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We study the many-body localization transition in one-dimensional Hubbard chains using exact
diagonalization and quantum chaos indicators. We also study dynamics in the delocalized (ergodic)
and localized phases and discuss thermalization and eigenstate thermalization, or the lack thereof,
in such systems. Consistently within the indicators and observables studied, we find that ergodicity
is very robust against disorder, namely, even in the presence of weak Hubbard interactions the
disorder strength needed for the system to localize is large. We show that this robustness might be
hidden by finite size effects in experiments with ultracold fermions.

PACS numbers: 05.30.-d 67.85.-d, 71.30.+h

a. Introduction. Over the years, substantial atten-
tion has been devoted to understanding the dynamical
properties of disordered systems. Interest on this topic
goes back to a seminal paper by Anderson in 1958, who
showed that sufficiently strong quenched disorder can
produce localization of noninteracting particles, preclud-
ing transport in the thermodynamic limit [1]. Destruc-
tive interference is at the heart of this phenomenon. It
is more prominent in lower dimensions, and, as a result,
any nonzero disorder strength leads to localization in one
and two dimensions [2]. A fundamental aspect of Ander-
son localization is that it occurs not only in the ground
state but also in (highly) excited states.

Because of the possibility of localization occurring in
interacting systems, a phenomenon termed many-body
localization (MBL), disordered systems in the presence
of interactions have received a lot of attention in recent
years. Early perturbative arguments [3–6] and numerical
simulations in the presence of strong interactions [7–11]
have triggered much research on this topic [12, 13]. The
MBL transition has also started to be explored in exper-
iments with ultracold atoms [14–16] and ions [17].

The contrast between the properties of many-body
eigenstates of interacting systems in the presence and
absence of MBL makes apparent how remarkable MBL
is. In generic isolated systems, interactions make possible
for the system to act as its own ‘effective bath’. If taken
out of equilibrium, such systems evolve in time in such a
way that observables equilibrate and can be described by
traditional ensembles of statistical mechanics (i.e., they
thermalize). This is just one of the manifestations of a
phenomenon known as eigenstate thermalization [18–20],
which, in short, means that the expectation value of an
observable in an eigenstate of a many-body interacting
system is the same as that in thermal equilibrium (with
the same mean energy as the eigenstate energy). Eigen-
state thermalization has been shown to occur in several
many-body quantum systems [20–29]. It is known not to
occur only in integrable and MBL systems, i.e., the latter
two classes of systems generally do not exhibit thermal-
ization even if they are thermodynamically large [30, 31].

As a matter of fact, it was the latter property of MBL
systems the one used in the experiments of Ref. [15] to

distinguish between the delocalized (ergodic) regime and
the MBL one, for spinful fermions in the presence of
a quasi-periodic potential. Motivated by those experi-
ments, in this work we study the MBL transition in Hub-
bard chains with disorder. We contrast the predictions of
quantum chaos indicators for the transition to those from
thermalization and eigenstate thermalization. We argue
that ergodicity is remarkably robust in these itinerant
systems, and show that finite size effects in thermaliza-
tion indicators might hide this fact in experiments.
b. Model and the MBL transition. To investigate

the MBL transition, we use full exact diagonalization and
study the Hamiltonian: Ĥ = Ĥ0 + Ĥsb + ĤW , in which

Ĥ0 = − t
L−1∑
i=1
σ=↑,↓

(ĉ†iσ ĉi+1,σ + H.c.)

