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We analyze theoretically measurement schemes of the mean output work and its fluctuations in a recently

proposed optomechanical quantum heat engine [K. Zhang et al. Phys. Rev. Lett. 112, 150602 (2014)]. After

showing that this work can be operationally determined by continuous measurements of the intracavity photon

number we discuss both dispersive and absorptive measurement schemes and analyze their back-action effects

on the efficiency of the engine. Both measurements are found to reduce the efficiency of the engine, but their

back-action is both qualitatively and quantitatively different. For dispersive measurements the efficiency de-

creases as a result of the mixing of photonic and phononic excitations, while for absorptive measurements, its

reduction arises from photon losses due to the interaction with the quantum probe.

PACS numbers: 42.50.Wk, 07.10.Cm, 07.57.Kp

I. INTRODUCTION

The thermodynamic description of quantum heat engines

(QHE), which has been discussed at least since the early days

of laser physics [1], has recently attracted much interest [2–5],

in part because the increased control achievable over micro-

scopic and mesoscopic systems opens promising new avenues

of theoretical and experimental investigation [6–11].

QHE can exhibit intriguing properties, including their po-

tential to outperform their classical analogues. For example,

it has been shown that a quantum photo-Carnot engine can

extract work from a single reservoir if the latter has built-

in quantum coherence [12], and its power can be increased

by noise-induced coherence [13]. In a different situation, a

trapped ion based quantum engine operating on an Otto cycle

was shown theoretically to break the Carnot efficiency limit in

the presence of a squeezed reservoir [10].

The definition of thermodynamical quantities in the quan-

tum context presents however conceptual challenges [14–17],

and much attention has been devoted to the proper defini-

tion and the quantum statistical properties of quantities such

as heat, work and entropy [18–30]. In closed quantum sys-

tems work may be defined in terms of a two-time measure-

ment scheme [31–34] or, in a recently proposed alternative ap-

proach, of a single projective measurement [35]. However the

situation is less clear for open quantum systems, where there

are still open questions regarding the definition and and exper-

imental measurements of work and heat [31, 32, 36–38] due

to the lack of energy conservation in the reservoir(s). In this

context quantum stochastic thermodynamics [39, 40], like its

classical counterpart [41], offers an interesting framework to

discuss thermodynamic properties and simulate numerically

the system behavior.

Optomechanical systems are prime candidates to investi-

gate the properties of QHE. Thanks in particular to advances

in nanofabrication they have witnessed rapid developments

in the last decade and can now operate routinely deep in

the quantum regime, with broad potential for applications in

quantum technology [42]. Recently, three of us proposed and

analyzed theoretically an optomechanical QHE based on an

Otto cycle [43]. In this system the intracavity field of an opti-

cal resonator interacts coherently with a single mode of vibra-

tion of a mechanical element, for instance the center-of-mass

motion of an oscillating end-mirror of a Fabry-Pérot resonator,

via radiation pressure. In addition the optical field is incoher-

ently coupled to a cold reservoir at T ≈ 0 due to cavity losses,

and the mechanics is likewise connected to a warmer thermal

bath at the temperature of its substrate, for instance a meso-

scopic solid state device. The control of the normal-mode dis-

persion of the coherently coupled phonon and photon modes

(phonon polaritons) allows to cycle the system between the

cold and warm temperature baths. This permits the realization

of thermodynamical cycles via the manipulation of an exter-

nal parameter such as the detuning between the driving op-

tical field and the cavity resonance frequency. The exquisite

experimental control that can be achieved in optomechanics

suggests that such a QHE may be a good candidate to exper-

imentally implement a measurement of the work output char-

acteristics.

We consider this specific system to discuss several aspects

of the work that can be extracted from QHE. Particular em-

phasis is placed on the development of operational approaches

to the quantum measurement of the work and its fluctuations,

and also on the back-action of these measurement on the effi-

ciency of the system. (Measurement back-action on the quan-

tum driving of quantum systems has recently been considered

in Refs. [29, 30]).

We show that in the specific QHE under consideration work

is performed on the mechanics by the radiation pressure of the

intracavity photons responsible for the optomechanical cou-

pling. That work can be evaluated from repeated measure-

ments of the intracavity photon number, which is directly pro-

portional to the radiation pressure force. We consider and

contrast dispersive and absorptive continuous measurement

schemes, both involving passing a stream of two-state atoms

through the resonator. The former situation results in non-

destructive measurements of the photon number, and the as-

sociated coupling between the normal modes of the optome-

chanical system, while the latter corresponds to the inclusion

of an additional energy dissipation channel for the photons.
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We numerically determine the mean work and its variance

over the entire thermodynamical cycle for both measurement

schemes and use these results to evaluate the measurement

back-action in the thermodynamic cycle. Our analysis is car-

ried out within the framework of quantum stochastic thermo-

dynamics, with the measured work evaluated via continuous

detection of the mean photon number in the cavity.

