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We demonstrate that experiments measuring the transition energies of rare-earth ions doped in
crystalline lattices are sensitive to violations of Local Lorentz Invariance and Einstein’s Equivalence
Principle. Using the crystal field of LaCl3 as an example, we calculate the frame-dependent energy
shifts of the transition frequencies between low-lying states of Ce3+, Nd3+, and Er3+ dopants in
the context of the Standard Model Extension, and show that they have high sensitivity to electron
anomalies that break rotational invariance.
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Most of our day-to-day experiences are mediated by
light and charged particles, and in particular its interac-
tion with electrons. To the best of our knowledge, the
physics of a system of photons and electrons is indepen-
dent of the velocity and orientation of that system in ab-
solute space, nor is it locally dependent upon where that
system lies in a gravitational potential. These symme-
tries, respectively described as local Lorentz invariance
(LLI) and Einstein’s equivalence principle (EEP), are
fundamental to our modern understanding of the stan-
dard model and general relativity. It is possible, however,
that these symmetries are not exact at experimentally ac-
cessible energy scales, thanks to spontaneous symmetry
breaking or other physics at high energy scales [1, 2].
This possibility has driven many experimental tests of
LLI and EEP [3], and motivated the development of
phenomenological frameworks that can quantitatively de-
scribe the effect of LLI- and EEP-violation on known par-
ticles and fields. One such framework is provided by the
standard model extension (SME) [4, 5], which has been
used to analyze a wide range of experiments [6]. The
SME augments the standard model Lagrangian with all
combinations of known particles and fields that are not
invariant under Lorentz transformations, but which pre-
serve gauge invariance, energy and translational invari-
ance, and the invariance of the total action [4, 5]. These
terms are parameterized by Lorentz tensors that are col-
lectively known as LLI- and EEP-violating coefficients,
and are further subdivided into ’sectors’ that deal with
terms involving a particular particle. In this Letter, we
focus on tests of the electron-sector cµν tensor, which
modifies the inertial energy of electrons according to their
direction of motion.

Spectroscopy of neutral dysprosium atoms has already
led to one of the world’s most sensitive tests of elec-
tronic LLI and EEP [7]. More recently, a still more sen-
sitive measurement of the electron cµν coefficients was
obtained by engineering the quantum state of a pair of
trapped Ca+ ions [8], extending precision tests of elec-
tronic LLI past the electroweak (relative to the Planck

mass) scale. Both of these experiments operate at or near
the interrogation-time-of-flight or atom (ion) shot-noise
limit. In this Letter, we consider the possibility of using
rare earth ions doped in a crystalline lattice to perform
similar measurements of the electronic cµν . Rare-earth
ion-doped crystals offer substantially larger ion-number
densities than are available in atomic gases, and interro-
gation times comparable and potentially longer than are
possible in ion traps. The relevant 4f orbitals are well
screened from one another and from the fluctuations of
external fields, yielding the sharp, stable optical tran-
sitions that rare earth ion-doped materials are known
for at low temperatures. The strong crystal field pro-
duces optical-frequency splitting of the otherwise degen-
erate free-ion |J,M〉 states. This splitting is far larger
than could be produced by an externally generated mag-
netic or electric field, and as a result, is very stable with
respect to external field fluctuations. These properties
make rare-earth ion-doped crystals extremely advanta-
geous for fundamental symmetry tests, complementing
recent tests focusing on the resonant modes of bulk crys-
tals [9]. Our work raises the novel prospect of using solid
state systems to test LLI with greater precision than can
be achieved by spectroscopy of free particles.

I. THEORY

In the SME, spin-independent violations of LLI for
electrons generate a linearized perturbation of the elec-
tron cµν tensor to the Dirac Hamiltonian which may be
written in natural units as [4, 5, 10, 11]

δH = −(c00δjk + cjk)α
jpk − (c0j + cj0)p

j − c00mβ, (1)

where cµν is a symmetric, traceless, constant background
tensor, αj = γ0γj and β = γ0 are the usual Dirac ma-
trices and δik is the Kronecker symbol. In general, one
can define a coordinate transformation which maps the
elements of cµν to zero, at the cost of generating new LLI-
violating terms in the photon (and other matter) Hamil-
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tonians. Such terms can in turn be constrained by mod-
ern Michelson-Morley experiments [12]. Since our choice
of coordinates is arbitrary, it follows that measurements
of cµν are equivalent to Michelson-Morley tests, as both
are only sensitive to the differences in LLI-violation in the
photon and matter sectors. At first order, the last two
terms of Eq. (1) do not contribute to shifts in the tran-
sition energies between different electronic bound states,
and may be omitted. We can therefore write Eq. (1) in
terms of the spherical components of irreducible tensor
operators as:

