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We propose a method to decouple the nanomechanical resonator in optomechanical systems from
the environmental noise by introducing a chaotic coherent feedback loop. We find that the chaotic
controller in the feedback loop can modulate the dynamics of the controlled optomechanical sys-
tem and induce a broadband response of the mechanical mode. This broadband response of the
mechanical mode will cut off the coupling between the mechanical mode and the environment and
thus suppress the environmental noise of the mechanical modes. As an application, we use the
protected optomechanical system to act as a quantum memory. It’s shown that the noise-decoupled
optomechanical quantum memory is efficient for storing information transferred from coherent or
squeezed light.

PACS numbers: 03.67.Pp, 02.30.Yy

I. INTRODUCTION

Optomechanical systems have attracted intense atten-
tion in recent years due to its extensive applications [1–3],
and rapid progress has been made both theoretically and
experimentally in related fields [4–19]. One of the most
interesting problems for optomechanical systems is to ex-
plore the quantum aspects of mechanical motion [12–15],
which is important not only for fundamental studies of
quantum mechanics, but also for further applications,
such as the detection of gravitational waves [16, 17], and
quantum memory [18, 19]. However, to observe quantum
mechanical motions, some obstacles, such as the suppres-
sion of the environmental noises, the realization of an
ultra-high-frequency mechanical resonator, and the sup-
pression of other source of noises such as the laser noise,
have to be overcomed. Although the recent development
of experimental techniques have made it possible to cool
mechanical modes to the ground state [12, 20–23], the
mechanical quantum superposition state [14, 15] is still
too fragile under environmental noises, and thermal noise
will be dominant if the mechanical mode is far away from
the ground state.

Due to the problems mentioned above, how to sup-
press the environmental noises more efficiently is an im-
portant problem yet to be solved. One possible way to
solve this problem is to introduce either active or passive
feedback to compensate the noise effects [20–29]. Side
band cooling [20–25] is the one of the most widely-used
passive compensation methods, and experiments [20–23]
in both the strong coupling and the weak optomechani-
cal coupling regimes have been reported to approach the

∗Electronic address: jing-zhang@mail.tsinghua.edu.cn

mechanical ground state [20–23]. Strategies based on ac-
tive feedback compensation [26–29], are also effective in
suppressing environmental noise. The essence of these
methods is to steer the system to the desired state by
using the measurement output from a particular quan-
tum nondemolition measurement. Another possible way
to solve this problem is to decouple the mechanical res-
onator from the heat bath by introducing a carefully-
designed open-loop control [30–36]. Dynamic decoupling
control (DDC) [30] and its optimized versions [31–34] are
possible ways to achieve this, which introduce high fre-
quency control pulses to average out the low frequency
noises. However, it is not easy to generate the required
high-frequency or optimized pulse in optomechanical sys-
tems and, thus, to our knowledge, DDC has never been
used to protect the mechanical states in such systems.

Motivated by the DDC-type control and especially our
recent work [37] (introducing a broadband chaotic control
to suppress decoherence of a superconducting qubit), we
propose in this paper a method to decouple the nanome-
chanical resonator from its environmental noises by intro-
ducing a chaotic coherent feedback loop. Based on the
theory of coherent feedback [38–48], which is one of the
major quantum feedback approaches [49–52], the basic
idea of our method is to transfer a broadband chaotic con-
trol signal from the controller to the controlled optome-
chanical systems by feedback connections. This broad-
band control induces an effective broadband frequency
shift of the mechanical resonator and then decouples the
mechanical mode from the environmental noises. We find
that our method can also be used to suppress the laser
phase noise, which may also induce non-negligible influ-
ence on the system we consider [53–55]. Afterwards, we
use the protected mechanical mode as a quantum mem-
ory to store continuous-variable quantum signals, such
as coherent states and squeezed states, which may have
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potential applications.
This paper is organized as follows. In Sec. II, we will

provide general discussions to show the noise-decoupling
mechanism for our chaotic feedback strategy. The pos-
sible physical implementations for our noise-decoupling
strategy in on-chip optomechanical systems are discussed
in Sec. III. As an application, in Sec. IV, we show how to
use a optomechanical system, protected by the designed
chaotic feedback control, to act as a quantum memory.
In Sec. V, we summarize the conclusions and provide a
few forecasts of future work.

