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We demonstrate that experiments measuring the transition energies of rare-earth ions doped in
crystalline lattices are sensitive to violations of Local Lorentz Invariance and Einstein’s Equivalence
Principle. Using the crystal field of LaCls as an example, we calculate the frame-dependent energy
shifts of the transition frequencies between low-lying states of Ce®>*, Nd®*T, and Er®* dopants in
the context of the Standard Model Extension, and show that they have high sensitivity to electron

anomalies that break rotational invariance.

PACS numbers: 03.30.+p, 11.30.Er, 11.30.Cp, 32.30.Jc

Most of our day-to-day experiences are mediated by
light and charged particles, and in particular its interac-
tion with electrons. To the best of our knowledge, the
physics of a system of photons and electrons is indepen-
dent of the velocity and orientation of that system in ab-
solute space, nor is it locally dependent upon where that
system lies in a gravitational potential. These symme-
tries, respectively described as local Lorentz invariance
(LLI) and Einstein’s equivalence principle (EEP), are
fundamental to our modern understanding of the stan-
dard model and general relativity. It is possible, however,
that these symmetries are not exact at experimentally ac-
cessible energy scales, thanks to spontaneous symmetry
breaking or other physics at high energy scales [1, 2].
This possibility has driven many experimental tests of
LLI and EEP [3], and motivated the development of
phenomenological frameworks that can quantitatively de-
scribe the effect of LLI- and EEP-violation on known par-
ticles and fields. One such framework is provided by the
standard model extension (SME) [4, 5], which has been
used to analyze a wide range of experiments [6]. The
SME augments the standard model Lagrangian with all
combinations of known particles and fields that are not
invariant under Lorentz transformations, but which pre-
serve gauge invariance, energy and translational invari-
ance, and the invariance of the total action [4, 5]. These
terms are parameterized by Lorentz tensors that are col-
lectively known as LLI- and EEP-violating coefficients,
and are further subdivided into ’sectors’ that deal with
terms involving a particular particle. In this Letter, we
focus on tests of the electron-sector c,, tensor, which
modifies the inertial energy of electrons according to their
direction of motion.

Spectroscopy of neutral dysprosium atoms has already
led to one of the world’s most sensitive tests of elec-
tronic LLI and EEP [7]. More recently, a still more sen-
sitive measurement of the electron c,, coeflicients was
obtained by engineering the quantum state of a pair of
trapped Ca™ ions [8], extending precision tests of elec-
tronic LLI past the electroweak (relative to the Planck

mass) scale. Both of these experiments operate at or near
the interrogation-time-of-flight or atom (ion) shot-noise
limit. In this Letter, we consider the possibility of using
rare earth ions doped in a crystalline lattice to perform
similar measurements of the electronic c,,. Rare-earth
ion-doped crystals offer substantially larger ion-number
densities than are available in atomic gases, and interro-
gation times comparable and potentially longer than are
possible in ion traps. The relevant 4f orbitals are well
screened from one another and from the fluctuations of
external fields, yielding the sharp, stable optical tran-
sitions that rare earth ion-doped materials are known
for at low temperatures. The strong crystal field pro-
duces optical-frequency splitting of the otherwise degen-
erate free-ion |J, M) states. This splitting is far larger
than could be produced by an externally generated mag-
netic or electric field, and as a result, is very stable with
respect to external field fluctuations. These properties
make rare-earth ion-doped crystals extremely advanta-
geous for fundamental symmetry tests, complementing
recent tests focusing on the resonant modes of bulk crys-
tals [9]. Our work raises the novel prospect of using solid
state systems to test LLI with greater precision than can
be achieved by spectroscopy of free particles.

I. THEORY

In the SME, spin-independent violations of LLI for
electrons generate a linearized perturbation of the elec-
tron c,, tensor to the Dirac Hamiltonian which may be
written in natural units as [4, 5, 10, 11]

0H = —(Cooéjk + Cjk)ajpk — (Coj + Cjo)pj — copomf3, (1)

where ¢, is a symmetric, traceless, constant background
tensor, o/ = %97 and 3 = 4° are the usual Dirac ma-
trices and d;; is the Kronecker symbol. In general, one
can define a coordinate transformation which maps the
elements of c,,,, to zero, at the cost of generating new LLI-
violating terms in the photon (and other matter) Hamil-



tonians. Such terms can in turn be constrained by mod-
ern Michelson-Morley experiments [12]. Since our choice
of coordinates is arbitrary, it follows that measurements
of ¢, are equivalent to Michelson-Morley tests, as both
are only sensitive to the differences in LLI-violation in the
photon and matter sectors. At first order, the last two
terms of Eq. (1) do not contribute to shifts in the tran-
sition energies between different electronic bound states,
and may be omitted. We can therefore write Eq. (1) in
terms of the spherical components of irreducible tensor
operators as:

2
6H = —C1" = 3 (~1)10P1C). (2)

q=-2

In the spherical operator form used in this Letter, the
elements of ¢, are written as [13, 14]

O = coo + 25— Bocoo OF = 4(8ess — ¢y)
Cfl) = :I:(sz + ’iCzy) Cfg) = %(Cmm — Cyy + 2ic$y)

where doubled roman indexes indicate a sum over the
spatial components of c,,, and U is the local Newtonian
gravitational potential.

The problem of a rare-earth ion in a crystal field has
been well studied [15-17]. The total Hamiltonian of a
rare-earth ion in a crystal field may be written as H =
Hy 4V, where H; is the free ion Hamiltonian and V is
the electrostatic potential due to the crystal environment.
The states of free ions are spherically symmetric, and
designated by their total angular momentum J and its
projection M. When the ions are inserted into a crystal,
the ambient crystal field V' breaks spherical symmetry,
partially lifting the (2J + 1)-fold degeneracy of the free
ions’ energy levels [15, 16]. The crystal potential V' can
be written as

k
V=3 ) B ®)

k q=—k

where Cék) = /47 /(2k + 1)Yiq are normalized spherical
harmonics, and Y}, are spherical tensor operators of rank
k. The summation over k is restricted to even numbers
because the contribution of V' to leading order energy
shifts must come from its even-parity components, and
k < 6 due to the triangle condition for spherical harmonic
integrals (since [ = 3 for rare-earth ions with configura-
tion 4fV). The number of terms in Eq.(3) may be further
reduced using the discrete point symmetry of the crys-
tal. The Bf; coefficients, also known as the crystal field
parameters, depend on the structure of the crystal and
the electronic wave functions’ radial components, and are
determined by a least-squares fit to the experimental en-
ergy levels of the ion in the crystal. The crystal field
potential is assumed to act only on the electrons in an
open shell, i.e. 4f for rare-earth ions.

We obtain the crystal field-induced energy split-
ting from the secular determinant |[(JM|V|J'M') —

A7 0pmr| = 0 acting on the free ion states | JM). Diag-
onalization of V' separately within each J-manifold yields
the split eigenstates |1)), so that |[¢) = >, an|JM).
Thus the non-zero matrix elements of (2) are restricted
to (JM|TZ|JM'), with ¢ = M — M’, and |q| < 2.

The LLI-violating correction dwy.m = (6E, — §Ey,)/h
to the transition frequency wy,,, between each pair of lev-
els n and m of the ion in the crystal field is a linear
combination of the spatial components of the c,, tensor,
which is itself a frame-dependent quantity. This energy
shift also varies as a function of the ion’s position in an
external gravitational field, although as we will see, this
effect is smaller than the frame-dependent phenomena for
the transitions of interest. To uniquely specify the value
of ¢,,, we must also specify the inertial frame in which
it is defined. This frame is typically taken to be approxi-
mated by the rest frame of the Sun: specifically the sun-
centered celestial equatorial frame (SCCEF), denoted by
coordinates (T, X,Y, Z), while the local laboratory frame
coordinates are denoted as (t,z,y,z). For a terrestrial
laboratory, the lab-frame values of the tensor’s dominant
spatial components cﬁb depend upon the orientation of
the lab with respect to the SCCEF, and thus modulate
with characteristic frequency Q ~ 2 x 27/(23 h 56 min),
or twice every sidereal day. The value of the anomalous
tensor in the lab-frame can be related to that in the SC-
CEF via cif‘}} = A#O‘Ayﬁci(éCEF, where A ,* is the stan-
dard Lorentz boost plus rotation from the SCCEF to the
lab frame [7, 10, 18]. Thanks to the Earth’s orbital veloc-

ity, the boost A ., mixes the time and spatial components

of ci%CEF into the spatial components of cif,?. This gives

a measurement that searches for yearly modulations of
0H access to the parity-odd c%%CEF and the isotropic
55 EF components of the anomalous tensor, albeit with
a sensitivity that is suppressed by one and two factors
of the Earth’s orbital boost velocity Bg ~ 1 x 1074,
In what follows, we will focus on the laboratory-frame

values of c¢,, and the corresponding spherical operator

elements C(()O) and 052), and drop the frame-identifying

superscript.