δH = −C(0)
0 T

(0)
0 −

2
∑

q=−2

(−1)qC(2)
q T

(2)
−q . (2)

In the spherical operator form used in this Letter, the
elements of cµν are written as [13, 14]

C
(0)
0 = c00 +

2
3cjj − 2U

3c2 c00 C
(2)
0 = 1

6 (3czz − cjj)

C
(2)
±1 = ±(czx ± iczy) C

(2)
±2 = 1

2 (cxx − cyy ± 2icxy)

where doubled roman indexes indicate a sum over the
spatial components of cµν , and U is the local Newtonian
gravitational potential.
The problem of a rare-earth ion in a crystal field has

been well studied [15–17]. The total Hamiltonian of a
rare-earth ion in a crystal field may be written as H =
Hf + V , where Hf is the free ion Hamiltonian and V is
the electrostatic potential due to the crystal environment.
The states of free ions are spherically symmetric, and
designated by their total angular momentum J and its
projection M . When the ions are inserted into a crystal,
the ambient crystal field V breaks spherical symmetry,
partially lifting the (2J + 1)-fold degeneracy of the free
ions’ energy levels [15, 16]. The crystal potential V can
be written as

V =
∑

k

k
∑

q=−k

Bk
q C(k)

q , (3)

where C(k)
q =

√

4π/(2k + 1)Ykq are normalized spherical
harmonics, and Ykq are spherical tensor operators of rank
k. The summation over k is restricted to even numbers
because the contribution of V to leading order energy
shifts must come from its even-parity components, and
k ≤ 6 due to the triangle condition for spherical harmonic
integrals (since l = 3 for rare-earth ions with configura-
tion 4fN). The number of terms in Eq.(3) may be further
reduced using the discrete point symmetry of the crys-
tal. The Bk

q coefficients, also known as the crystal field
parameters, depend on the structure of the crystal and
the electronic wave functions’ radial components, and are
determined by a least-squares fit to the experimental en-
ergy levels of the ion in the crystal. The crystal field
potential is assumed to act only on the electrons in an
open shell, i.e. 4fN for rare-earth ions.
We obtain the crystal field-induced energy split-

ting from the secular determinant |〈JM |V |J ′M ′〉 −

λδJJ′δMM ′ | = 0 acting on the free ion states |JM〉. Diag-
onalization of V separately within each J-manifold yields
the split eigenstates |ψ〉, so that |ψ〉 =

∑

M aM |JM〉.
Thus the non-zero matrix elements of (2) are restricted
to 〈JM |T 2

q |JM ′〉, with q =M −M ′, and |q| ≤ 2.
The LLI-violating correction δωnm = (δEn − δEm)/h̄

to the transition frequency ωnm between each pair of lev-
els n and m of the ion in the crystal field is a linear
combination of the spatial components of the cµν tensor,
which is itself a frame-dependent quantity. This energy
shift also varies as a function of the ion’s position in an
external gravitational field, although as we will see, this
effect is smaller than the frame-dependent phenomena for
the transitions of interest. To uniquely specify the value
of cµν , we must also specify the inertial frame in which
it is defined. This frame is typically taken to be approxi-
mated by the rest frame of the Sun: specifically the sun-
centered celestial equatorial frame (SCCEF), denoted by
coordinates (T,X, Y, Z), while the local laboratory frame
coordinates are denoted as (t, x, y, z). For a terrestrial
laboratory, the lab-frame values of the tensor’s dominant
spatial components clabjk depend upon the orientation of
the lab with respect to the SCCEF, and thus modulate
with characteristic frequency Ω ≃ 2× 2π/(23 h 56 min),
or twice every sidereal day. The value of the anomalous
tensor in the lab-frame can be related to that in the SC-
CEF via clabµν = Λ α

µ Λ β
ν cSCCEF

αβ , where Λ α
µ is the stan-

dard Lorentz boost plus rotation from the SCCEF to the
lab frame [7, 10, 18]. Thanks to the Earth’s orbital veloc-
ity, the boost Λ α

µ mixes the time and spatial components

of cSCCEF
αβ into the spatial components of clabµν . This gives

a measurement that searches for yearly modulations of
δH access to the parity-odd cSCCEF

TJ and the isotropic
cSCCEF
TT components of the anomalous tensor, albeit with
a sensitivity that is suppressed by one and two factors
of the Earth’s orbital boost velocity β⊕ ≃ 1 × 10−4.
In what follows, we will focus on the laboratory-frame
values of cµν and the corresponding spherical operator

elements C
(0)
0 and C

(2)
q , and drop the frame-identifying

superscript.