II. NOISE DECOUPLING BY CHAOTIC

FEEDBACK

In this section, we show the mechanism of our chaotic-
feedback-induced noise decoupling strategy, in particular
for quadratically-coupled optomechanical systems [56–
60]. This is motivated by our previous work [37] which
shows that decoherence in supercoducting circuits can be
greatly suppressed by chaos which is typically believed to
be a source of decoherence [61, 62]. The main idea of the
chaos-induced decoherence suppression approach is to in-
troduce a broadband chaotic signal to ”randomly” kick
the system and compensate the effects of noise. However,
chaotic signals are deterministic signals and thus will not
introduce additional decoherence.
Note that, there are some difficulties in introducing

such kind of chaotic control to suppress the noises of the
quantum-mechanical mode in optomechanical systems:
(i) it is quite hard to drive the mechanical mode of an op-
tomechanical system directly by a chaotic acoustic field;
and (ii) the optical cavity in the optomechanical system
will work as a low-pass filter to squeeze the broadband
chaotic signal if we drive the system directly by an open-
loop chaotic optical signal and thus make the control sig-
nal not so ”random”, which would lead to a failure of our
decoherence-suppression approach. To solve these prob-
lems, we introduce a particular coherent feedback loop to
break the symmetry of the optomechanical system. Thus,
the chaotic controller in the feedback loop can broaden
the bandwidth and preserve the high-frequency compo-
nents of the mechanical mode, and protect it from the
environmental noises.

As illustrated in Fig. 1, our feedback control system
consists of two components, i.e., a quadratically-coupled
optomechanical system (the controlled system) and a
chaotic controller. These two components are connected
by a mediated optical field, from which we can construct
a field-mediated coherent feedback system [38–41, 48].
The controlled system we use here is a quadratically-
coupled optomechanical system in which the mechanical
resonator is placed at the node of the cavity field. In
such a system, the linear coupling between mechanical
mode and optical mode will vanish and only the quadratic
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FIG. 1: (Color online) Schematic diagram of the noise-
decoupling system by coherent feedback modulation. Two
quantum components, i.e., a quadratically-coupled optome-
chanical system and a chaotic controller, are connected by
the mediated optical fields. The output of the optomechani-
cal system is taken as the input fed into the chaotic controller.
Also, the chaotic signal generated by the chaotic controller is
then fed back to control the dynamics of the quadratically-
coupled optomechanical system. The M1, M2, M3, M4 repre-
sent total-reflection mirrors that are introduced to change the
light path. In this model, the radiation pressure can directly
change the frequency of the mechanical resonator because the
coupling between the mechanical mode and the optical mode
is quadratic.

coupling is left. Therefore, in the interaction picture,
the Hamiltonian of the controlled system can be written
as [56–60]

H1 = (ωa1
−G1)a

†
1a1 + 2G1a

†
1a1b

†
1b1 +Ω1b

†
1b1

+iε1

[

a†1 exp(−iωd1
t)− a1 exp(iωd1

t)
]

+
∑

ω

g(ω)
[

b†(ω)b1e
−iωt + b(ω)b†1e

iωt
]

, (1)

where a1 and b1 denote the annihilation operators
of the cavity mode and the mechanical mode in the
quadratically-coupled optomechanical system, and ωa1

,
Ω1 are the natural frequencies of these two modes. Here,
we assume that ~ = 1. The optomechanical coupling we
consider here is a kind of quadratic optomechanical inter-
action with strength 2G1 [56–60], which is derived from

the original form G1a
†
1a1(b

†
1 + b1)

2 by dropping the non-
resonant terms under the rotating wave approximation.
The optical mode a1 is driven by an external driving field
with strength ε1 and frequency ωd1