−t′
L−2∑
i=1
σ=↑,↓

(ĉ†iσ ĉi+2,σ + H.c.) + U

L∑
i

n̂i↑n̂i↓, (1)

is an extended Hubbard model (written in standard no-
tation) in a linear chain of size L (with open bound-
ary conditions), with nearest neighbor hoppings (am-
plitude t), onsite interaction (strength U), and next-
nearest neighbor hoppings (amplitude t′). We have taken
t′ 6= 0 so that the model is nonintegrable (quantum
chaotic) in the absence of disorder. Additional sym-
metries, parity and SU(2), are removed by adding a
very weak magnetic field (hb) and chemical potential
(µb), respectively, at the opposite edges of the chain:

Ĥsb = hb(n̂1,↑ − n̂1,↓) + µb(n̂L,↑ + n̂L,↓) (see Ref. [32]
for details). We focus on a uniformly distributed dis-

order described by ĤW =
∑
iσ εin̂iσ, where the local

potential εi ∈ [−W/2,W/2]. To show the stark con-
trast between disorder and the quasi-periodic potential
studied in Refs. [15], we also report results for the phase
diagram when εi = ∆

2 cos (2πβi+ φ), where ∆ is the po-

tential strength, β = (
√

5 + 1)/2 is the golden ratio, and
φ is an arbitrary phase (as in the Aubry-Andre model
[33]). Throughout this manuscript, t = 1 sets the en-
ergy scale and t′ = 0.5. We only change U and the
disorder strength. The systems studies are at quarter
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filling, namely, N↑ + N↓ = L/2, with N↑ ≡ 〈
∑L
i n̂i↑〉

and N↓ ≡ 〈
∑L
i n̂i↓〉. We consider two lattice sizes,

L = 10 and 12, where N↑ = N↓ = L/4 for L = 12,
and N↑ = N↓ ± 1 for L = 10 [32].

A common quantum chaos indicator used to locate the
many-body localization transition in disordered systems
is the average ratio between the smallest and the largest
adjacent energy gaps, rn = min[δEn , δ

E
n−1]/max[δEn , δ

E
n−1],

with δEn = En−En−1, and {En} is the ordered list of en-
ergy levels [7]. Here, in order to reduce finite size effects,
we compute the average ratio r̄ over the central half of the
spectrum. In the ergodic phase, when the level spacing
exhibits a Wigner-Dyson distribution, the average ratio
is rWD ≈ 0.536, while in the MBL phase, when the level
spacing exhibits a Poisson distribution, the average ratio
is rP = 2 ln 2− 1 ≈ 0.386 [34].

Figure 1 shows the disorder average of r̄, 〈r̄〉dis, as a
function of the disorder strength for different values of
the on-site repulsion and two system sizes. The value of
the disorder strength at which the curves cross/merge,
Wc, can be taken as an estimate of the critical disorder
strength for the ergodic to many-body localization phase
transition. Such a crossing/merging point is known to
move towards stronger disorder with increasing system
size (see, e.g., Refs. [7, 9, 10]), as such, the values re-
ported here should be thought of as lower bounds for the
critical disorder. As expected, since interactions promote
delocalization, Wc first increases with U [Figs. 1(a)–1(c)].
It is remarkable that, even for fairly small values of U
[U = 0.2 in Fig. 1(a)], the delocalized regime is robust
up to values of Wc ' 8, i.e., almost twice the width B of
the single particle spectrum, εk = −2t cos(k)−2t′ cos(2k)
(B = 4.5 for our parameters). As the onsite interaction
strength becomes of the order of B, Wc stops increas-
ing and, as U increases further, Wc starts to decrease
[Figs. 1(c) and 1(d)]. This is expected as, in the limit
U → ∞, each sector in the Hubbard model with a par-
ticular ordering of the spins (and no double occupancy)
maps onto a noninteracting spinless fermion Hamiltonian
with N↑ + N↓ fermions, and the latter localizes for any
nonzero disorder strength. Figure 1(e) depicts the esti-
mated phase diagram in the presence of disorder for up
to U = 20. In contrast, as also shown in Fig. 1(e), MBL
in the present of a quasi-periodic potential (see Ref. [32]
for further details) occurs for ∆�W . MBL is also easier
to achieve in interacting spinless fermion systems [35].

