough to allow
us to neglect Zener tunneling (ZT). According to the ac-
celeration theorem, the transverse propagation constant
q increases up to ±π where the wavelength satisfies the
Bragg condition associated with the underlying periodic
potential. The wave is then Bragg reflected at propaga-
tion distance z = π/ω and travels in the opposite trans-
verse direction toward lower index sites where it experi-
ences a total internal reflection. The process repeats itself
leading to a periodic motion which can be considered the
optical analogue of Bloch Oscillations. The oscillation
period can be easily estimated using the above consider-
ations and it is zB = 2π/ω. The above qualitative picture
is nicely reproduced in Fig. 3a for γ = 0 and ω = 0.231.

As γ increases the band-gap δ becomes smaller and
ZT between the two bands at q = ±π is not negligi-
ble any more. The associated spreading scenario is de-
picted in Figs. 3b,c for ω = 0.231 and two different
values of the gain/loss parameter γ = 0.405 and 0.443.
In this case the beam will experience a ZT at distances

z
(n)
Z = (2n + 1)π/ω, where n = 0, 1, · · · . Let us discuss

in more detail the first ZT event at z
(0)
Z = π/ω. For dis-

tances z < z
(0)
Z the beam is mainly trapped in the lower

band and propagates along the direction of the local gra-

dient ∂E−/∂q. At z
(0)
Z , due to the tunneling, the beam

splits into two beams one characterized by the lower band
and the other by the upper band. While the beam associ-
ated with the lower band reverses direction via Bragg re-
flection, the beam associated with the upper band follows
a parallel trajectory with ∂E+/∂q. These two beams will
again change direction due to total internal and Bragg

reflections respectively. They recombine at the second

tunneling point at distance z
(1)
Z = 3π/ω. The recombi-

nation process is more complicated as now both occupied
bands experience coherent interference. We have found

that at distances zR = z
(2)
Z (marked by the third green

line in Fig. 3c) these recombinations can lead to a giant
power focus (the total power is plotted with red line in
the z-axis of all upper subfigures of Fig. 3). The super-
position of ZT with Bloch Oscillations can, in general,
result in an asynchronous [28] process which destroys ex-
act revivals of the initial packet. Nevertheless we find
that wavepacket self-imaging is achieved for some values
of ω − γ. This is the case in Fig. 3c (distance zSI indi-
cated by orange line) as opposed to the results shown in
Fig. 3b where the self-imaging is not observed.

The dynamics is best analyzed in terms of the
Floquet-Bloch (FB) eigenvectors of the effective non-
Hermitian Hamiltonian H that describes our system
Eq. (1). In Dirac’s notation, the FB modes as-
sociated with the propagation constant (eigenstate of
H) Eσn is indicated as |Eσn 〉. They constitute a bi-

orthogonal basis and satisfy the relations 〈Eσ∗n
∣∣∣Eσ′m 〉 =

δn,mδσ,σ′ ;
∑
σ=±

∑∞
n=−∞ |Eσn 〉 〈Eσ∗n | = 1, which are dic-

tated by the symmetric nature of H (∗ denotes complex
conjugation). It is easy to show that the FB modes, in
the position representation satisfy the periodicity relation
〈µ, l + k | Eσn+k〉 = 〈µ, l |Eσn 〉; {|µ, l〉} is an orthonormal
basis defined by two indexes (µ, l) with the first index rep-
resenting the ‘gain’ (µ = 1) or ‘loss’ (µ = 2) waveguide
while the second one denoting the label for the dimer.

Next, we expand the initial preparation |Ψ (0)〉 in the
FB basis. We have |Ψ (0)〉 =

∑
σ=±

∑∞
n=−∞ cσn |Eσn 〉

where cσn ≡ 〈Eσ∗n |Ψ(0)〉. Thus the evolving beam is

|Ψ (z)〉 =
∑
σ=±

∞∑
n=−∞

cσne
−iEσnz |Eσn 〉. (7)

We now project the evolving beam Eq. (7) to the
Wannier-Bloch basis |σ, q〉 ≡ |σ〉 ⊗ |q〉 where |q〉 =
1√
2π

∑∞
l=−∞ |l〉 eilq spans the quasi-momentum space:

Ψσ,q(z) ≡ (σ , q | Ψ(z)〉 = e−iE
−
0 z{C−(ωz + q) (σ , q| E−0 〉

+ e−i(E
+
0 −E

−
0 )zC+(ωz + q) (σ , q

∣∣E+0 〉} (8)

where (σ, q | ≡ (σ | ⊗ 〈q | , and (σ | = (PT |σ〉)T [1]. The
coefficients Cσ(ωz + q) ≡