. Here b(ω) represents
the noise mode with frequency ω acting on the mechani-
cal mode and g(ω) is the coupling strength between the
mechanical mode and the noise mode.
Here we use Hc to denote the Hamiltonian of the

chaotic controller, and a2 denotes the annihilation op-
erator of the chaotic cavity field in the controller. Then
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the interaction Hamiltonian of the quadratically-coupled
system and the controller Hint takes the form (see Ap-
pendix A)

Hint =
1

2i
(
√
γ1γ2 −

√
γ2γf )(a

†
2a1 − a†1a2), (2)

where γ1 and γ2 represent the damping rates of the opti-
cal cavities in the controlled system ”1” and the chaotic
controller ”2”, and γf denotes the damping rate of the
controlled cavity induced by the feedback field. The total
Hamiltonian of the coherent feedback loop is provided by

Htot = H1 +Hc +Hint. (3)

In the strong-driving regime, the optical fields in the
quadratically-coupled optomechanical system and the
chaotic controller can be treated classically. Here we re-
place the operator a1 by α1(t), which represents the clas-
sical part of the optical field a1, and then eliminate the
classical parts including Hc and Hint in the total Hamil-
tonian. Thus the Hamiltonian of the feedback control
system given in Eq. (3) can be simplified as

Heff =Ω1b1b
†
1 + f(t) b†1b1

+
∑

ω

g(ω)
[

b(ω)b†1 exp(iωt) + h.c.
]

,
(4)

where f(t) = 2G1|α1(t)|2, and the amplitude of the cav-
ity field |α1(t)| is modulated by the chaotic controller and
thus it is a broad-band signal. The effective Hamiltonian
in Eq. (4) includes three parts: (i) the free Hamiltonian
of the mechanical mode with natural frequency Ω1; (ii) a
correction term with the mechanical frequency shift f(t)
induced by the chaotic controller Hc; (iii) the interaction
Hamiltonian Hint between the mechanical mode b1 and
its environmental noises b(ω). In the rotating reference
frame with the unitary operator

U = exp

[

−i

∫ t

0

(f(τ) + Ω1) b
†
1b1dτ

]

, (5)

the effective Hamiltonian is given by

H̃eff = U †HeffU − iU †∂U/∂t

=
∑

ω

g(ω)
[

b(ω)b†1e
−i(Ω1−ω)t−i

∫
t

0
f(τ)dτ + h.c.

]

.

(6)

By averaging over the broadband signal f(t) [63], we have
(see Appendix B)

exp

[

−i

∫ t

0

f(τ)dτ

]

=
√
M, (7)

whereM is a correction factor. Thus, the effective Hamil-
tonian shown in Eq. (6) can be simplified as

˜̃Heff =
∑

ω

g̃(ω)
{

b(ω)b†1 exp[−i(Ω1 − ω)t] + h.c.
}

, (8)

where g̃(ω) =
√
Mg(ω) is the modified coupling strength

between the mechanical mode and the heat bath after
introducing the chaotic signal f(t). It can be seen that
the modified coupling strength g̃(ω) can be greatly de-
creased if the correction factor M is small enough, under
which the mechanical mode is efficiently decoupled from
the environmental noises.
As shown in Appendix B, the correction factor M is

determined by the power spectrum Sf (ω) of the chaotic
signal f(t)

M = exp

[

−π

∫ ωu

ωl

Sf (ω)

ω2
dω

]

, (9)

where ωu and ωl are the upper bound and lower bound of
the frequency band of the chaotic signal f (t). Note that,
M varies from 0 to 1. Specially, M = 0 corresponds
to the full-decoupling case, and M = 1 corresponds to
the case without decoupling. Since the power spectrum
Sf (ω) is broadened by the chaotic modulation, the value
of M is thus very small and the mechanical mode is de-
coupled from the environmental noises.