c. Dynamics and thermalization. As mentioned be-
fore, one of the defining properties of the MBL phase is
its lack of thermalization. In what follows, motivated by
the experimental results reported in Ref. [15], we study
dynamics in the delocalized and MBL regimes. Our ini-
tial state is also experimentally motivated. We consider
|ψI〉 = | ↑ 0 ↓ 0 ↑ 0 ↓ . . .〉, which is a state that has
no double occupancy and can be prepared using optical
superlattices. |ψI〉 is a quarter-filling version of the state
prepared in Ref. [15]. The dynamics is then studied un-

der Ĥ = Ĥ0 + Ĥsb + ĤW . Our goal is to understand how
the results of the dynamics relate to those obtained for
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FIG. 1. (Color online) (a)-(d) Averaged ratio of adjacent
energy gaps as a function of the disorder strength for four
values of U and two lattice sizes. The average r̄ was com-
puted over the central half of the spectrum. The disordered
averaged results 〈r̄〉dis for L = 10 were obtained averaging
over 1200 disorder realizations, and the ones for L = 12 over
20–200 disorder realizations (error-bars report the standard
deviation). In (a), we show results for N↑ = N↓ ± 1 when
L = 10. They make apparent that both sectors behave qual-
itative (and quantitatively) similarly even for the largest val-
ues of hb = µb used. The crossing point between curves for
different lattice sizes provides an estimate of the critical dis-
order, Wc, for the ergodic to MBL transition. (e) Estimated
Wc and ∆c as a function of U (error-bars report an interval
of confidence based on the closeness of the results about Wc).

r̄. Some of the specific questions we address are: Is the
MBL transition manifest in the dynamics of experimen-
tally relevant observables? At which time those observ-
ables reach (if they do) stationary values? We are also
interested in understanding the role of finite size effects.
They have been found to be stronger in indicators related
to Hamiltonian eigenstates than in those related to the
spectrum [36]. To address these questions, we focus in
one particular value of the interaction strength, U = 4.

We report results for three observables (see Ref. [32] for
another one). Two observables, the imbalance I = (〈n̂e〉−
〈n̂o〉)/(〈n̂e〉+ 〈n̂o〉), where n̂e(o) =

∑
i=even(odd),σ n̂i,σ (I

was measured in Ref. [15]), and the kinetic energy K =

−t
∑
i,σ〈(ĉ

†
iσ ĉi+1,σ + H.c.)〉 − t′

∑
i,σ〈(ĉ

†
iσ ĉi+2,σ + H.c.)〉,
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FIG. 2. (Color online) Disorder averaged results for the time
evolution of: (a) the even-odd site occupation imbalance, and
(b) the antiferromagnetic structure factor. The shaded area
around the curves depicts the standard deviation of the mean,
after an average over 10 disorder realizations. The horizon-
tal dashed lines depict the disorder averaged values of the
diagonal ensemble predictions (see text).

are directly related to the charge degrees of freedom.
The third one, the antiferromagnetic structure factor
S = 1/L

∑
i,j e

iπ(i−j)〈(n̂i↑ − n̂i↓)(n̂j↑ − n̂j↓)〉 is related

to the spin degrees of freedom (from now on we refer to
it as the structure factor). The relaxation times of the
charge and spin degrees of freedom are expected to be
different for very strong interactions [37].

Figure 2 displays the disorder averaged time evo-
lution of the imbalance [Fig. 2(a)] and of the struc-
ture factor [Fig. 2(b)]. We also display, as horizontal
dashed lines, the disorder average of the diagonal en-

semble results. Given an observable Ô, the diagonal en-
semble result (which, in the absence of degeneracies, is
the same as the infinite-time average of the observable
[20]) can be obtained as ODE =

∑
α |Cα|2Oαα, where

Oαα = 〈α|Ô|α〉, |α〉 are the eigenstates of the Hamil-

tonian (Ĥ|α〉 = Eα|α〉, Eα are the eigenenergies), and

Cα = 〈α|ψI〉. We say that Ô equilibrates if it relaxes to
ODE and remains close to it for long time.

