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We investigate quantum control of an oscillator mode off-resonantly coupled to an ancillary qubit.
In the strong dispersive regime, we may drive the qubit conditioned on number states of the oscillator,
which together with displacement operations can achieve universal control of the oscillator. Based
on our proof of universal control, we provide a straightforward recipe to perform arbitrary unitary
operations on the oscillator. With the capability of universal control, we can significantly reduce
the number of operations to prepare the number state |n〉 from O (n) to O (

√
n). This universal

control scheme of the oscillator enables us to efficiently manipulate the quantum information stored
in the oscillator, which can be implemented using superconducting circuits.

PACS numbers: 03.65.Vf, 37.10.Jk, 42.50.Lc

As an important model for quantum information pro-
cessing, the coupled qubit-oscillator system has been
actively investigated in various platforms, including
trapped ions [1], nano-photonics [2], cavity QED [3], and
circuit QED [4]. Due to its convenient control, the phys-
ical qubit is usually the primary resource for quantum
information processing. Meanwhile, the oscillator serves
as an auxiliary system for quantum state transfer and
detection [5]. In fact, the oscillator, associated with a
phononic or photonic mode, may have long coherence
times [1, 6, 7] and the large Hilbert space associated with
the oscillator can be used for quantum encoding [8–10]
and autonomous error correction with engineered dissi-
pation [11]. These crucial features call for deeper inves-
tigations into quantum control theory of the oscillator.

The seminal work of Law and Eberly [12] has trig-
gered many theoretical and experimental investigations
to prepare quantum states of the oscillator assisted by
an ancillary qubit with Jaynes-Cummings (JC) coupling
[1, 13–15]. However, the more complex problem of im-
plementing arbitrary unitary operations remains an out-
standing challenge. Even with recent advances, proto-
cols for universal control require either a large number of
control operations [16], slow adiabatic transitions [17], or
a more complicated model with an ancillary three-level
system [18]. Meanwhile, development of superconducting
circuits acting in the strong dispersive regime opens new
possibilities for universal control of the oscillator [19].

In this Letter, we provide a scheme for universal con-
trol of the oscillator assisted by an ancillary qubit. The
scheme utilizes the dispersive Hamiltonian [19] along
with two types of drives associated with the qubit and
the oscillator, respectively. The key is the capability to
drive the qubit [9, 10, 19–22] and impart arbitrary phases
conditioned on the number state of the oscillator. An ex-
perimental implementation of the proposed scheme, con-
firming the feasibility of the protocol, is presented in [23].

The Hamiltonian of the qubit-oscillator system is

Ĥ = Ĥ0 + Ĥ1 + Ĥ2, (1)

Figure 1. Energy level diagram of the qubit-oscillator system.
In the rotating frame of the oscillator, the states {|g, n〉}n
have the same energy. After each operation, the population
(orange circles) remains in the subspace associated with |g〉. A
weak displacement operation (red dashed arrows) couples the
states |g, n− 1〉 and |g, n〉 with strength

√
nε for all n. The

SNAP gate (blue solid arrows) can simultaneously accumu-
late different Berry phases {θn} to states {|g, n〉}. The Berry
phase θn is proportional to the enclosed shaded area in the
corresponding Bloch sphere, achieved by resonant microwave
pulses with frequency ωq − nχ (blue oscillatory fields).

with dispersively coupled qubit and oscillator [19]

Ĥ0 = ωq | e〉〈e | +ωcn̂− χ | e〉〈e | n̂, (2)

time-dependent drive of the oscillator

Ĥ1 = ε (t) eiωctâ† + h.c., (3)

and time-dependent drive of the qubit

Ĥ2 = Ω (t) eiωqt |e〉〈g|+ h.c. (4)

Above ωq is the qubit transition frequency between |g〉
and |e〉, ωc is the oscillator frequency, â†(â) are the raising
(lowering) operators, n̂ = â†â is the number operator
of the oscillator, χ is the dispersive coupling, Ω(t) and
ε(t) are the time-dependent drives of the qubit and the
oscillator, respectively. The eigenstates of Ĥ0 are |g, n〉
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and |e, n〉 with oscillator excitation number n = 0, 1, · · · ,
as illustrated in Fig. 1.