The paper is organized as follows. Section II briefly re-

views the optomechanical QHE of Ref. [43] and the main fea-

tures of the Otto cycle. In particular we draw attention to the

fact that the two normal modes of the system undergo two dis-

tinct thermodynamic cycles. This will be important to keep in

mind in the context of measurement back-action considera-

tions. Section III defines the work output of the engine, using

first the conceptually simpler case of classical measurements

to show the relationship between the extracted work and the

mean intracavity photon number. This result is used to justify

an operational approach based on continuous measurements

of the intracavity photon number operator to determine the

expectation value of the quantum measurement of work and

its fluctuations. Section IV introduces two such measurement

schemes, which involve either the dispersive or the absorptive

interaction between the cavity mode and a stream of two-state

systems. Information on the intracavity field is then inferred

from measurements of the state of the atoms after they exit the

optomechanical resonator. Section V summarizes the results

of numerical simulations obtained by a standard quantum tra-

jectory approach to the solution of the stochastic Schrödinger

equations describing the continuous measurements. Finally

Section VI is a summary and outlook.

II. OPTOMECHANICAL OTTO CYCLE

This section briefly reviews the main features of the op-

tomechanical quantum heat engine of Ref. [43]. We consider

a standard optomechanical setup with a cavity mode of fre-

quency ωc and damping rate κ coupled via radiation pressure

to a single oscillation mode of a mechanical resonator of fre-

quency ωm and damping rate γ. The cavity is driven by an

optical pump field of amplitude αin and frequency ωp. We

assume that the system reaches a classical steady state with

mean intracavity field amplitude α ≈ αin/∆, where

|∆| = |ωp − ωc − 2βg| ≫ κ (1)

is the detuning between the pump and cavity fields corrected

for the equilibrium position of the mechanical oscillator β =

−gα2/ωm, and g is the single-photon optomechanical coupling

constant.

Denoting the small fluctuations of the photon and phonon

modes around the steady state (α, β) by the bosonic annihi-

lation operators â and b̂ respectively, the system is then de-

scribed by the total Hamiltonian

Ĥ = Ĥab + R̂γ + R̂κ + Hαβ. (2)

Here

Ĥab = −~∆â†â + ~ωmb̂†b̂ + ~G(â† + â)(b̂† + b̂), (3)

is the linearized quantum optomechanical Hamiltonian [44],

where we have introduced the linearized optomechanical cou-

pling strength G = αg. R̂γ and R̂κ account for the phonon

and the photon dissipation into the hot and cold bath in the

Otto cycle, respectively. Finally Hαβ is the classical energy

associated with the classical steady state (α, β).

We focus on the red detuned regime ∆ < 0, which in gen-

eral leads to stable dynamics for small damping [42] and per-

form a Bogoliubov transformation to diagonalize the Hamil-

tonian (3) in terms of normal modes (polaritons) described by

the bosonic annihilation operators Â and B̂. Ignoring a con-

stant term that does not affect the dynamics this gives

ĤAB = ~ωAÂ†Â + ~ωBB̂†B̂, (4)

with normal mode eigenfrequencies

ωA,B =

√

∆2 + ω2
m ±

√

(∆2 − ω2
m) − 16G2∆ωm

2
(5)

which are plotted in Fig. 1 as a function of the detuning ∆. It

is straightforward to see that for ∆ ≪ −ωm, the polariton “A”

is photon-like and the polariton “B” is phonon-like, while in

the opposite limit −ωm ≪ ∆ < 0, it is the polariton “A” that is

phonon-like and the polariton “B” is photon-like.

Consider then a situation where the phonon reservoir is at

some finite temperature Tphonon, while the optical field is cou-

pled to a reservoir at T = 0 – an excellent approximation

at visible frequencies – and concentrate first on the polariton

“B” only. It is possible to realize an Otto cycle for that nor-

mal mode in the following way [45]: Start from the system in

thermal equilibrium at a large negative detuning ∆, in which

case “B” is essentially at the temperature of the phonon bath,

with corresponding thermal excitation number 〈B̂†B̂〉 ≡ N̄B,

and adiabatically change ∆ across the resonance ∆ = −ωm

in a time τ1 to a small negative value close to 0 (but not too

close to avoid the onset of instabilities). In that first adiabatic

stroke the polariton “B” changes its character from phonon-

like to photon-like, and the energy of the thermal phonons is

converted into intracavity photons that perform work on the

oscillating mirror via radiation pressure – more on that in the

following section.

Once the detuning has reached its final value the system is

allowed to thermalize with the cavity field reservoir at T = 0.

This first thermalization stroke, of duration τ2, releases heat in

the process. The following stroke is again adiabatic (second

adiabatic stroke). It consists in changing ∆ back to its large

negative value in a time τ3. Finally the cycle is closed by al-

lowing the polariton “B”, which has now regained its phonon-

like character, to thermalize with its reservoir at Tphonon by ab-

sorbing heat. This second thermalization stroke has a duration

τ4. The four strokes of the cycle are sketched schematically in

Fig. 1(b).