II. RESULTS AND DISCUSSION
A. One valence electron: Ce®*t ion in LaCls;

Given the available eigenstates of the rare-earth ions in
the crystal field, we can easily calculate the perturbation
Swnm due to Eq. (2). For trivalent rare earth ions (R31)
in the LaCls lattice (see, e.g., [16], pg. 149), the crystal
field has the point symmetry Csp, and is determined by
four crystal field parameters B(’;:

v = B2 + Bl + BSCS? + BS (Y + ). (1)

The simplest rare earth ion to which Eq. (4) applies is
Ce3t, with configuration 4f'. Following the labeling and



methods of [17], the eigenstates and corresponding ener-
gies of Ce3T are presented in Table I. In the first column
of the table, labels of the states are taken from the Ref.
[17]. The eigenstates are also distinguished by their crys-
tal quantum number u.

The states of the single valence electron 4f! of Ce3*
are linear combination of Dirac spinors with mixing of
free ion states with angular momenta J = 7/2 and
J = 5/2. These levels’ LLI-violating energy shifts (2)
follow from the Wigner-Eckart theorem and the reduced

matrix element of the tensor Céz). In terms of the expan-
sion coefficients and radial integrals I(x’, k) given in the
Appendix, the states’ shifts are linear combinations of
radial integrals I(3,3) = —50.0, I(—4,—4) = —49.33,
and I(—4,3) = —49.58 in atomic units (a.u.). Here
the radial integrals can be obtained from the formu-
lae I5 and I; in the Appendix, and are taken over
Hartree-Fock (HF) wave functions. The total shift of
each state is presented in the rightmost column of Ta-
ble I. The largest relative energy shift is that between
the ground |I) state and the low-lying |IT) state, with
Swigr = (27)C§? (2.76 x 10'0Hz). A similarly large LLI-
violating energy shift is observed for the |I) to |b) tran-
sition. Details of this calculation are presented in the
Appendix.

In contrast to the case of neutral dysprosium, the
contribution of the scalar TO(O) component of the LLI-
violating perturbation in Eq. (2) to the ions’ transi-
tion energies is smaller than that of the tensor opera-
tor Tq(z) [7]. This occurs because the low-lying ion exci-
tations are largely between states with the same quan-
tum number n and total angular momentum J. In the

OB(J, 1) = =C& | T || ]

where aps are the coefficients for the wave functions pre-
sented in Tab. II. Inspection of Tab. II reveals that the
maximal change in the ions’ transition frequencies due to
LLI-violation is dwy. = 27C? (5.6 x 10'Hz) for Nd3+
and dwe,e = 27TCéQ) (11 x 10'5Hz) for Er**. As in the case

of Ce®t, the scalar shift proportional to C(()O) is expected
to be comparatively negligible.

A dedicated experiment measuring the THz-scale en-

ergy splitting between the |c) and |e) states of Er3T at

the level of 1 mHz would be sensitive to CéQ) as small

as 10729, To estimate the reach of existing experimental
measurements of Er3t transitions, we have also consid-
ered optical transitions in Er®*:Y,SiO5 [20]. Because
of the lower symmetry CS, of the crystal Y5SiOj field,
each J manifold is split into J + 1/2 doubly degener-
ate states [21]. We focus specifically on the Z; — Y
transition between the lowest energy levels in the ground

3

non-relativistic limit, the scalar operator TO(O) is propor-
tional to the sum of the bound electrons’ kinetic energy
>, p?/2m. Using the virial theorem in a Coulomb po-
tential, the electrons’ binding energy is approximately
equal to their kinetic energy. The LLI-violating change
in the transition energy between bound states with the
same n and different J is therefore expected to scale as
Swnm >~ Céo) (6 x 10*Hz). This, combined with the com-
paratively small range of variation in U/c? accessible to a
terrestrial laboratory (~ 10719 in the Sun’s potential over
a year), implies this ion could serve as a stable reference
standard to compare against a more sensitive transition
(such as those offered by dysprosium [7]) in a null-redshift
test of EEP.