Our control scheme requires the following three con-
straints:

1. The oscillator and qubit are never driven simulta-
neously (i.e. ε(t)Ω(t) = 0 for all t);

2. The qubit is in the ground state |g〉 whenever the
oscillator drive is on (i.e. when ε(t) 6= 0);

3. The qubit drive is weak compared with the disper-
sive coupling, i.e. |Ω(t)| � χ.

With the above constraints, we have two types of oper-
ations. Operations of type 1© (based on Eq. (3) under
constraint #2) are displacements

1© D̂(α) = exp
(
αâ† − α∗â

)
, (5)

with α = i
´
ε(t)dt, which can coherently pump or re-

move energy from the oscillator. Operations of type 2©
(based on Eq. (4) under constraint #3) are qubit rota-
tions conditional on the number states [19–22, 24], which
can impart number dependent Berry phases. As illus-
trated in Fig. 1, there is a series of transition frequencies
of the qubit, {ωq − χn}∞n=0, depending on the excitation
number of the oscillator. We can achieve unitary rota-
tions between the selected levels {|g, n〉 , |e, n〉} with neg-
ligible effect to the rest of system, if we drive the qubit
with Ω (t) = Ωn (t) e−inχt and |Ωn| � χ [19–22]. Hence,
we can impart a Berry phase to a selected number state:
|g, n〉 → eiθn |g, n〉, with θn proportional to the solid an-
gle subtended by the path in the Bloch sphere associ-
ated with {|g, n〉 , |e, n〉} (as illustrated in Fig. 1). Since
the qubit remains in |g〉 after the operation, we can ef-
fectively obtain a Selective Number-dependent Arbitrary
Phase (SNAP) operation

Ŝn (θn) = eiθn|n〉〈n|, (6)

which imparts phase θn to the number state |n〉. Since
the excitation number is preserved during the SNAP
operation (due to constraint #1), we may drive the
qubit with multiple frequency components, Ω (t) =∑
n Ωn (t) ei(ωq−χn)t. These will simultaneously accumu-

late different phases θn for different number states and
implement the general SNAP gate

2© Ŝ(~θ) =

∞∏
n=0

Ŝn (θn) =

∞∑
n=0

eiθn |n〉〈n|, (7)

where ~θ = {θn}∞n=0 is the list of phases. Since θn can
be an arbitrary function of n, the SNAP gate can sim-
ulate arbitrary non-linear effects that conserve the ex-
citation number. For example, if we choose θn ∝ n2,
the SNAP gate effectively induces a Kerr nonlinearity of
the oscillator. With SNAP gates, we just need to con-
sider real displacement, because any complex displace-
ment α = reiφ can be decomposed as a real displacement
conjugated by a SNAP gate, D̂(α) = Ŝ(~θ)D̂(r)Ŝ(−~θ)
with θn = nφ (mod 2π).

Proof of universality. To show that the operations
D̂(α) and Ŝ(~θ) are sufficient for universal control of the
oscillator, we first identify p̂ = −i(â† − â) as a genera-
tor of D̂ (α) for real α, and

{
Q̂n =

∑n
n′=0 |n′〉〈n′|

}
n
as

generators of Ŝ(~θ). Their commutator is

Ĵn = i
[
p̂, Q̂n

]
=
√
n+ 1 (| n〉〈n+ 1 | + | n+ 1〉〈n |) ,

which can selectively couple n and n− 1. This gives the
group commutator

D̂(ε)R̂n (ε) D̂(−ε)R̂n (−ε) = exp
(
iJnε

2 +O(ε3)
)
, (8)

for small real ε and for the SNAP gate

R̂n (ε) = eiQnε = Ŝ ({ε, . . . ε, 0, . . . })

=

n∑
n′=0

eiε |n′〉〈n′|+
∞∑

n′=n+1

|n′〉〈n′| .