The polariton “A” simultaneously also goes through a ther-

modynamic cycle, with however significant differences. First,

it is initially coupled to a reservoir at T ≈ 0, so that the ini-

tial thermal polariton occupation is 〈Â†Â〉 ≡ N̄A ≈ 0. Second,

the first thermalization stroke for the “B” cycle, which takes a
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time of the order of a few κ−1, is not long enough to also ther-

malize the “A” polariton provided that the optical damping

rate is much faster than the mechanical damping rate, κ ≫ γ,

which is normally the case in optomechanical systems. Under

these conditions the population of mode “A” remains essen-

tially unchanged and equal to zero, and the “A” cycle does

not produce any work (positive or negative.) That is, provided

that the changes in detuning ∆ can be realized in a perfectly

(quantum) adiabatic fashion, which includes but is not limited

to avoiding the effects of dissipation, the two cycles remain

completely decoupled. We can summarize these requirements

via the set of conditions

1/τ4 < γ ≪ 1/τ2 < κ < 1/τ1,3 ≪ G ≪ ωm. (6)

This, however, no longer holds if quantum adiabaticity is lost,

for example as a consequence of a measurement process. This

will have important consequences in the context of the disper-

sive quantum measurements of sections IV and V.

III. OUTPUT WORK

We now define the thermodynamical quantities that will be

used in the following discussion. Cast in infinitesimal form,

the first law of thermodynamics can be formally written as

dU = dW + dQ, (7)

where U, Q, and W, are the internal energy, heat, and work,

respectively. For a general open quantum system with density

operator ρ̂ and Hamiltonian Ĥ we have

U = Tr[ρ̂Ĥ] (8)

so that in the Schrödinger representation the average (clas-

sical) values of the infinitesimal work and heat increments

are [4, 46]

dW = Tr
[

ρ̂(dĤ)
]

, (9)

dQ = Tr
[

(dρ̂)Ĥ
]

. (10)

As defined in Eq. (7) the work is positive for a positive change

in the internal energy of the system. In the absence of heat

exchange, for example during an adiabatic transformation, it

corresponds to work performed on the system. We thus in-

troduce also the output work performed by the system as its

opposite,

Wout ≡ −W, (11)

This is the quantity that we use later to evaluate the efficiency

of the QHE.

A. Output work in the optomechanical QHE

We have seen that in the normal mode picture the “B” po-

lariton heat engine is driven through an Otto cycle. Provided
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FIG. 1: (Color online) (a) Frequencies of the two normal modes (po-

laritons) of the optomechanical system for G/ωm = 0.1 in the red-

detuned case ∆ < 0. The dashed lines correspond to the of the bare

photon and phonon modes. The plot also illustrates that for large

negative detunings the “B” polariton is phonon-like, and photon like

for small negative detunings. (b) Intuitive physical picture of the

Otto cycle. Initially (top left corner) the mechanics undergoes rela-

tively large thermal fluctuations due to its coupling to a hot thermal

reservoir. At the end of the first adiabatic step (top right corner), the

polariton has however become photon-like. Its unchanged mean oc-

cupation, converted into photons, results in added radiation pressure

force on the mechanics. Thermalization at rate κ to the temperature

of the radiation reservoir T ≈ 0 then significantly reduces the po-

lariton occupation number (bottom right corner). At the end of the

second adiabatic step, the polariton has regained its phononic nature,

but now with small occupation number and hence a small adjustment

of the mirror position (bottom left corner). Finally, the phonon-like

polariton thermalizes to the temperature ot the hot phonon thermal

bath in the final step, regaining the initial thermal occupation num-

ber at rate γ (back at top left corner).

that dissipation is weak enough to be negligible during the

adiabatic strokes [see Eq. (6)], work is only performed by (or

injected into) the system during those strokes, while heat is

only exchanged during the thermalization steps [43]. Since

the “B” polariton population is N̄B = 0 after thermalization

with the optical heat bath at T = 0 we can then restrict the

determination of the work to the first adiabatic stroke, where

dQ = Tr[(dρ̂AB)ĤAB] = 0, (12)

and

dW = Tr[ρ̂AB(dĤAB)] = N̄B~dωB. (13)
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Here we have used the normal mode picture of the Hamilto-

nian (4) and taken N̄A ≈ 0, as previously discussed. Since

in the adiabatic stroke N̄B is conserved, the average work is

simply given by the change in energy of mode “B”,

W =

∫

∆ f

∆i

dW = ~[ωB(∆ f ) − ωB(∆i)]N̄B, (14)

where∆i and∆ f are the initial and final detunings, see Eqs. (1)

and (5). Note also that in the case of perfect adiabaticity, the

“B” polariton number distribution gives directly the full sta-

tistical distribution of the work as well.