II. RESULTS AND DISCUSSION

A. One valence electron: Ce3+ ion in LaCl3

Given the available eigenstates of the rare-earth ions in
the crystal field, we can easily calculate the perturbation
δωnm due to Eq. (2). For trivalent rare earth ions (R3+)
in the LaCl3 lattice (see, e.g., [16], pg. 149), the crystal
field has the point symmetry C3h, and is determined by
four crystal field parameters Bk

q :

V = B2
0C

(2)
0 +B4

0C
(4)
0 +B6

0C
(6)
0 +B6

6(C
(6)
6 + C(6)

−6). (4)

The simplest rare earth ion to which Eq. (4) applies is
Ce3+, with configuration 4f1. Following the labeling and
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methods of [17], the eigenstates and corresponding ener-
gies of Ce3+ are presented in Table I. In the first column
of the table, labels of the states are taken from the Ref.
[17]. The eigenstates are also distinguished by their crys-
tal quantum number µ.
The states of the single valence electron 4f1 of Ce3+

are linear combination of Dirac spinors with mixing of
free ion states with angular momenta J = 7/2 and
J = 5/2. These levels’ LLI-violating energy shifts (2)
follow from the Wigner-Eckart theorem and the reduced

matrix element of the tensor C(2)
q . In terms of the expan-

sion coefficients and radial integrals I(κ′, κ) given in the
Appendix, the states’ shifts are linear combinations of
radial integrals I(3, 3) = −50.0, I(−4,−4) = −49.33,
and I(−4, 3) = −49.58 in atomic units (a.u.). Here
the radial integrals can be obtained from the formu-
lae I5 and I1 in the Appendix, and are taken over
Hartree-Fock (HF) wave functions. The total shift of
each state is presented in the rightmost column of Ta-
ble I. The largest relative energy shift is that between
the ground |I〉 state and the low-lying |II〉 state, with

δωI,II = (2π)C
(2)
0 (2.76× 1016Hz). A similarly large LLI-

violating energy shift is observed for the |I〉 to |b〉 tran-
sition. Details of this calculation are presented in the
Appendix.
In contrast to the case of neutral dysprosium, the

contribution of the scalar T
(0)
0 component of the LLI-

violating perturbation in Eq. (2) to the ions’ transi-
tion energies is smaller than that of the tensor opera-

tor T
(2)
q [7]. This occurs because the low-lying ion exci-

tations are largely between states with the same quan-
tum number n and total angular momentum J . In the

non-relativistic limit, the scalar operator T
(0)
0 is propor-

tional to the sum of the bound electrons’ kinetic energy
∑

i p
2
i /2m. Using the virial theorem in a Coulomb po-

tential, the electrons’ binding energy is approximately
equal to their kinetic energy. The LLI-violating change
in the transition energy between bound states with the
same n and different J is therefore expected to scale as

δωnm ≃ C
(0)
0 (6×1013Hz). This, combined with the com-

paratively small range of variation in U/c2 accessible to a
terrestrial laboratory (∼ 10−10 in the Sun’s potential over
a year), implies this ion could serve as a stable reference
standard to compare against a more sensitive transition
(such as those offered by dysprosium [7]) in a null-redshift
test of EEP.

B. Several valence electrons: Nd3+ and Er3+ ions

in LaCl3.