For any integerN > 0,
{
Ĵn

}N−1
n=0

and
{
Q̂n

}N−1
n=0

are suffi-
cient to generate the Lie algebra u(N) over the truncated
number space spanned by {|n〉 |n < N}, which implies
universal control of the oscillator [25–27].

Explicit construction of target unitary. Let us first
consider the elementary target unitary operation

V̂n,target = cos θ(|n〉〈n|+ |n+ 1〉〈n+ 1|)
+ sin θ(|n〉〈n+ 1| − |n+ 1〉〈n|) (9)

that performs a rotation of angle θ in the {|n〉 , |n+ 1〉}
subspace, with an efficient approximate implementation

V̂n = D̂(α
(n)
1 )R̂n (π) D̂(α

(n)
2 )R̂n (π) D̂(α

(n)
3 ), (10)

where R̂n (π) = −
∑n
n′=0 |n′〉〈n′|+

∑∞
n′=n+1 |n′〉〈n′| is a

SNAP gate with π phase shift for number states with
no more than n excitations. It is important to impose
the constraint α1 + α2 + α3 = 0 to minimize the unde-
sired effects to the subspace associated with |n′〉 6= |n〉
or |n+ 1〉. Numerically, we optimize the fidelity, F =
1
Nc

∣∣∣Tr (V̂ †n V̂n,target)∣∣∣, where Nc is the cutoff dimension
(i.e. the size of the matrices used to represent the oper-
ators) [28][29]. The numerical optimum is attained with
(α1, α2, α3) = (α,−2α, α) (naturally, the value of α will
depend on n and the angle of rotation). Fig. 2 shows the
infidelities we obtain using this protocol for the imple-
mentation of a π

2 rotation on {|n〉 , |n+ 1〉}.
To construct an arbitrary target unitary Ûtarget in the
{|0〉 , . . . , |n− 1〉} subspace, we start by taking its inverse:

Û−1target =

(
Ŵn 0

0 ÎNc−n

)
,

where Ŵn is the non-trivial block and În′ is the n′ × n′
identity matrix. We first apply a SNAP gate such that
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Figure 2. Plot of infidelity of the unitary V̂n [Eq. (10)] con-
structed by our protocol with respect to the desired target
unitary V̂n,target [Eq. (9)] vs. n. The target unitaries are
π
2

rotations on the {|n〉 , |n+ 1〉} subspace. In the limit of
|Ωn| /χ → 0 the simple implementation of Eq. (10) can al-
ready achieve fidelities F = 1

2

∣∣∣Tr (V̂ †n V̂n,target)∣∣∣ better than
0.998. In the calculation of the fidelity we use the 2× 2 sub-
matrices of interest (acting on the {|n〉 , |n+ 1〉} subspace).

the last column of the Ŵn block now contains only non-
negative coefficients. We then apply n − 1 consecutive
SO(2) rotations eliminating the off-diagonal elements in
the last column of Ŵn, such that the column becomes
(0, · · · , 0, 1)

T
n. Since all rows of a unitary matrix are or-

thonormal, the last row of the Ŵn block must be trans-
formed to (0, · · · , 0, 1)n . Hence, the result is

V̂
(n)
n−1V̂

(n)
n−2 · · · V̂

(n)
0 Ŝ(n)Û−1target =

Ŵn−1 0 0

0 1 0

0 0 INc−n

 ,

where Ŝ(n) is a SNAP gate necessary for any complex
phases unobtainable with the SO(2) operations. The n−
1 SO(2) rotations

V̂
(n)
k = D̂(α

(n)
k )R̂k (π) D̂(−2α

(n)
k )R̂k (π) D̂(α

(n)
k )

can be individually optimized, before being chained to-
gether for a second round of optimization over n− 1 dis-

placement parameters
{
α
(n)
k

}n−1
k=0

. The cost function to
be minimized for the second round of optimization is the
sum of absolute values of off-diagonal terms (excluding
Ŵn−1 block). We iterate the procedure until we obtain