III. PHYSICAL IMPLEMENTATION IN

ON-CHIP OPTOMECHANICAL SYSTEMS

In this section, we discuss how to physically implement
our chaotic-feedback-based noise decoupling strategy in
on-chip optomechanical systems.

A. Implementation of the quadratically-coupled

optomechanical system

Here we list two possible examples of the quadratic-
coupling optomechanical system [56–60]. The first exam-
ple is shown in Fig. 2(a), in which a membrane is placed
in the middle of a cavity and can move freely under the
laser-induced pressure [56–59]. Such kind of structure
leads to a quadratic coupling term between the mechani-
cal mode and the cavity mode. Another example for the
quadratic-coupling is the rectangular membrane optome-
chanical system [60]. As seen in Figs. 2(b) and (c), the
rectangular membrane placed above a toroidal cavity is
driven by the optical field inside the toroidal cavity, which
may generate both linear coupling and quadratic cou-
pling modes between the cavity field and the membrane.
The coupling strengthes of these two coupling modes are
determined by three factors: (i) the vibrational mode
of the rectangular membrane; (ii) the distance between
the membrane and the upper surface of the toroidal cav-
ity; and (iii) the relative position of the toroidal cavity.
Moreover, the coupling modes displayed in the rectangu-
lar membrane optomechanical system can be controlled
by modulating the above factors. The purely quadratic-
coupling mode can be realized when [60]: (i) the rect-
angular membrane is excited in a vibrational mode that



4

OutputInput

Membrane

MirrorMirror

(a)

Membrane

Cavity

(b)

Node(c)

Cavity

Membrane

FIG. 2: (Color online) Schematic diagram of the quadratic-
coupling optomechanical system with a Fabry-Perot cavity
and a rectangular membrane. (a) Quadratic optomechanical
system with a Fabry-Perot cavity: the quadratic-coupling is
realized by placing a membrane in the middle of the Fabry-
Perot cavity. (b) Top view and (c) cross-sectional view of a
rectangular membrane optomechanical system, where its node
coincides with the central point of the cavity. The rectangu-
lar membrane supports various vibrational modes u = (j, k),
where j, k = 1, 2... are the mode indexes. Here the rectan-
gular membrane is driven to the (1,2) mode, which has two
anti-nodes and one node.

contains at least one node; (ii) the rectangular membrane
is placed right above the toroidal cavity; and (iii) the
node of the membrane is located at the central point of
the cavity. Under these conditions, the linear coupling
term between the membrane and the cavity field can be
completely removed.

The mechanism of the rectangular membrane optome-
chanical system is similar to the Fabry-Perot-type
quadratic-coupling system, and they share the same

OutputInput

Membrane

Chaotic cavity C

Cavity A M1

M2M3

M4

Chaotic feedback

FIG. 3: (Color online) The noise-decoupling model with
the control of a toroidal cavity. Here the toroidal cavity
is a chaotic controller, which shifts the cavity field of the
quadratically-coupled optomechanical system to chaos.

Hamiltonian, which is shown in Eq. (1). Hereafter, we
apply our noise-decoupling method to the rectangular
membrane optomechanical system presented above.

B. Implementation of the chaotic controller

In this section, we consider an optomechanical system
[see Fig. 3] with chaotic dynamics [64] as the chaotic
controller in the feedback control loop. For simplicity
we denote the controlled quadratically-coupled optome-
chanical device as system 1, and the chaotic controller as
system 2. The Hamiltonian of system 1 is displayed in
Eq. (1); and the Hamiltonian of system 2 is taken as

H2 =ωa2
a†2a2 +G2 a

†
2a2(b

†
2 + b2) + Ω2 b

†
2b2

+ iε2[a
†
2 exp(−iωd2

t)− a2 exp(iωd2
t)],

(10)

where a2 and b2 denote the annihilation operators of the
cavity mode and the mechanical mode in system 2; and
ωa2

, Ω2 correspond to their inherent frequencies. HereG2

denotes the optomechanical coupling strength in system
2. The cavity mode in system 2 is driven by an input
laser field with driving strength ε2 and corresponding
driving frequency ωd2