Alternatively one can also work in the bare modes repre-

sentation, where the photon and phonon distributions are time

dependent. Equation (9) then takes the form

dW = Tr[ρ̂ab(dĤab)] = −~n̄ad∆, (15)

where we have used the fact that the only term in Hamiltonian

(3) with a ∆ dependence is the free field part −~∆â†â, and

n̄a = 〈â†â〉 is the average number of excitations in the photon

mode â. In this picture the average work is given by

W = −~
∫

∆ f

∆i

n̄a(∆)d∆. (16)

If the stroke is perfectly adiabatic the values of the average

work obtained from expressions (14) and (16) are equal. How-

ever if either the optical or the mechanical damping is signifi-

cant on the time scale of the adiabatic stroke, or if the variation

of the optical detuning induces non-adiabatic transitions and

in particular a non-vanishing population of polariton Â, then

Eq. (14) is no longer exact. The expression of the average

work (16) in terms of the mean photon number remains how-

ever valid, as confirmed by a classical analysis to which we

now turn.

IV. QHE WORK MEASUREMENT

We now discuss several possible measurement schemes that

can be considered to quantify the work performed by the heat

engine and its fluctuations and that are experimentally realiz-

able in principle. To set the stage we first consider a simple

classical approach before considering two types of quantum

measurements.

A. Classical measurement scheme

A simple way to implement the variation in detuning ∆(t)

required for the adiabatic strokes of the QHE is through a

change in cavity length,

∆(t)→ ∆(y) = ∆0 − gMy. (17)

Here y is a classically controlled length change, assumed

small compared to the total cavity length, gM ≡ g/yM is

the optomechanical coupling normalized to the mirror zero-

point motion yM , and ∆0 is a nominal detuning. We can

then express W in terms of the spatial integral of the position-

dependent radiation pressure force Frp(y) as

W =

∫ y f

yi

Frp(y)dy (18)

where

Frp(y) = ~gMn̄a(y). (19)

A possible classical scheme to measure the work output of

the engine is illustrated in Fig. 2. The optomechanical res-

onator comprises the oscillating end mirror driven by radia-

tion pressure and an input mirror of large mass M whose clas-

sical position y is controlled externally by the potential V(y)

provided by a piezoelectric element, thereby controlling the

detuning ∆(y) in the presence of the radiation force Frp. To

use a thermodynamical metaphor, we may think of the input

mirror as a classical piston that is pushed by the expanding

photon gas.

Neglecting dissipation, the total system Hamiltonian is then

Ĥm = Ĥab + HM , (20)

where Ĥab is given by Eq. (3) with ∆ = ∆(y), and

HM =
p2

2M
+ V(y) (21)

is the classical Hamiltonian for the massive control mirror.

The classical equations of motion for that mirror are then

dy

dt
=

∂Hm

∂p
=

p

M
, (22)

dp

dt
= −∂Hm

∂y
= −∂V(y)

∂y
− Frp, (23)

where Hm is the classical limit of the measurement Hamilto-

nian Ĥm. If M is large enough that it can be considered as

essentially infinite compared to all other optomechanical ele-

ments we have dy/dt ≈ dp/dt ≈ 0. That is, the force exerted

by the control system balances the expectation value of the

radiation pressure force,

−∂V(y)

∂y
= Frp. (24)

This shows that provided the kinetic energy of the large mirror

remains essentially zero, all work performed by the photons is

converted to the control potential energy and can be measured

in that way. This confirms the intuitive result that the measure-

ment of the work can be performed by sensing the radiation

pressure force, proportional to the mean number of intracavity

photons.

B. Continuous quantum measurements

We now turn to the measurement of the work in the quan-

tum regime. For an isolated quantum system it can be de-

termined unambiguously via a two-time measurement pro-

cess [31, 32], but this approach is problematic for open quan-

tum systems since it would require additional measurements
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â
b̂

y

FIG. 2: (Color online) Schematic setup for a classical measurement

of the output work, whereby the work performed by radiation pres-

sure acting on the mirror of large mass M can be stored in the control

system. See text for details.

on the reservoirs. In order to circumvent this issue, we adopt

in the following an experimentally realizable operational ap-

proach based on stochastic quantum thermodynamics [39].

It is not possible to directly monitor the occupation of the

polariton mode “B” since it consists of quasiparticles that are

coherent superpositions of photon and phonon states. What

is readily experimentally accessible is the intracavity optical

field. Building on the discussion of the classical measurement

scheme of the previous section our approach involves there-

fore weak continuous measurements [47] that monitor the in-

tracavity photon number. We then calculate the total work by

performing the integral in Eq. (16).

To this end we add to the Hamiltonian the interaction V̂a

between the system and the quantum probes used to extract

information on its state, as well as a term R̂a that accounts for

the additional dissipative effects associated with these probes.

The Hamiltonian (2) becomes then

Ĥm = Ĥ + V̂a + R̂a, (25)

We consider specifically continuous measurements realized

by passing through the resonator a dilute beam of two-level

atoms that interact weakly with the intracavity field mode ei-

ther resonantly or dispersively, with at most one atom at a time

inside the resonator. The state of the field is inferred from a

projective measurement on the atoms after they exit the cavity.

We study both the cases of absorptive and dispersive atom-

field interactions, see Fig. 3. Since V̂a does not commute with

the optomechanical Hamiltonian Ĥab the measurements lead

in general to a back-action on the QHE that affects both its

output work and its efficiency.

In the following we use a quantum trajectory method

to simulate quantum measurement processes and investigate

their influence on the mean work W and its fluctuations ∆W2.