ÛconstructÛ
−1
target ≈ Î , (11)

with Ûconstruct =
∏n
n′=1

(
V̂

(n′)
n′−1V̂

(n′)
n′−2 · · · V̂

(n′)
0 Ŝ(n′)

)
, as

illustrated in Fig. 3(a,b) for a specific Utarget [30] .
Using the above decomposition, we need n(n − 1)/2

SO(2) rotations (each containing 3 displacements and
2 SNAP gates). We can combine consecutive displace-
ments, lowering the number of displacements to 2 per
SO(2) rotation. We also need one SNAP gate at each
iteration of the Ŵn → Ŵn−1 step, with a total of n
additional SNAP gates. For various Ûtarget, as illus-
trated in Fig. 3(c,d), we find that the step-wise opti-
mization procedure can yield good final fidelity F =

Figure 3. (a) An example target unitary operation,
Utarget (a permutation). (b) The product is close to
identity, ÛconstructÛ

−1
target ≈ Î, with small non-zero off-

diagonal elements. (c,d) Comparison of fidelities F =
1
Nc

∣∣∣Tr (Û†constructÛtarget

)∣∣∣ after column-wise optimization
(black) and fidelities with additional optimization over all dis-
placement parameters (red) for (c) Fourier (triangles) and
permutation (squares) operations and (d) randomly gener-
ated target unitary operations (hexagons).

1
Nc

∣∣∣Tr (Û†constructÛtarget

)∣∣∣ > 0.99, which can be further
improved to F > 0.999 with a third round of simulta-
neous optimization over all n (n− 1) /2 displacement pa-

rameters {α(n′)
k }k<n′≤n.

Our scheme can be applied to the general Hamiltonian
with dispersive coupling, −

∑
n χn |e, n〉 〈e, n|, as long as

the number-dependent qubit frequency shift can be re-
solved (|χn − χn′ 6=n| � |Ω (t)| , γ, κ, for all relevant n and
n′, where γ and κ are the qubit and cavity decoherence
rates, respectively). Furthermore, we can also extend
the arbitrary unitary control to the subspaces spanned
by {|g, n′〉 , |e, n′〉}n−1n′=0, so that we can control the entire
2n-dimensional quantum system [31].

Sublinear scheme to prepare number state. The
preparation of an arbitrary target state starting from
the vacuum is a special case of the above protocol where
we constrain only the first column of the target matrix.
To prepare a state in the {|0〉, . . . |n〉} subspace, such an
operation will require only O(n) operations instead of
the O(n2) operations discussed above. However, certain
states with a narrow distribution of photon numbers can
be prepared even more efficiently by taking advantage
of the fast experimentally-available displacement opera-
tions. For example, the preparation of the number state
|n〉 requires O (n) sequential SO (2) rotations from |0〉 us-
ing the generic scheme. In contrast, if we start from the
coherent state D̂(α) |0〉 = |α〉 with α =

√
n, whose popu-

lation distribution is centered around |n〉 with a spread of
O (
√
n), we need only O (

√
n) rounds of SO(2) rotations

to “fold” the coherent state |α〉 to the number state |n〉.
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Figure 4. The number of SNAP gates for the preparation of
|n〉 from |0〉 (with fixed lower bound of fidelity) for generic
linear scheme (black diamond line) and specialized sublinear
schemes with different target fidelities (colored lines). The
specialized schemes operate on D̂(

√
n) |0〉 by folding all pop-

ulation from the subspace {|n−∆n〉 , . . . , |n+ ∆n〉} to the
number state |n〉.

Fig. 4 compares the number of SNAP gates needed be-
tween the generic linear scheme (with O (n) operations)
and the specialized sublinear schemes (with O (

√
n) op-

erations) designed for preparation of |n〉 from |0〉, with
various target fidelities. For n & 8, it becomes advanta-
geous to use the specialized sublinear scheme instead of
the generic scheme.