∑∞
p=−∞ cσpe

−ip(ωz+q) satisfy

the periodicity relation Cσ (ωz + q + 2π) = Cσ (ωz + q).
Equations (7,8) provide an explanation for the recom-

bination and self-imaging events. They indicate that the
evolving beam is, in general, not periodic as a function
of the propagation distance z and it is characterized by
two propagation scales: The first one is the Bloch period,
zB = 2π

ω , originating from the periodicity of the Cσ func-

tions. The second scale zE = 2π
E+0 −E

−
0

is associated with

the minimal energy spacing in-between the two Wannier-
Stark ladders and arises from the nontrivial relative phase
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FIG. 3: (Color online) Propagation for an initial Gaussian wavefront an(0) = bn(0) = e−n2/10. The lattice parameters are
α = 1, ω = 0.231, and A = 0.6. The site index n indicates the n-th dimer where the amplifying site is juxtaposed with the
attenuating site on the right. The red line (upper subfigures) shows the total power while the color map describe the individual
site power (|an(z)|2, |bn(z)|2). The green lines mark the first three Zener distances zZ while the orange lines mark the expected
self-imaging time zSI. In the lower graphs the gray and pink lines correspond to the normalized relative band-power evaluated
numerically from the beam evolution (see text). The black and red dots correspond to the upper and lower band-projections
Eq. (9), normalized to the total power at each distant z. In (a) γ = 0, in (b) γ = 0.405, while in (c) and (d) γ = 0.443. In (d)

a defect is included in the 7th-dimer during the propagation interval z ∈ [z
(1)
Z − 4, z

(1)
Z + 4] (see text for details). The presence

of the defect disrupts the expected revival at zSI (see the lower subfigure (c) where the expected zSI is marked with an orange
line) and results in a huge total power at the recombination distance zR (third green line at upper subfigure d). The behaviour
of subfigures b,c,d is typical and has been observed over a wide range of the parameter A.

on the rhs of Eq. (8). There are ω − γ values for which
these two scales are rationally related to one another i.e.
zE/zB = N/M . This condition leads to a self-imaging of
the initial beam at distances zSI = MzE = NzB . For
instance, when M = 1, N = 5 the initial wavepacket is
reconstructed at the distance zSI = 10π

ω , (orange line in
Fig. 3c. Moreover, a giant power focus (third green line)
occurs at the recombination distance which is between
two successive self-imaging events.

A deeper insight of the recombination events is
achieved by evaluating the relative band projections
P̃σ(z) of the evolving beam. Using Eq. (8) we get

P̃σ(z) =
Pσ(z)

P−(z) + P+(z)
;Pσ(z) =

∫
|Ψσ,q(z)|2dq (9)

The band projections are plotted on the lower row of Fig.
3 as black (upper) and red (lower) points. In the same
figures the pink and grey lines correspond to the rela-
tive power (normalized PR(z) + PL(z) = 1) evaluated
numerically as the power at the left and right sites of the
recombination point, dimer index n = 7. The numeri-
cal results strongly correlate with the band projections
Eq. (9) where the pink (left) and grey (right) lines cor-
respond to the lower and upper bands respectively. The
distances where jumps occur coincide with the position

z = z
(n)
Z where Zener inter-band transitions of power oc-

curs according to the semi-classical picture of splittings
and recombinations discussed earlier (see green lines).

We have also studied the effect of a defect in the cre-
ation of these intense recombination points. In general, a

defect will devalue the maximum of the total power; how-
ever, a strategically placed defect at one of the recombi-
nation distances z

(n)
Z can lead to further enhancement of

the power peak. This is reported in Fig. 3d, where the
real part of the refraction index of the n = 7 dimer, where

the first recombination at distance z = z
(1)
Z = π/ω occurs

(see Fig. 3c), has been altered i.e. nω → nω+0.25 (where
n = 7). This alteration occurred during the propagation

distance ∆z = z
(1)
Z ±4 from the origin. We interpret this

phenomenon as resulting from quasi-momentum random-
ization due to the scattering from the defect prior to the
giant recombination. This leads to recombinations with
all power concentrated in a narrow spatial domain.

In conclusion, we have investigated stable Bloch-Zener
oscillations in a photonic lattice with local PT -symmetry.
We have found that an initial beam experiences a cas-
cade of beam splittings and recombinations where the
re-concentrated power can exceed the initial value due to
the non-Hermitian nature of the dynamics. At the same
time we have found that a judicial selection of the index
gradient ω and the gain/loss parameter γ can result in
perfect self-imaging of the initial packet at distances dic-
tated by these two parameters. This platform can open
up new possibilities for the realization of reconfigurable
beam splitters, interferometers and imaging processing.
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