We can perform a similar calculation for rare earth
ions with several valence electrons in LaCl3. Using the
energy levels and approximate wave functions for Nd3+

and Er3+ available in the literature [19], we find that
these ions have respective ground state configurations
(4f3, 4I9/2) and (4f11, 4I15/2). In this case, the rele-
vant electronic wave functions are linear combinations of
Slater determinants of HF orbitals. As before, the fine
structure manifolds of these ions are split by a crystal
field with point symmetry C3h, and as before, the con-

tribution of the C
(0)
0 anomaly to the observed transition

frequencies is much smaller than that of C
(2)
0 . Repeating

the analysis of part II A, we may write

δE(J, µ) = −C(2)
0 〈µJ ‖ T (2) ‖ µJ〉 3

∑

M a2MM
2 − J(J + 1)

√

(2J + 3)(J + 1)(2J + 1)J(2J − 1)
(5)

where aM are the coefficients for the wave functions pre-
sented in Tab. II. Inspection of Tab. II reveals that the
maximal change in the ions’ transition frequencies due to

LLI-violation is δωb,c = 2πC
(2)
0 (5.6 × 1016Hz) for Nd3+

and δωc,e = 2πC
(2)
0 (11×1016Hz) for Er3+. As in the case

of Ce3+, the scalar shift proportional to C
(0)
0 is expected

to be comparatively negligible.

A dedicated experiment measuring the THz-scale en-
ergy splitting between the |c〉 and |e〉 states of Er3+ at

the level of 1 mHz would be sensitive to C
(2)
0 as small

as 10−20. To estimate the reach of existing experimental
measurements of Er3+ transitions, we have also consid-
ered optical transitions in Er3+:Y2SiO5 [20]. Because
of the lower symmetry C6

2h of the crystal Y2SiO5 field,
each J manifold is split into J + 1/2 doubly degener-
ate states [21]. We focus specifically on the Z1 → Y1
transition between the lowest energy levels in the ground

4I15/2 and excited 4I13/2 manifolds [20]. Using Eq. (5),

the LLI-violating perturbation proportional from C
(2)
0 to

this transition’s energy can be obtained from the reduced
matrix elements: 〈µJ ‖ T (2) ‖ µJ〉 = −67.097 a.u. for
J = 15/2 and −56.188 a.u. for J = 13/2. As for the
case of the lowest level of Er3+:LaCl3, we have taken
the weighted sum

∑

M a2MM
2 ≈ 10 for both levels Z1

and Y1 (see Table II). This yields the frequency shift

δωZ1Y1
= C

(2)
0 (1.03 × 1016Hz). Though not considered

here, we note the C
(2)
±2 component of the LLI-violating

tensor might also contribute to δωZ1Y1
.

C. Magnetic field effect

Stray magnetic fields can produce major systematic
errors in Lorentz symmetry tests. We have therefore es-
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TABLE I. Experimental crystal-field splittings, calculated wave functions, and LLI-violating energy shifts δE for Ce3+ (4f1)
ions in LaCl3. Data from reference [17]. B2

0 = 129, B4
0 = −329, B6

0 = −997, and B6
6 = 403 in cm−1 are used in calculating

Eq. (4). Note that the eigenstates are doubly degenerate in non-magnetic crystals.

Config. State µ Wave functions |ψµ〉 E (cm−1) δE (C
(2)
0 × 106cm−1)

2F7/2 |d〉 ±3/2 0.99924|7/2,∓3/2〉 ± 0.03905|5/2,∓3/2〉 2399.5 1.54
|c〉 ±1/2 ±0.82174|7/2,±7/2〉 ± 0.56692|7/2,∓5/2〉 + 0.05785|5/2,∓5/2〉 2282.6 -2.52
|b〉 ±5/2 ∓0.99446|7/2,∓1/2〉 + 0.10511|5/2,∓1/2〉 2208.6 2.47
|a〉 ±1/2 ±0.56659|7/2,±7/2〉 ∓ 0.82356|7/2,∓5/2〉 + 0.02709|5/2,∓5/2〉 2166.0 -1.56

2F5/2 |III〉 ±3/2 0.03905|7/2,∓3/2〉 ∓ 0.99924|5/2,∓3/2〉 110.0 0.62
|II〉 ±5/2 ±0.10511|7/2,∓1/2〉 + 0.99446|5/2,∓1/2〉 37.5 2.61
|I〉 ±1/2 ∓0.06298|7/2,±7/2〉 ∓ 0.01072|7/2,∓5/2〉 + 0.99796|5/2,∓5/2〉 0.0 -3.16

TABLE II. Experimental crystal-field splittings, calculated wave functions, and LLI-violating energy shifts δE for the ground
levels Nd3+ (4f3, 4I9/2) and Er3+ (4f11, 4I15/2) in LaCl3. Data from Ref. [19], in terms of crystal quantum numbers µ from
Ref. [21].