Figures 2(a) and 2(b) show that I and S equilibrate in
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FIG. 3. (Color online) (a) Disorder averaged diagonal en-
semble results for the imbalance (main panel) and the kinetic
energy per site (inset) vs the amplitude of the disorder W .
(b) Normalized disorder average difference between the diago-
nal and microcanonical ensemble predictions for the structure
factor (main panel) and the kinetic energy (inset) vs the am-
plitude of the disorder W . In all cases U = 4, and the width
of the microcanonical energy window is ∆E = 0.1. The ver-
tical dashed line marks Wc, and the shaded region around it
signals the interval of confidence reported in Fig. 1(e).

both the delocalized and localized regimes. Sufficiently
far away from Wc (W = 0, 2, and 30 in the figure), one
can see that both observables have essentially reached
the diagonal ensemble result (or are very close to it)
for τ ' 10 (~/t). As the system approaches Wc(' 20
for U = 4), we find that equilibration times become
much longer. For example, for W = 16 in Fig. 1(a), one
can see that I becomes nearly time independent only at
τ ' 103 (~/t). Very long equilibration times at a delocal-
ization to localization transition have also been observed,
for much larger system sizes, in the integrable hard-core
boson version of the Aubry-André model [38]. Those
times represent a challenge for experiments.

Next, we check how the diagonal ensemble results for
the observables compare to the microcanonical predic-
tions. Whenever they agree, and equilibration occurs (as
we have checked), we say that the system thermalizes.
We first consider I. Since there is no distinction between
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even and odd sites in the Hamiltonian, the disorder av-
erage of I is expected to be zero in the microcanonical
ensemble (〈IME〉dis = 0). Hence, as argued in Ref. [15],
the disorder average of the diagonal ensemble result for
I (〈IDE〉dis) can be taken to be the order parameter for
the MBL phase (it can only differ from zero if the system
does not thermalize). Figure 3(a) shows 〈IDE〉dis vs W
for two system sizes. For the (small) system sizes that we
can study, 〈IDE〉dis can be seen to smoothly increase from
zero with increasing W . However, comparing the results
for the two system sizes, one can see that in the delo-
calized side (and close to Wc in the MBL side) 〈IDE〉dis

decreases with increasing system size. This is consistent
with the expectation that, in the thermodynamic limit,
it will vanish in the delocalized side.

Another order parameter that could be used to locate
the MBL transition in experiments is the kinetic energy.
As discussed in Ref. [31], the dynamics of one-particle
corrections in the MBL phase is quantitatively similar
to that in the atomic limit (even if the system is not in
that limit). This means that, in the Heisenberg represen-

tation, ĉ†i,σ(τ)ĉj,σ(τ) ≈ exp[i(εi − εj)τ/~]ĉ†i,σ(0)ĉj,σ(0).

Given our initial state, that implies that 〈KDE〉dis ≈ 0.
In the inset in Fig. 3(a), one can see that, indeed,
〈KDE〉dis ≈ 0 for W & Wc. In Fig. 3(b), the inset shows
〈|KDE −KME|〉dis/〈|KME|〉dis and the main panel shows
〈|SDE−SME|〉dis/〈|SME|〉dis. Both normalized differences
can be seen to decrease with increasing system size in the
delocalized phase and not in the MBL. This is consistent
with the expectation that thermalization occurs only in
the former.

The fact that the system thermalizes (fails to thermal-
ize) in the delocalized (MBL) regime can be understood
to be the result of eigenstate thermalization occurring
(not occurring) in that regime [18–20]. In Fig. 4, we show
the eigenstate expectation values of the three observables
of interest for a single disorder realization for different
values of W . Deep in the delocalized phase (W = 0 and
2 in the figure), the support for those expectation val-
ues at a given energy can be seen to be very small (it
decreases with system size, not shown), i.e., eigenstate
thermalization occurs. The support of the eigenstate ex-
pectation values exhibits a different behavior within the
MBL phase, or close to it, (W = 16 and 30 in the fig-
ure), i.e., eigenstate thermalization does not occur, or, at
least, it is not apparent for the system sizes studied. In
Fig. 4, vertical dashed lines depict the mean energy, and
shaded areas around them depict the width of the energy
distribution (for W = 0 and 2), in the quenches involving
that disorder realization. They show which part of the
spectrum is relevant to the dynamics studied.