B. Several valence electrons: Nd** and Er®* ions
in LaCls.

We can perform a similar calculation for rare earth
ions with several valence electrons in LaCls. Using the
energy levels and approximate wave functions for Nd3+
and Er** available in the literature [19], we find that
these ions have respective ground state configurations
(4f3, *Ig/5) and (4f'', *Iy5/2). In this case, the rele-
vant electronic wave functions are linear combinations of
Slater determinants of HF orbitals. As before, the fine
structure manifolds of these ions are split by a crystal
field with point symmetry Cs;, and as before, the con-
tribution of the C(()O) anomaly to the observed transition

frequencies is much smaller than that of Céz). Repeating
the analysis of part II A, we may write

33y ad M2 —J(J+1)

VRI+3)(J+1)2J+1)J(2J — 1)

4115/2 and excited 4113/2 manifolds [20]. Using Eq. (5),
the LLI-violating perturbation proportional from Céz) to
this transition’s energy can be obtained from the reduced
matrix elements: (uJ || T || pJ) = —67.097 a.u. for
J = 15/2 and —56.188 a.u. for J = 13/2. As for the
case of the lowest level of Er3*:LaCl;, we have taken
the weighted sum Y, a%,M? = 10 for both levels Z;
and Y7 (see Table II). This yields the frequency shift

dwz,y, = C(()Q)(l.O?) x 1016Hz). Though not considered

here, we note the Cfg component of the LLI-violating
tensor might also contribute to dwz, v, .

C. Magnetic field effect

Stray magnetic fields can produce major systematic
errors in Lorentz symmetry tests. We have therefore es-



TABLE 1. Experimental crystal-field splittings, calculated wave functions, and LLI-violating energy shifts 6 E for Ce*T (4f')
ions in LaCls. Data from reference [17]. B2 =129, Bt = —329, BS = —997, and BS = 403 in cm ™! are used in calculating
Eq. (4). Note that the eigenstates are doubly degenerate in non-magnetic crystals.

Config. State p Wave functions [1,,) E (em™') §E (032) x 10%cm™1)
"Fr2  |d)  £3/2 0.99924]7/2, 73/2) + 0.03905]5/2, 73/2) 239905 1.54

lo)  £1/2  £0.82174|7/2, £7/2) £ 0.56692|7/2, ¥5/2) + 0.05785|5/2, F5/2) 2282.6 2,52

) £5/2  F0.99446|7/2, F1/2) + 0.10511[5/2, F1/2) 2208.6 2.47

la)  £1/2  £0.56659|7/2, £7/2) F 0.82356|7/2, ¥5/2) + 0.02709|5/2, F5/2) 2166.0 -1.56
"Fa2  |IIT) £3/2 0.03905]7/2, ¥3/2) T 0.999245/2, 73/2) 110.0 0.62

III)  £5/2 £0.10511|7/2, F1/2) + 0.99446|5/2, F1/2) 37.5 2.61

1) £1/2 F0.06298|7/2, £7/2) F 0.01072|7/2, ¥5/2) + 0.99796/5/2, F5/2) 0.0 -3.16

TABLE II. Experimental crystal-field splittings, calculated wave functions, and LLI-violating energy shifts 6 F for the ground
levels Nd*" (4%, *Iy/») and Er®" (4f"", *I5,2) in LaCls. Data from Ref. [19], in terms of crystal quantum numbers x from
Ref. [21].

Species State 1 Wave functions |¢n) E (cm™!) 0FE (C(()Q) x 10%cm™1)

Nd>* le) F3/2 0.558] +9/2) — 0.830| F 3/2) 249.4 0.05
|d) +5/2 0.936] £5/2) — 0.351] F 7/2) 244.4 0.16
e ¥3/2 0.830] £ 9/2) + 0.558| F 3/2) 123.2 -0.83
|b) +1/2 | +1/2) 115.4 1.03
|a) +5/2 0.351] & 5/2) + 0.936| F 7/2) 0.0 -0.42

Er®t [h) +1/2 0.905| & 13/2) + 0.356] &= 1/2) + 0.232] F 11/2) 229.31 1.31
lg) F1/2 0.820| &= 11/2) + 0.429| F 1/2) — 0.379| F 13/2) 181.04 0.45
¥ +3/2 0.116] 4 15/2) + 0.764| & 3/2) + 0.635| F 9/2) 141.61 -0.96
e) ¥5/2 0.662| £ 7/2) + 0.750| F 5/2) 113.7 -1.08
|d) +1/2 0.192| 4 13/2) — 0.830| & 1/2) + 0.523| ¥ 11/2) 96.52 -0.26
) +3/2 0.925 + 15/2) + 0.150] £ 3/2) — 0.349| F 9/2) 64.27 2.58
|b) +3/2 0.362| & 15/2) — 0.628| & 3/2) + 0.689| F 9/2) 37.91 -0.29
) ¥5/2 0.750| & 7/2) — 0.662| F 5/2) 0.0 -1.02