Species State µ Wave functions |ψn〉 E (cm−1) δE (C
(2)
0 × 106cm−1)

Nd3+ |e〉 ∓3/2 0.558| ± 9/2〉 − 0.830| ∓ 3/2〉 249.4 0.05
|d〉 ±5/2 0.936| ± 5/2〉 − 0.351| ∓ 7/2〉 244.4 0.16
|c〉 ∓3/2 0.830| ± 9/2〉 + 0.558| ∓ 3/2〉 123.2 -0.83
|b〉 ±1/2 | ± 1/2〉 115.4 1.03
|a〉 ±5/2 0.351| ± 5/2〉 + 0.936| ∓ 7/2〉 0.0 -0.42

Er3+ |h〉 ±1/2 0.905| ± 13/2〉 + 0.356| ± 1/2〉 + 0.232| ∓ 11/2〉 229.31 1.31
|g〉 ∓1/2 0.820| ± 11/2〉 + 0.429| ∓ 1/2〉 − 0.379| ∓ 13/2〉 181.04 0.45
|f〉 ±3/2 0.116| ± 15/2〉 + 0.764| ± 3/2〉 + 0.635| ∓ 9/2〉 141.61 -0.96
|e〉 ∓5/2 0.662| ± 7/2〉 + 0.750| ∓ 5/2〉 113.7 -1.08
|d〉 ±1/2 0.192| ± 13/2〉 − 0.830| ± 1/2〉 + 0.523| ∓ 11/2〉 96.52 -0.26
|c〉 ±3/2 0.925 ± 15/2〉 + 0.150| ± 3/2〉 − 0.349| ∓ 9/2〉 64.27 2.58
|b〉 ±3/2 0.362| ± 15/2〉 − 0.628| ± 3/2〉 + 0.689| ∓ 9/2〉 37.91 -0.29
|a〉 ∓5/2 0.750| ± 7/2〉 − 0.662| ∓ 5/2〉 0.0 -1.02

timated the effects of magnetic fields on such tests which
use Ce3+ and Nd3+ in LaCl3 crystals. Detailed stud-
ies of the Zeeman effect in Ce3+ ions may be found in
reference [22], wherein the first order Zeeman splitting
of doubly degenerate states may be found. Though the
ground state degeneracy is lifted by the 2.1µB (where
µB = 0.467cm−1/T is the Bohr magneton), the mag-
netic interaction between states in different doublets is
restricted due to the crystal symmetry and the selection
rules for M1 transitions. For Ce3+, the quadratic shift
has been estimated using the dominant components of
the ground state |I〉 and the low lying state |III〉 at 110
cm−1 (see Tab. I). Since the magnetic quantum numbers
differ for these states, transitions are only possible by way
of the x and y components of the magnetic moment op-
erator. Contributions from other levels corresponding to
the 2F7/2 term are suppressed due to the larger energy
splittings. Thus we estimate the second order shift to
be 0.918/(110cm−1)µ2

B. This corresponds to a quadratic
shift of 5.46× 107 Hz/T2 for the ground state. The same
calculation can be done for the |II〉 state, for which we
obtain 13.2× 107 Hz/T2.

The Nd3+ ion has three valence electrons in the f shell,
and so we limit ourselves to a rough estimate, which may
also be applied to other rare-earth ions. The total an-

gular momentum J = 9/2 is bigger than the total spin
S = 3/2, so the magnetic moment of the ion is domi-
nated by the angular momentum operator J. Hence the
matrix elements for transitions within a given multiplet
are easily obtained. As a result, the quadratic shifts are
expected to be ∼ 30× 107 Hz/T2 for the ground level |a〉
and ∼ 18 × 108 Hz/T2 for the first excited doublet |b〉
(see Tab. II).