d. Summary and discussion. We have studied the
ergodic to MBL transition in Hubbard chains. Our main
result from the analysis of quantum chaos indicators is
that ergodicity is very robust against disorder. Even for
on-site interactions as weak as U = 0.2, we find that
the disorder strength required to localize the system is
or the order of twice the single-particle bandwidth. We

FIG. 4. (Color online) Eigenstate expectation values of the
imbalance (a), the kinetic energy per site (b), and the struc-
ture factor (c) for a single disorder realization in systems with
four different disorder strengths. The vertical dashed lines
show the averaged mean energy, and the shaded are for W = 0
and 2 depict the averaged energy width, for the quenches in-
volving this disorder realization. The results reported here
were obtained in systems with U = 4 and L = 12.

studied the dynamics of those systems starting from a
state of the form |ψI〉 = | ↑ 0 ↓ 0 ↑ 0 ↓ . . .〉. We find
that various experimentally relevant observables equili-
brate in time scales ∼ 1−10(~/t), whenever the system is
not close to the MBL transition. Close to the MBL tran-
sition, equilibration times become orders of magnitude
longer and might be difficult to handle experimentally.
We have also studied the differences between observables
after equilibration and the predictions of the microcanon-
ical ensemble finding that, for the small lattice sizes that
we are able to study (∼ 12 sites), they increase smoothly
as one increases disorder and can be large even far from
the MBL transition. This is reminiscent of the behavior
observed as one approaches an integrable point in finite
systems [21, 22]. Hence, the analysis of a few small sys-
tem sizes does not allow one to identify the critical disor-
der strength at which MBL occurs. Large system sizes,
or a careful finite size scaling analysis, are needed. While
that might be possible in experiments, it remains a chal-
lenge for numerical simulations. Numerical linked cluster
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expansions [30, 31], which exhibit an exponentially fast
convergence with increasing the size of the systems that
need to be diagonalized [39], offer a promising way to
address this challenge [31].
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Michael Schreiber, Immanuel Bloch, and Ulrich Schnei-
der, “Coupling identical 1d many-body localized sys-
tems,” arXiv preprint arXiv:1509.00478 (2015).

[17] Jacob Smith, Aaron Lee, Philip Richerme, Brian Neyen-
huis, Paul W Hess, Philipp Hauke, Markus Heyl, David A
Huse, and Christopher Monroe, “Many-body localiza-
tion in a quantum simulator with programmable random
disorder,” arXiv preprint arXiv:1508.07026 (2015).

[18] J. M. Deutsch, “Quantum statistical mechanics in a
closed system,” Phys. Rev. A 43, 2046 (1991).

[19] M. Srednicki, “Chaos and quantum thermalization,”
Physical Review E 50, 888 (1994).

[20] M. Rigol, V. Dunjko, and M. Olshanii, “Thermaliza-
tion and its mechanism for generic isolated quantum sys-
tems,” Nature 452, 854–858 (2008).

[21] M. Rigol, “Breakdown of thermalization in finite one-
dimensional systems,” Phys. Rev. Lett. 103, 100403
(2009).

[22] M. Rigol, “Quantum quenches and thermalization in one-
dimensional fermionic systems,” Phys. Rev. A 80, 053607
(2009).

[23] L. F. Santos and M. Rigol, “Localization and the effects
of symmetries in the thermalization properties of one-
dimensional quantum systems,” Phys. Rev. E 82, 031130
(2010).

[24] C. Neuenhahn and F. Marquardt, “Thermalization of
interacting fermions and delocalization in Fock space,”
Phys. Rev. E 85, 060101 (2012).

[25] E. Khatami, G. Pupillo, M. Srednicki, and M. Rigol,
“Fluctuation-dissipation theorem in an isolated system
of quantum dipolar bosons after a quench,” Phys. Rev.
Lett. 111, 050403 (2013).

[26] R. Steinigeweg, J. Herbrych, and P. Prelovšek, “Eigen-
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