Our starting point is the description of the dynamics of open

quantum systems in terms of a large ensemble of N quan-

tum trajectories {|ψ j(t)〉} that are solutions of a stochastic

Schrödinger equation of the general form

d|ψ(t)〉 = (Ddt + Rdw)|ψ(t)〉. (26)

The superoperator Ddt accounts for both the Hamiltonian

evolution of the system and non-unitary contributions that

(a)

(b)

FIG. 3: (Color online) Schematic setup for a continuous quantum

measurement of the output work with a beam of two-level atoms. a)

Absorptive measurement: the cavity field is resonant with the atomic

transition and the coupling induces real oscillations in the atomic

population, which result in the loss of intracavity photons. b) Dis-

persive measurement: the cavity mode frequency is far off-resonant

from the two-level atom transition frequency, resulting in a disper-

sive interaction that only modifies the phase of the atomic ground

state wave function. See text for details.

include dissipation and decoherence mechanisms associated

with measurement processes, while the stochastic term Rdw,

where dw describes one or more Wiener processes of zero

mean with dw2
= dt, accounts for the stochastic quantum

jumps resulting from both reservoir noise and quantum mea-

surements [48–50]. The initial conditions |ψ j(0)〉 are selected

consistently with the initial thermal distribution characterizing

the density operator of the system. For completeness the main

steps in the derivation of the stochastic Schrödinger equation

for continuous measurements are briefly outlined in an Ap-

pendix.

1. Absorptive measurements

Consider first the resonant situation where a low density

beam of probe two-state systems of transition frequencyωeg =

ωc, and prepared in their ground state |g〉 is injected inside the

optical cavity, see Fig. 3(a). The atom-field coupling is given

in the rotating wave approximation by

V̂a = ~ga(â†σ̂ge + âσ̂eg) (27)

where ga is the single-photon Rabi frequency of the transition

and σ̂i j = |i〉〈 j|. For each quantum trajectory j, the effect of

the continuous measurements is described by the stochastic

Schrödinger equation [47, 51]

d|ψ j(t)〉 =
{[

− i

~
Ĥab −

1

2
λa

(

â†â − 〈â + â†〉â + 〈â + â†〉2

4

)]

dt

+

√

λa

(

â − 〈â + â†〉
2

)

dw

}

|ψ j(t)〉, (28)
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where dw is a Wiener process,

λa = g2
aτ (29)

is a measure of the strength of the measurement, and τ is the

transit time of an individual atom through the resonator. Note

that in obtaining Eq. (28) the time increment dt is assumed

to be long compared to the atomic transit time τ, so that this

equation describes the statistical effect on the field of a large

number of atomic measurements.

The term proportional to λa on the right-hand side of

Eq. (28) accounts for the additional dissipation channel of the

intracavity field resulting from the absorption of photons by

the successive atoms, and the term proportional to
√
λa de-

scribes the stochastic changes of the intracavity field about its

expected value 〈â+ â†〉 resulting from the stochastic measure-

ment outcomes.

2. Dispersive measurements

We now turn to the situation where the interaction between

the two-level atoms and the intracavity field mode is off-

resonant. Upon adiabatic elimination of the upper electronic

state, it is described by the effective Hamiltonian

V̂a = ~gdâ†â(σ̂ee − σ̂gg) = ~gdâ†â(σ̂+− + σ̂−+), (30)

where |±〉 = (|e〉 ± |g〉)/
√

2, and gd = g2
a/2δ is the off-resonant

effective Rabi frequency coupling between the atoms and the

intracavity intensity, with δ = ωc − ωeg.

The atoms are now prepared in the superposition |+〉 of the

ground and excited states, and information on the intracavity

field is inferred from a change in phase of the atomic state.

In that situation the effect of the measurements on the optical

field is described by the stochastic Schrödinger equation [52]

d|ψ〉 =
{[

− i

~
Ĥab −

1

2
λd (n̂a − 〈n̂a〉)2

]

dt

+

√

λd(n̂a − 〈n̂a〉)dw
}

|ψ(t)〉, (31)

where λd = g2
d
τ.

As was the case for resonant coupling this equation also

comprises two contributions, the second one accounting for

the stochastic changes of the mean intracavity intensity 〈n̂〉
about its expected value resulting from successive measure-

ments. But because of the quantum non-demolition nature of

the non-resonant atom-field interaction for the mean photon

number 〈â†â〉, the dissipative channel of Eq. (31) is now re-

placed by a number conserving term that results in additional

damping of the phase of the optical field.

Importantly, for the specific QHE considered here the effec-

tive interaction (30) couples the polariton branches “A” and

“B” and transfers excitations between them. As we see in sec-

tion V the result of these transitions is similar to that of nona-

diabatic coupling. It has in general a significant impact on the

work that can be extracted in the Otto cycle of the “B” polari-

ton [43]. This is in contrast to absorptive measurements, in

which case the interaction (27) does not significantly couple

the two normal modes. Still, both measurement schemes re-

sult in the appearance of additional photon loss channels that

limit the amount of extractable work. In both cases these mea-

surement back-action mechanisms may be viewed as heat ex-

change between the engine and the environment.