timated the effects of magnetic fields on such tests which
use Ce*t and Nd?t in LaCls crystals. Detailed stud-
ies of the Zeeman effect in Ce3*+ ions may be found in
reference [22], wherein the first order Zeeman splitting
of doubly degenerate states may be found. Though the
ground state degeneracy is lifted by the 2.1up (where
pup = 0.467cm~!/T is the Bohr magneton), the mag-
netic interaction between states in different doublets is
restricted due to the crystal symmetry and the selection
rules for M1 transitions. For Ce3*, the quadratic shift
has been estimated using the dominant components of
the ground state |I) and the low lying state |IIT) at 110
ecm ™! (see Tab. I). Since the magnetic quantum numbers
differ for these states, transitions are only possible by way
of the x and y components of the magnetic moment op-
erator. Contributions from other levels corresponding to
the 2F, /2 term are suppressed due to the larger energy
splittings. Thus we estimate the second order shift to
be 0.918/(110cm™!)u3. This corresponds to a quadratic
shift of 5.46 x 107 Hz/T? for the ground state. The same
calculation can be done for the |II) state, for which we
obtain 13.2 x 107 Hz/T2.

The Nd37 ion has three valence electrons in the f shell,
and so we limit ourselves to a rough estimate, which may
also be applied to other rare-earth ions. The total an-

gular momentum J = 9/2 is bigger than the total spin
S = 3/2, so the magnetic moment of the ion is domi-
nated by the angular momentum operator J. Hence the
matrix elements for transitions within a given multiplet
are easily obtained. As a result, the quadratic shifts are
expected to be ~ 30 x 107 Hz/T? for the ground level |a)
and ~ 18 x 10% Hz/T? for the first excited doublet |b)
(see Tab. II).

Using these estimates, we may determine the extent
to which magnetic fields must be controlled to suppress
their effects to below that of an LLI-violating 052) with
order 10729, For Ce®* ions, the magnetic field must be
stabilized to be below 4.7 x 1076 T, or 47 mG, while
for Nd3* ions, a field of no more than 15 mG should be
sufficient. We further note that larger magnetic field fluc-
tuations, and larger DC fields, are in principle tolerable
for a test of LLI, so long as they fluctuate on timescales
that are sufficiently different from the modulation peri-
ods of the laboratory’s orientation and boost relative to
a fixed inertial frame (e.g. as the SCCEF approximates).



IIT. CONCLUSION

We have demonstrated that solid state systems, and
particularly the ground state spectrum of rare earth
ions doped in a crystalline host can be used to per-
form sensitive tests of LLI. We have taken advantage
of existing work on the spectrum of Ce3T [17], Nd3*,
and Er3* [23, 24] to perform an explicit calculation of
these ions’ energy shifts in response to LLI-violation
when doped in LaCls. The energy levels and sensitiv-
ities of Ce3t, Nd3*, and Er3t ions are expected to be
similar when doped in different crystalline media. Er3*
is a particularly interesting case, as the optical coher-
ence of the J = 15/2 — J = 13/2 transition is par-
ticularly long-lived at 4.4 ms for 0.001% doping concen-
tration Er3*:Y,SiO5 [25]. An experiment that is sen-
sitive to a 1 mHz orientation-dependent modulation of
the Z; — Y7 optical transition in Er3T:Y,SiOs could
measure spatial components of the electronic ¢, ten-
sor as small as 107'?, improving upon existing limits by
an order of magnitude [7, 8. An experiment measuring
orientation-dependent modulations of the THz-scale en-
ergy difference between the |c) and |e) states (see Tab. II)
at the mHz would be more sensitive still, probing the
LLI-violating c,, tensor at the level of 10729, We note
that dynamic decoupling techniques [26], which switch
between states with quantum numbers of equal magni-
tude and opposite sign do not suppress the LLI-violating
signal proportional to the quadrupole component of 052)
of ¢,,. Other rare earth ion-doped materials may also
prove to be useful for testing this and other aspects of
LLI, and are a promising area for future work.
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APPENDIX

In what follows, we restrict the crystal quantum num-
ber to —u because both degenerate states get the same
shift from the LLI-violating perturbation. The eigen-
states |I), |a), and |c) are presented in Ref. [17]:

) = &17/2,=7/2) +n[7/2,5/2) + ([5/2,5/2), (6)

with expansion coefficients &, 1 and {. Similarly, the
remaining eigenstates |IT), |ITT), |b), and |d) are:

|"/]—H> :§|7/27m>+C|5/27m>7 (7)

where m = 1/2 or 3/2. These basis states are approxi-
mated by the relativistic, four-component spinor Hartree-
Fock (HF) orbitals of the free Ce3* ion.