. Here, the driving frequencies of
the cavity modes in the two systems are chosen to be:
ωd1

= ωd2
= ωd. In the rotating reference frame with

the unitary operator U = exp[−iωd(a
†
1a1 + a†2a2)t], the

total Hamiltonian of the quantum feedback loop can be
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transformed to the form

Htot =(∆1 −G1)a
†
1a1 + 2G1a

†
1a1b

†
1b1 +Ω1b

†
1b1

+∆2a
†
2a2 +G2a

†
2a2(b

†
2 + b2) + Ω2b

†
2b2

+ iε1(a
†
1 − a1) + iε2(a

†
2 − a2)

+
1

2i
(
√
γ1γ2 −

√
γ2γf )(a

†
2a1 − a†1a2)

+
∑

ω

g(ω)[b†(ω)b1 exp(−iωt) + h.c.],

(11)

where ∆1 = ωa1
− ωd, and ∆2 = ωa2

− ωd, denote the
detuning frequencies of cavities 1 and 2. Here γ1 and
γ2 represent the damping rates of the optical cavities
1 and 2, γf denotes the damping rate induced by the
feedback field of the controlled cavity. We use the quan-
tum Langevin equations to describe the dynamics of the
chaotic feedback system

ȧ1 =− i(∆1 −G1)a1 −
1

2
(
√
γ1 +

√
γf )

2a1 − 2iG1a1b
†
1b1

−√
γ2γf a2 + ε1 − (

√
γ1 +

√
γf )a1,in,

(12a)

ȧ2 =− i∆2a2 −
γ2
2
a2 − iG2a2(b

†
1 + b1) + ε2

−√
γ1γ2 a1 −

√
γ2 a2,in,

(12b)

ḃ1 = −iΩ1b1 − 2iG1a
†
1a1b1 −

Γ1
2
b1 −

√

Γ1 b1,in, (12c)

ḃ2 = −iΩ2b2 − iG2a
†
2a2 −

Γ2
2
b2 −

√

Γ2 b2,in, (12d)

where a1,in (a2,in) is the input of the optical cavity in
system 1 (2); b1,in (b2,in) and Γ1 (Γ2) are the input and
the damping rate of the mechanical mode in system 1 (2).
We assume that the backaction of the mechanical mode
acting on the optical mode in system 1 is very weak,
then the evolution of the cavity mode 1 mainly depends
on Eqs. (12a), (12b), and (12d). In the strong-driving
regime, the semiclassical approximation can be applied:
a1 = α1 + ã1, a2 = α2 + ã2, and b2 = β2 + b̃2, where α1,
α2, and β2 represent the classical parts and ã1, ã2 and b̃2
denote the operators for the quantum fluctuations. Then
we neglect the quantum fluctuation terms in Eqs. (12a),
(12b), and (12d). Thus the evolution of the classical parts
in the total system can be described by

α̇1 =− i(∆1 −G1)α1 −
1

2
(
√
γ1 +

√
γf )

2α1

ε1 −
√
γ2γf α2,

(13a)

α̇2 =− i∆2α2 −
γ2
2
α2 − iG2α2(β

∗
2 + β2)

+ ε2 −
√
γ1γ2 α1,

(13b)

β̇2 = −iΩ1β2 − iG2α
∗
2α2 −

Γ2
2
β2. (13c)
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FIG. 4: (Color online) Power spectra of the cavity mode in
the quadratically-coupled optomechanical systems. (a) the
quadratically-coupled optomechanical system without feed-
back. (b) a chaotic controller is introduced to modulate
the power spectrum of the cavity field of the optomechani-
cal system. The system parameters are chosen as: ∆1/2π =
0.805 GHz, ∆2/2π = 0.12 GHz, γ1/2π = 0.1 MHz, γ2/2π =
0.24 GHz, γf/2π = 0.5 MHz, Γ1/2π = 0.01 MHz, Γ2 =
/2π = 1.4 MHz, Ω1/2π = 1 MHz, Ω2/2π = 0.345 GHz,
G1/2π = 0.055 MHz, G2/2π = 0.4 MHz, ε1/2π = 6.6 GHz,
and ε2/2π = 13.2 GHz.