3. Statistics of work from quantum trajectories

Solving the stochastic Schrödinger equations (28) and (31)

repeatedly generates a set of trajectories |ψ j(t)〉 that can be

used to evaluate the statistics of any field observable. For each

trajectory we can use this information to operationally define a

stochastic variable associated with the work along that specific

quantum trajectory for the time interval ti to t f as [39, 53]

W j = Tr[ρ̂ jĤab(t f )] − Tr[ρ̂ jĤab(ti)] −
∫ t f

ti

Tr[(∂tρ̂ j)Ĥab(t)]dt

(32)

where ρ̂ j(t) = |ψ j(t)〉〈ψ j(t)| is the stochastic density operator

associated with the jth trajectory.

The difference between the first and second terms on the

right side of this equation gives the internal energy difference,

and according to Eq. (10), we identify the third term as the

heat exchanged with the reservoirs along the trajectory. In

terms of the stochastic states |ψ j〉 used instead of ρ̂ j(t) to limit

the memory requirements of the numerics W j reads

W j =

∫ t f

ti

〈ψ j(t)|
∂Ĥab

∂t
|ψ j(t)〉dt, (33)

a form consistent with Eqs. (9) and (16). While admittedly

failing to answer fundamental open questions about the defi-

nition of work in open quantum systems, operationally this is

how an experimentalist would extract the work performed by

radiation pressure on the QHE.

The average and the variance of the work are then obtained

as the first and second moments of this distribution as

W ≡
N

∑

j=1

W j

N
, (34)

and

∆W2 ≡
N

∑

j=1

(W j −W)2

N
. (35)

In the limit N → ∞, the statistics resulting from the quantum

trajectories approach the correct result. The numerical simu-

lations presented in section V are based on this approach.

V. NUMERICAL RESULTS

This section presents selected results from numerical simu-

lations of the continuous measurement of the work output of

the QHE and its fluctuations as defined in equations (34) and
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(35), both for absorptive and dispersive measurements. The

numerical results were obtained by averaging for each choice

of parameters 20,000 trajectories obtained from the stochastic

Schrödinger equations (28) and (31) .

As mentioned above, to guarantee that the adiabatic strokes

are indeed adiabatic in the absence of measurements, it is im-

portant to change ∆(t) sufficiently slowly that non-adiabatic

transitions between the two polariton branches remain negli-

gible, but fast enough that the damping of both the optical field

and the mechanical oscillator at rates κ and γ respectively, re-

main negligible. This is particularly the case near the avoided

crossing at ∆ = −ωm. The inset of Fig. 4 shows as an ex-

ample the time evolution of ∆(t) (in units of ωm) used in the

simulations of the first adiabatic stroke to minimize this prob-

lem, with ∆(t) changing rapidly away from the avoided cross-

ing and very slowly in its vicinity. As a result non-adiabatic

transitions remain negligible, as illustrated in the black curves

(labeled by a square) of Fig. 4. The population of the “B” po-

lariton mode remains essentially constant during the adiabatic

stroke, and the “A” polariton population remains essentially

zero.

The additional curves in Fig. 4 show the time dependence

of the average populations N̄A(t) and N̄B(t) during the first

stroke of the heat engine, again neglecting mechanical and

optical damping, for both dispersive (red lines with triangles)

and absorptive (blue lines with circles) measurements. (Note

that in the latter case N̄A remains extremely small during that

stroke and its evolution is nearly indistinguishable from the

situation without measurements.) This is the most important

stroke as far as extracting work from the engine is concerned,

since the population of normal mode “B” remains extremely

small during the second adiabatic stroke as a result of its ther-

malization at the optical reservoir temperature T = 0. In

these examples the temperature Tphonon of the phonon bath and

the initial detuning ∆(0) are chosen such that N̄B(0) ≈ 4 and

N̄A(0) ≈ 0.

Comparing the evolution of the mean populations of the po-

lariton modes for absorptive and dispersive measurements il-

lustrates clearly the difference in their back-action on the op-

eration of the QHE. In the case of absorptive measurements

the “B” polariton population decreases significantly during

what would otherwise be an adiabatic, population-conserving

stroke. Since that stroke occurs fast compared to κ−1, the ob-

served damping results solely from an additional photon dis-

sipation at rate λa due to the measurements, see Eq. (28). Im-

portantly, though, these measurements do not result in any sig-

nificant transfer of population to the “A” polariton.