1 fan()Qm(60,9)
wnnm(r) - (ZOégnn(T)QKm(o’(b)) ’ (8)

r
where the non-relativistic two-component spinor is de-

fined by
/LY 12(6,0)
\/ %M,mﬂ/z(&@

and k = F(j 4+ 1/2) (for j =1 +1/2) is the unified quan-
tum number denoting angular momentum and parity.
For transitions between states with the same quantum
number n and total angular momentum .J, the main con-
tribution of the LLI-violating perturbation comes from

Qnm(ea ¢) =

the tensor Tq(2) operator. Its matrix elements may be
written as

. )
2 i’ —m/ J 2 J
(n’n/m’|Tq( )|mim> =(-1) (—m’ ‘ m>

< (& | CP | R)I(K' 5),  (10)

where I(k/, k) represents a radial integral [27]. The re-
duced matrix element of the tensor C(gQ) is

g1 — ik
WIew =T ( 1 15) an
2 2

where [77,7] = (25’ + 1)(2j + 1). The energy shifts due
to LLI violation can be calculated using equations (10),
and (11). In terms of the expansion coefficients and radial
integrals I(x/, k), the shifts of the states |I), |a), and |c)
in Eq. (6) are
C(Q)
0B = = (762 4+ *)I(—4, —4) +
+6¢21(3,3) 4 2V6¢nI(—4, 3)). (12)

Two other states |IT) and |b) have the shifts

s

0F = 51

(GE1(~4, ~4) + 2¢*1(3,3) -

eram) o3

with m = 1/2 in Eq. (7), while the states |II]) and |d)
have the energy shifts of the levels

c? 6
OE = — =5 (3621(—4,—4) + 5<2I(3, 3) —

21
6v2
——=C&I(—4,3 14
N (—4,3))  (14)
Here the radial integrals can be obtained from the for-
mulae I5 and I; below, and are taken over HF wave func-
tions.



The radial integrals included in Eq. (12,13,14) are from
Ref. [7], and are summarized in this Appendix for con-
venience. According to the quantum numbers ' and k,
the radial integrals take one of the following forms:

_ * O fnr Ognr

L = cah/o dr((2m - 1)gnww + 2k + ?))fn/,,i,W
26— 1)(k+1 26+ 3)k

_¥gn/n’fnn - %fﬂ/n’an)

for ¥ = -k — 1,

a nkKk
+ (2“ + 1)fn’ﬁ’ (gr

- O fnx
I, = cah/o dr((2m — 3)gn'w o
(26 — 3)k
T

+

26+ 1)(k—1
gn’n’fnn""%)()

fn’n’gnﬁ>

for ¥ = -k +1,

o nK - 1
Is = 4ca71/ dr <fn/,{/ 99 + H—fn/,{/gm{>
0 or

’
for ' =Kk —2
b

e 0 nK 1
Iy = —4cah/ dr (gn/nlf— _ igwmh»:)
0 or r

for K = k + 2, and

Is = —2@0[71/ dr (gn/,{/ 8fm~e 8971/@
0

or

or

K K
+_gn’n’fnﬁ + _fn’ﬁ’gnn>
T T

for K = k. In the nonrelativistic limit the matrix ele-
ment (¢|calp¥|¢) becomes (¢|p’p*/m|¢). This changes
the radial integrals in Eq. (9). Only the radial integrals
differ between the relativistic and the nonrelativistic lim-
its, while the angular parts of the matrix elements are the
same. In the non-relativistic limit, I; and I5 reduce to

> 8fn’ﬁ’ afnﬁ fi(’i + 1)
32
hi=h /0 dr( ar  Or + r2

fn’n’fnn)
I> and I3 become

o Ofnin Ofnw 2k—1 O fnr
I, =h? d - et
2 /0 T( or Or r / or

_@fn/ﬁ/fnn)

and I, takes the form of

> 8fn’n’ afnﬁ 2k +3 afnﬁ
= 2 s
Iy =h /0 dr( or Or + r Fun or
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