Using these estimates, we may determine the extent
to which magnetic fields must be controlled to suppress

their effects to below that of an LLI-violating C
(2)
0 with

order 10−20. For Ce3+ ions, the magnetic field must be
stabilized to be below 4.7 × 10−6 T, or 47 mG, while
for Nd3+ ions, a field of no more than 15 mG should be
sufficient. We further note that larger magnetic field fluc-
tuations, and larger DC fields, are in principle tolerable
for a test of LLI, so long as they fluctuate on timescales
that are sufficiently different from the modulation peri-
ods of the laboratory’s orientation and boost relative to
a fixed inertial frame (e.g. as the SCCEF approximates).
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III. CONCLUSION

We have demonstrated that solid state systems, and
particularly the ground state spectrum of rare earth
ions doped in a crystalline host can be used to per-
form sensitive tests of LLI. We have taken advantage
of existing work on the spectrum of Ce3+ [17], Nd3+,
and Er3+ [23, 24] to perform an explicit calculation of
these ions’ energy shifts in response to LLI-violation
when doped in LaCl3. The energy levels and sensitiv-
ities of Ce3+, Nd3+, and Er3+ ions are expected to be
similar when doped in different crystalline media. Er3+

is a particularly interesting case, as the optical coher-
ence of the J = 15/2 → J = 13/2 transition is par-
ticularly long-lived at 4.4 ms for 0.001% doping concen-
tration Er3+:Y2SiO5 [25]. An experiment that is sen-
sitive to a 1 mHz orientation-dependent modulation of
the Z1 → Y1 optical transition in Er3+:Y2SiO5 could
measure spatial components of the electronic cµν ten-
sor as small as 10−19, improving upon existing limits by
an order of magnitude [7, 8]. An experiment measuring
orientation-dependent modulations of the THz-scale en-
ergy difference between the |c〉 and |e〉 states (see Tab. II)
at the mHz would be more sensitive still, probing the
LLI-violating cµν tensor at the level of 10−20. We note
that dynamic decoupling techniques [26], which switch
between states with quantum numbers of equal magni-
tude and opposite sign do not suppress the LLI-violating

signal proportional to the quadrupole component of C
(2)
0

of cµν . Other rare earth ion-doped materials may also
prove to be useful for testing this and other aspects of
LLI, and are a promising area for future work.
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APPENDIX

In what follows, we restrict the crystal quantum num-
ber to −µ because both degenerate states get the same
shift from the LLI-violating perturbation. The eigen-
states |I〉, |a〉, and |c〉 are presented in Ref. [17]:

|ψ−µ〉 = ξ|7/2,−7/2〉+ η|7/2, 5/2〉+ ζ|5/2, 5/2〉, (6)

with expansion coefficients ξ, η and ζ. Similarly, the
remaining eigenstates |II〉, |III〉, |b〉, and |d〉 are:

|ψ−µ〉 = ξ|7/2,m〉+ ζ|5/2,m〉, (7)

where m = 1/2 or 3/2. These basis states are approxi-
mated by the relativistic, four-component spinor Hartree-
Fock (HF) orbitals of the free Ce3+ ion.

ψnκm(r) =
1

r

(

fnκ(r)Ωκm(θ, φ)

iαgnκ(r)Ω−κm(θ, φ)

)

, (8)

where the non-relativistic two-component spinor is de-
fined by

Ωκm(θ, φ) =







±
√

κ+1/2−m
2κ+1 Yl,m−1/2(θ, φ)

√

κ+1/2+m
2κ+1 Yl,m+1/2(θ, φ)






, (9)

and κ = ∓(j +1/2) (for j = l± 1/2) is the unified quan-
tum number denoting angular momentum and parity.
For transitions between states with the same quantum

number n and total angular momentum J , the main con-
tribution of the LLI-violating perturbation comes from

the tensor T
(2)
q operator. Its matrix elements may be

written as

〈n′κ′m′|T (2)
q |nκm〉 = (−1)j

′
−m′

(

j′

−m′

2

q

j

m

)

× 〈κ′ ‖ C(2)
q ‖ κ〉I(κ′, κ), (10)

where I(κ′, κ) represents a radial integral [27]. The re-

duced matrix element of the tensor C(2)
q is

〈κ′ ‖ C(k)
q ‖ κ〉 = (−1)j

′+ 1

2

√

[j′, j]

(

j′

− 1
2

j
1
2

k

0

)

, (11)

where [j′, j] ≡ (2j′ + 1)(2j + 1). The energy shifts due
to LLI violation can be calculated using equations (10),
and (11). In terms of the expansion coefficients and radial
integrals I(κ′, κ), the shifts of the states |I〉, |a〉, and |c〉
in Eq. (6) are

δE =
C

(2)
0

21
((7ξ2 + η2)I(−4,−4) +

+6ζ2I(3, 3) + 2
√
6ζηI(−4, 3)). (12)