The situation is qualitatively quite different for dispersive

measurements. In that case there is no significant loss in to-

tal polariton population, but instead a significant transfer of

population from mode “B” to mode “A”. This is because the

effect of dispersive measurements is an additional source of

decoherence, but no loss of population, see Eq. (31). Dis-

persive measurements change the frequency of the photons

stochastically, as seen by the term proportional to â†â in (31),

and thereby they change the structure of the polaritons. In

contrast, in the absorptive case the measurements remove ex-

citations from the system, but without affecting the structure

0 10 20 30 40
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0 10 20 30 40
−3

−2

−1
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∆

FIG. 4: (Color online) Time evolution of the mean excitations N̄B and

N̄A of the polariton modes “B” (solid lines) and “A” (dashed lines)

during the first stroke of the heat engine, averaged over 20,000 trajec-

tories of the stochastic Schrödinger equation. Black lines marked by

squares: no measurement. Red lines marked by triangles: Dispersive

measurement with λd = 0.04ωm. Blue lines with circles: absorptive

measurements with λa = 0.04ωm. Other parameters: G = 0.2ωm,

∆i = −3ωm, ∆ f = −0.4ωm ,κ = 5 × 10−3ωm and γ = 10−4ωm. Inset:

time dependence of the pump-cavity detuning ∆(t) in units of ωm.

Time in units of 1/ωm.

of the polaritons.

The population transfer between the normal modes “B” and

“A” associated with dispersive measurements causes a reduc-

tion in the work performed by the system that can become

quite dramatic due to the resulting unavoidable coupling be-

tween the two normal modes. Since for the polariton branch

“A” the Otto cycle is reversed and produces negative output

work [43], that is, work is performed by the environment on

the polariton [54], one can even reach situations where the

effective available work of the two systems, which are inex-

tricably coupled, becomes negative. For absorptive measure-

ment, in contrast, the two normal modes remain essentially

uncoupled, and although the output work can be significantly

reduced it always remains positive.

Figure 5(a) shows the mean value of the output work Wout

for increasing measurement strength λa,d, illustrating its re-

duction due to measurement back-action. Surprisingly per-

haps for equal measurement strengths dispersive measure-

ments cause a stronger reduction in work than absorptive mea-

surements. Since the thermalization processes are not affected

by the measurement scheme the heat absorbed by the system

from the mechanical reservoir, Qin, remains the same for all

scenarios. For this reason, the efficiency of the quantum heat

engine follows directly from the work as

η =
Wout

Qin

. (36)

We now turn to the fluctuations of the output work. Their

variance, plotted in Fig. 5(b), shows a significant quantitative

difference between the situations for absorptive and disper-

sive measurements. In the first case (dotted line) the fluctu-

ations decrease monotonically as a function of the measure-
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FIG. 5: (Color online) (a) Expectation value and (b) variance of the

output work , in units of ~ωm, for the full cycle as a function of the

measurement strength λa,d (in units of ωm). The points are results

of numerical simulations and the lines serve to guide the eye. In

both figures, the squares (red solid line) and circles ( blue dashed

line) stand for the dispersive and absorptive measurement scheme

respectively. The statistic is performed upon 20000 trajectories. The

stroke times are τ1 = 40ω−1
m , τ2 = 400ω−1

m , τ3 = 40ω−1
m , τ4 = 4 ×

104ω−1
m . All other parameters as in Fig. 4.

ment strength, while in the case of dispersive measurements

they remain roughly constant.

One can gain a better understanding of this behavior from

the probability distribution P(W j,out) of the output work as a

function of measurement strength. Figure 6 shows this dis-

tributions in the absence of measurements and for two mea-

surement strengths, for both dispersive and absorptive mea-

surements. Without measurements the probability distribution

consists of a series of discrete peaks that correspond to the dis-

tribution of Fock states in the initial thermal distribution of the

mechanical oscillator. Assuming perfect adiabaticity each of

these mechanical Fock states is converted into a photonic Fock

state during the first adiabatic stroke, and produces a specific

amount of work. (The width of the peaks is due to residual

non-adiabatic effects.)

Continuous measurements result in a broadening of the

peaks, an effect of the stochastic nature of the detection pro-

cess (see upper panels of Fig. 6) and, in the case of absorptive

measurements, a decrease in amplitude of all peaks except the

one corresponding to the vacuum field, a consequence of the

additional photon decay channel. This is the reason for the re-

duction in variance as the measurement strength is increased.

In contrast, for dispersive measurements the distribution shifts

toward negative values of the work. This is more apparent

in the lower panels, which show the same distribution on a

logarithmic scale. This is a direct consequence of the cou-

pling with the “A”-polariton engine cycle which, as we have

seen, tends to be characterized by negative work. Because

absorptive measurements don’t couple the polariton modes in

any significant way, this effect is almost completely absent in

that case. Finally, since the mean total number of polaritons

in modes “A” and “B” varies slightly over the chosen mea-

surement strengths, the changes in the photon distribution are

much less significant than for absorptive measurements, re-

sulting in weak changes in the variance of the extracted work

as a function of measurement strength.