When the strength of the driving field ε2 is strong
enough, the optomechanical system 2 enters the chaotic
regime and will have a broadband cavity spectrum. As
the chaotic controller, system 2 can spread the spectrum
of system 1 both in the cavity mode and in the mechan-
ical mode. Figure. 4 shows the spectrum of the optical
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mode in system 1 without [Fig. 4(a)] and with [Fig. 4(b)]
the feedback modulation. As shown in Fig. 4(a), only
a single peak with very small sidebands is displayed in
the spectrum of the optical mode if we do not introduce
any feedback modulation. The power of the background
frequency components is very small (less than −150 dB).
This corresponds to the periodic case. After we introduce
chaotic feedback [see Fig. 4(b)], the spectrum of the con-
trolled optical mode is greatly broadened and the whole
baseline of the spectrum is increased to above 150 dB.
This corresponds to the chaotic case, and the broadband
response of the optical mode will decouple the mechanical
mode from the environmental noises.
As discussed in Sec. II, we use the factor M to eval-

uate the efficiency of our noise decoupling strategy [see
Eq. (9)]. The value of M is determined by the spectrum

Sf (ω) of the signal f(t) (recall that f(t) = 2G1|α1(t)|2),
which can be obtained by numerically solving Eq. (13).
Note that M ∼ 1 when the spectrum Sf (ω) is concen-
trated in a narrow region, and M will be close to zero if
the spectrum Sf (ω) is broadened by the chaotic modula-
tion. In our numerical simulations, we find that M ≈ 1 if
we do not introduce feedback [Fig. 4(a)] and M = 0.0074
if we introduce the chaotic feedback [Fig. 4(b)], which
coincides with what we expect.
We will further consider the laser phase noise, which

is also an important source of noises for the system we
consider. Here, we assume that the laser phase noise
used is a colored noise with limited bandwidth. Thus,
the total Hamiltonian of the system we consider can be
written as

Htot =∆1a
†
1a1 +G1a

†
1a1b

†
1b1 +Ω1b

†
1b1

+∆2a
†
2a2 +G2a

†
2a2(b

†
2 + b2) + Ω2b

†
2b2

+ iε1(a
†
1 exp[−φ1(t)]− a1 exp[φ1(t)])

+ iε2(a
†
2 exp[−φ2(t)]− a2 exp[φ2(t)])

+
1

2i
(
√
γ1γ2 −

√
γ2γf )(a

†
2a1 − a†1a2)

+
∑

ω

g(ω)[b†(ω)b1 exp(−iωt) + h.c.],

(14)

where φ1(t) (φ2(t)) denotes the phase fluctuation of the

driving laser in cavities 1 (2). Here φ̇1(t) (φ̇2(t)) is a color
noise with spectrum

Sφ̇(ω) =
2ΓL

1 + ( ω
γc
)2
, (15)

and non-Markovian correlation relation

〈φ̇(t)φ̇(t′)〉 = ΓLγc exp [−γc(t− t′)], (16)

where ΓL and γc are the linewidth and the cutoff fre-
quency of the laser phase noise. Given the system pa-
rameters ΓL = 1.1 kHz, γc = 20 kHz, we show in Fig. 5
the power spectrum of the cavity mode with the laser
phase noise. By comparing the spectrum of the cavity
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FIG. 5: (Color online) Power spectrum of the cavity field in
the controlled optomechanical resonator in the presence of
phase noise.

mode shown in Fig. 5 with the spectrum without laser
phase noise shown in Fig. 4(b), we find that the laser
phase almost does not affect the broadband spectrum of
the cavity mode and thus our method is still valid when
we consider the laser phase noise. Additionally, given
the same parameters as those for the case without laser
phase noise, we find that the decoupling factor can be
written as M̃ = 0.0092 when we consider the laser phase
noise, which is almost comparable to that without the
laser phase noise. Thus, we conclude that our method is
still valid even when we consider the laser phase noise.