Two other states |II〉 and |b〉 have the shifts

δE = −C
(2)
0

21
(5ξ2I(−4,−4) +

24

5
ζ2I(3, 3)−

−4
√
6

5
ζξI(−4, 3)) (13)

with m = 1/2 in Eq. (7), while the states |III〉 and |d〉
have the energy shifts of the levels

δE = −C
(2)
0

21
(3ξ2I(−4,−4) +

6

5
ζ2I(3, 3)−

−6
√
2√
5
ζξI(−4, 3)) (14)

Here the radial integrals can be obtained from the for-
mulae I5 and I1 below, and are taken over HF wave func-
tions.



6

The radial integrals included in Eq. (12,13,14) are from
Ref. [7], and are summarized in this Appendix for con-
venience. According to the quantum numbers κ′ and κ,
the radial integrals take one of the following forms:

I1 = cαh̄

∫ ∞

0

dr

(

(2κ− 1)gn′κ′

∂fnκ
∂r

+ (2κ+ 3)fn′κ′

∂gnκ
∂r

− (2κ− 1)(κ+ 1)

r
gn′κ′fnκ − (2κ+ 3)κ

r
fn′κ′gnκ

)

for κ′ = −κ− 1,

I2 = cαh̄

∫ ∞

0

dr

(

(2κ− 3)gn′κ′

∂fnκ
∂r

+ (2κ+ 1)fn′κ′

∂gnκ
∂r

+
(2κ− 3)κ

r
gn′κ′fnκ +

(2κ+ 1)(κ− 1)

r
fn′κ′gnκ

)

for κ′ = −κ+ 1,

I3 = 4cαh̄

∫ ∞

0

dr

(

fn′κ′

∂gnκ
∂r

+
κ− 1

r
fn′κ′gnκ

)

for κ′ = κ− 2,

I4 = −4cαh̄

∫ ∞

0

dr

(

gn′κ′

∂fnκ
∂r

− κ+ 1

r
gn′κ′fnκ

)

for κ′ = κ+ 2, and

I5 = −2cαh̄

∫ ∞

0

dr

(

gn′κ′

∂fnκ
∂r

− fn′κ′

∂gnκ
∂r

+
κ

r
gn′κ′fnκ +

κ

r
fn′κ′gnκ

)

for κ′ = κ. In the nonrelativistic limit the matrix ele-
ment 〈φ|cαjpk|φ〉 becomes 〈φ|pjpk/m|φ〉. This changes
the radial integrals in Eq. (9). Only the radial integrals
differ between the relativistic and the nonrelativistic lim-
its, while the angular parts of the matrix elements are the
same. In the non-relativistic limit, I1 and I5 reduce to

I1 = h̄2
∫ ∞

0

dr

(

∂fn′κ′

∂r

∂fnκ
∂r

+
κ(κ+ 1)

r2
fn′κ′fnκ

)

I2 and I3 become

I2 = h̄2
∫ ∞

0

dr

(

∂fn′κ′

∂r

∂fnκ
∂r

− 2κ− 1

r
fn′κ′

∂fnκ
∂r

−κ(κ− 2)

r2
fn′κ′fnκ

)

and I4 takes the form of

I3 = h̄2
∫ ∞

0

dr

(

∂fn′κ′

∂r

∂fnκ
∂r

+
2κ+ 3

r
fn′κ′

∂fnκ
∂r

− (κ+ 3)(κ+ 1)

r2
fn′κ′fnκ

)

.
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116002 (1998).
[6] N. Russell and V.A. Kostelecký, Rev. Mod. Phys. 83, 11

(2011); arXiv:0801.0287 [hep-ph] (2014).
[7] M. A. Hohensee, N. Leefer, D. Budker, C. Harabati, V.

A. Dzuba, and V.V. Flambaum, Phys. Rev. Lett. 111,
050401 (2013).

[8] T. Pruttivarasin, M. Ramm, S.G. Porsev, I.I. Tupitsyn,
M. Safronova, M.A. Hohensee, and H. Häffner, Nature
517 592 (2015); arXiv:1412.2194 [quant-ph].

[9] A. Lo, P. Haslinger, E. Mizrachi, L. Anderegg, H.
Müller, M.A. Hohensee, M. Goryachev, and M.E. Tobar,
arXiv:1412.2142 [gr-qc] (2014).
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