VI. SUMMARY AND OUTLOOK

Summarizing, we have developed a measurement model to

characterize the mean work and its fluctuations in an optome-

chanical QHE and performed a numerical study of the effect

of continuous quantum measurements on its performance. We

considered measurement schemes involving the continuous

monitoring of the intracavity photon field, with both disper-

sive and absorptive interactions with a dilute beam of two-

level atoms. By determining the average value and the vari-

ance of the work we are able to quantify the measurement

back-action effects. In both cases, the measurements were

found to induce a reduction in the average work performed

by the engine and thus a reduction in its efficiency. However,

the detailed reasons behind these reductions are qualitatively

different. In the dispersive regime, the measurement induces

transitions between the two polariton modes, and hence two

thermodynamic cycles, one producing negative and the other

positive work. The final result is a reduction of the efficiency

with increased fluctuations in the work output. In the absorp-

tive detection scenario, in contrast, photons are lost from the

system via the interaction with the quantum probe that acts as

an effective (zero temperature) reservoir. In this case, both the

average value and the fluctuations of the work decay mono-

tonically.

Because the nature of the photon-phonon polaritons can

easily be changed, and in addition the photon and phonon

modes are coupled to thermal reservoirs at different temper-

atures, one can use related ideas to develop additional ther-

modynamic applications of quantum optomechanical systems.

One such example is a heat pump that uses a polariton fluid

to cool additional phonon modes of frequencies not limited by

the cavity-optical field detuning deep into the quantum regime

from room temperature. The difference with more conven-

tional heat pumps is that instead of moving a cooling fluid

spatially trough expansion and compression cycles it is con-

trolled by the polariton dispersion relation, changing the po-

lariton fluid from photon-like to phonon-like, with the heat ex-

change between the mode to be cooled and the fluid achieved

by phonon population transfer, and heat disposal achieved by

coupling the photon-like polariton fluid to its thermal reser-

voir at T ≈ 0. This, and other possibilities, will be considered

in future work.[55]
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Appendix A: Stochastic Schrödinger equation description of

continuous measurements

This appendix outlines the main steps of derivation of a

stochastic formalism that leads to the description of contin-

uous quantum measurements in terms of stochastic master

equations of stochastic Schrödinger equations. The interested

reader may want to consult the excellent tutorial presentation

of Ref. [47] for details.

The idea is to monitor some system observable described

by a hermitian operator X̂ during some interval divided into

a large sequence of small intervals each of duration ∆t. Al-

though this is not necessary we assume for simplicity that

X̂ has a continuous spectrum of eigenvalues {x}, with eigen-

states as |x〉, so that 〈x|x′〉 = δ(x − x′). Importantly, one is not

in general interested in making projective measurements that

would leave X̂ in one of its eigenstates. Rather, we consider

‘weaker measurements’ characterized by a positive operator

valued measure (POVM) Â(α), with

Â(α) =

(

4k∆t

π

)1/4 ∫

+∞

−∞
e−2k∆t(x−α)2 |x〉〈x|dx, (A1)

which provide only partial information about the observable.

Each operator Â(α) is a Gaussian-weighted sum of projectors

onto the eigenstates of X̂. Here α is a continuous index, such

that the spectrum of measurement result is a continuum la-

beled by α. As we shall see, the parameter k can be under-

stood as a measure of the measurement strength. Continuous

measurements result from taking the limit ∆t → 0.

In practice the measurements are realized by coupling the

system to a measuring apparatus through an interaction pro-

portional to X̂ and a measuring device observable which is

then determined by a projective measurement. In our case, the

measuring apparatus is a low density beam of two-level atoms

that are either resonant (absorptive case) or off-resonant (dis-

persive case) with the intracavity field.

For the initial state |ψ〉 =
∫

ψ(x)|x〉dx, the probability dis-

tribution for obtaining the measurement outcome α is

P(α) = Tr[Â(α)|ψ〉〈ψ|Â†(α)] (A2)

=

√

4k∆t

π

∫

+∞

−∞
|ψ(x)|2e−4k∆t(α−x)2

dx,



10

and for ∆t sufficiently small the Gaussian is much broader

than ψ(x), so that one can approximate |ψ(x)|2 by a delta func-

tion centered at the expectation value 〈X̂〉. We then have

P(α) ≃
√

4k∆t

π
e−4k∆t(α−〈X̂〉)2

. (A3)

It follows that we can write α as the stochastic quantity

α = 〈X̂〉 + ∆w
√

8k∆t
(A4)

where ∆w is a zero-mean, Gaussian random variable of vari-

ance ∆t. It is the stochastic nature of α that accounts for the

random nature of the quantum successive measurements. The

larger k, the smaller the fluctuations in the measurement out-

comes.

This permits to numerically determine the evolution of the

wave function subject to measurements characterized by the

POVM Â(α) at each time step, with the stochastic infinitesimal

change of the quantum state following a single measurement

given by

|ψ(t + ∆t)〉 ∝ Â(α)|ψ(t)〉 ∝ e−2k∆t(α−X̂)2 |ψ(t)〉. (A5)

Expanding the exponential to first order in ∆t → dt and to

second order in the Wiener process dw (due to the Ito rule

dw2
= dt) and normalizing |ψ(t+dt)〉 finally gives the stochas-

tic Schrödinger equation

d|ψ〉 = [−k(X̂ − 〈X̂〉)2dt +
√

2k(X̂ − 〈X̂〉)dw]|ψ(t)〉. (A6)

The explicit forms (28) and (31) result from taking X̂ = (â+â†)
and X̂ = â†â, respectively.
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