Additionally, to drive the controller into the chaotic
regime, we should work in the strong-driving regime, and
thus the fluctuations are negligibly small compared with
the strong driving field. That is why we omit the fluctu-
ation terms in the above discussions. To support this
claim, we performed numerical simulations to analyze
how the fluctuation terms change the broadband chaotic
signals acting on the mechanical resonators. Here, the
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FIG. 6: (Color online) Phase portrait of the cavity field in
a controlled optomechanical system (a) without fluctuations
and (b) with fluctuations.

fluctuation terms are introduced both in the controlled
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optomechanical system and the controller. Figure 6
shows the phase portraits of the optical mode in the con-
trolled optomechanical resonator without fluctuation [see
Fig. 6(a)] and that with fluctuations [see Fig. 6(b)]. It
can be seen from Fig. 6(a) and Fig. 6(b) that the fluctu-
ation terms almost do not affect the chaotic attractor (or
more precisely, can even make it more chaotic) and thus
our method is still valid when we consider the fluctuation
terms.

IV. STORAGE OF CONTINUOUS-VARIABLE

QUANTUM INFORMATION

The storage of continuous-variable quantum informa-
tion, i.e., to realize continuous-variable quantum mem-
ory [18, 19, 65–68], is important for quantum com-
munications and quantum computation. One possible
way to solve this problem is to transfer the continuous-
variable information in the optical signal to an on-chip
mechanical resonator which has a lower damping rate.
The continuous-variable optomechanical quantum mem-
ory system we consider here is presented in Fig. 7, which
includes the input (output) fields, an optical cavity, and
a mechanical resonator [19]. By exchanging states, be-
tween the cavity mode and the mechanical mode, a quan-
tum state carried by the input field can be written into
and stored in the nanomechanical resonator.
However, the quantum information stored in the me-

chanical resonator will unavoidably be destroyed due
to the coupling between the mechanical resonator and
the environmental noise. Thus, to realize such kind of
continuous-variable quantum memory, we have to sup-
press the decoherence effects of the mechanical mode
induced by the environmental noise. As we have dis-
cussed in the previous sections, introducing a chaotic co-
herent feedback loop to drive the mechanical mode into
the broad-band regime is an efficient way to decouple
the mechanical mode from the environmental noise. In
this section, we will show how to use this noise-decoupled
nanomechanical resonator as a quantum memory.

Our purpose here is to use a noise-decoupled mechanical
resonator to store continuous-variable information. The
key point is how to transfer a quantum state to a me-
chanical mode and decouple this mechanical mode simul-
taneously. Here we propose a strategy with two optical
cavities sharing the same mechanical resonator but with
different optomechanical coupling: one is with a linear
optomechanical coupling used for quantum memory; and
the other is with a quadratic optomechanical coupling,
used for noise decoupling.

Let us now consider how to apply this quantum mem-
ory model in the rectangular membrane optomechani-
cal system proposed in Ref. [60]. Figure 8(a) shows two

Mechanical

environment:

Isolator

Input

Output

11n

a b

FIG. 7: (Color online) Schematic diagram of an optmechani-
cal system for quantum information transfer and storage. A
beam of light with a desirable quantum state is fed into a cav-
ity, and then transferred to the mechanical resonator. Here
a is the cavity mode and b denotes the mechanical mode, n
represents the mean thermal excitation phonon number which
follows the Boltzmann distribution.