Imperfections. In the limiting case of |Ωn/χ| → 0,
the SNAP gate can achieve the ideal unitary evolution
as shown Eq. (7). In practice, however, |Ωn/χ| is fi-
nite and introduces deviations from the SNAP gate (e.g.,
undesired AC Stark shift). To calibrate such devia-
tions, we simulate the full evolution of the gate from
Eq. (10) based on numerical integration of the original
time-dependent Hamiltonian [Eq. (1)], and calculate the
infidelity with respect to the target unitary, as illustrated
in Fig. 5. We use realistic parameters from the experi-
ment that implements the SNAP gate [23] (χ = 8.3MHz,
ωq = 7.6GHz, ωc = 8.2GHz). We find that the SNAP
gate is robust against such small imperfections, which
scale as O

(
|Ωn/χ|2

)
for square pulses. In principle, the

unitary deviation due to finite |Ωn/χ| can be compen-
sated using shaped or composite pulses [32]. In practice,
with numerical optimization, it is possible to compen-
sate both AC Stark shift and all higher order correc-
tions, which enables even faster operation with Ω (t) ∼ χ
[21, 22, 33].

Discussions. We now compare our SNAP-gate-based
quantum control scheme with previous protocols. The
scheme proposed by Law and Eberly [12] is based on
the JC model, HJC ∝ â|e〉〈g| + h.c., which enables
preparation of arbitrary superpositions of number states.
The scheme by Mischuck and Molmer [16] further ex-
tended the JC model from state preparation to arbi-
trary unitary operation, but it is rather complicated be-
cause any JC control pulse necessarily couples the states

Figure 5. Reprise of Fig. 2 with finite values for Ω (represented
in units of χ). The lower panel zooms in on smaller values
for Ω. It is possible to achieve fidelities better than 0.99 for
practical values of Ω = 0.05χ.

|g, n〉 and |e, n− 1〉 (for all n) simultaneously and with
varying strength g

√
n. In contrast, our scheme is based

on the dispersive qubit-oscillator coupling, Hdispersive =
−χ |e〉 〈e| n̂, which preserves the oscillator number states,
enables the SNAP gate to directly access the two selected
sublevels |g, n〉 and |e, n〉 with negligible effects to the
rest of the levels, and ultimately leads to efficient uni-
versal control of the oscillator. Another protocol for the
JC Hamiltonian is presented by Strauch in [17], however
it requires a slow adiabatic transition between coupled
and uncoupled cavity states. The proposal by Santos
[18] introduces a different model with a three-level Λ-
type ancillary system to achieve universal control, but it
is experimentally more challenging than the simple two-
level ancilla considered in our scheme.

With dispersive qubit-oscillator coupling, there are
other control protocols available. For example, in the
presence of the oscillator drive ε, we may “block” the
processes |n′ ± 1〉 → |n′〉 by driving the qubit resonantly
to the transition |g, n′〉 ↔ |e, n′〉, with Ωn′ � ε

√
n′

[34]. Similarly, by resonantly driving transitions |g, n′〉 ↔
|e, n′〉 for n′ < n and n′ > n + 1, we block all number
changing transitions, except for the transition between
{|n〉 , |n+ 1〉} that can be used for SO (2) unitary rota-
tions. This blockade scheme is relatively slow and each
elementary operation takes time τ ∼ (ε

√
n)
−1 � Ω−1 �

χ−1 due to the blockade requirements, while the SNAP-
gate-based scheme can be much faster with τ ∼ χ−1.

In conclusion, the SNAP-gate-based scheme provides
universal control of the oscillator mode with strong dis-
persive coupling to a qubit. Based on the proof of uni-
versal control, we show explicit constructions for arbi-
trary state preparation and arbitrary unitary operation
of the oscillator. We also present an efficient procedure
to prepare the number state |n〉 using only O (

√
n) op-

erations. We note that deterministic SNAP-gate-based
preparation of the |n = 1〉 photon number state has been
demonstrated using superconducting circuits [23]. The
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techniques introduced here are not restricted to oscil-
lator modes such as mechanical motions [1] and op-
tical/microwave cavities [2–4] and can be extended to
multi-level systems such as Rydberg atoms with large
angular momentum [34], as long as the dispersive cou-
pling between the qubit and oscillator/multi-level system
is strong.
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