toroidal cavities (A and B) connected to a rectangular
membrane. The types of coupling between the cavity
mode and the mechanical mode are determined by the
position of the optical resonator and the membrane. If
the optical resonator is placed at the node of the mem-
brane, a quadratic optomechanical coupling can be ob-
tained. However, if the optical resonator is located at
the anti-node of the membrane, we can obtain a linear
optomechanical coupling [Fig. 8(a)]. Thus, we place the
toroidal cavity (cavity A) used for noise decoupling at the
node of the membrane; and the other toroidal cavity (cav-
ity B), used for quantum memory, at the anti-node. The
toroidal cavity A is modulated by the chaotic controller
(toroidal cavity C), which leads to the decoupling be-
tween the membrane and its environmental noises. The
cavity B is used for storing the quantum state in the
membrane. The coupling between the cavity mode and
the mechanical mode is assumed to be linear under the
strong-driving regime [18, 19]. Thus, the Hamiltonian of
the total system can be written as

H =∆sa
†
sas +Gs(asb

†
1 + a†sb1)

+ (Ω1 + 2G1|α1(t)|2)b1†b1
+
∑

ω

g(ω)[b†(ω)b1 exp(−iωt) + h.c.],

(17)

where as (a†s) represents the annihilation (creation) op-
erator of the optical mode in cavity B, and ωs is the
corresponding inherent frequency. Here, ∆s = ωs − ωd

is the detuning frequency of cavity B, and ωd is the fre-
quency of the external driving field. Also, Gs denotes
the coupling strength between the optical mode and the
mechanical mode. To compensate the effect induced by
the chaotic feedback on the quantum memory system, we
take the detuning frequency as ∆s = Ω1 +Gs|α1(t)|2. In
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Anti-node Node

Membrane

Cavity ACavity B

Input Output

Chaotic feedback Membrane

Input

state

Cavity A

Cavity B

Cavity C

Chaotic feedback loop

uantum state transfer

(a)

(b)

FIG. 8: (Color online) (a) Top view of the quantum mem-
ory system. The noise-decoupled quantum memory system
can be divided into two parts shown by the dashed rectan-
gular grid frames: the chaotic feedback loop (inside the blue
frame) for the noise decoupling of the rectangular membrane;
the setup used for transferring the quantum state (the red
frame) from the input light to the noised-decoupled rectan-
gular membrane. (b) Cross-sectional side view of the rectan-
gular membrane optomechanical system. Cavity A is placed
at the node of the rectangular membrane, and cavity B is
placed at the anti-node.

the rotating reference frame with the unitary matrix

U = exp

[

−i

∫ t

0

(2G1|α1(τ)|2 +Ω1)(b
†
1b1 + a†sas)dτ

]

,

(18)
the effective system Hamiltonian can be represented by

Heff = Gs(a
†

sb1+asb
†

1)+
∑

ω

g̃(ω)[b†(ω)b1e
−i(Ω1−ω)t+h.c.],

(19)

where g̃(ω) =
√
Mg(ω) and M is the decoupling factor.

After introducing the adiabatic approximation to elim-

inate the cavity mode shown in Ref. [19], we use b̃1 to
denote the annihilation operator of the mechanical mode
and the quantum Langevin equation of the optomechan-
ical system can be simplified as

db̃1
dt

= −ν + Γ1
2

b̃1 −
√
ν ad −

√

Γ1 bin(t), (20)

ad denotes the optical field fed into cavity B. Let ad =
αd+ãd, where αd and ãd denote the classical part and the
quantum fluctuation of the optical mode. The fluctuation

terms ãd and bin satisfy the relations: 〈ãd(t)ã†d(t
′

)〉 =

δ(t− t
′

), 〈bin(t)b†in(t
′

)〉 = (n+1)δ(t− t
′

), where n (Ω1) ≈
kBT/~Ω1 is the mean thermal excitation phonon number.
The parameter ν in Eq. (20) can be calculated by ν =
(Gs|αd|)2/γs, where Gs is the coupling strength between
the mechanical mode and the optical mode, and γs is the
damping rate of the optical mode [18].
We now assume that the system is initially in a Gaus-

sian state. We use the fidelity F∞ between the initial
state and the steady state of the mechanical mode to
characterize the efficiency of noise decoupling, which can
be calculated by [18]

F∞ =〈Ψ0|ρ∞|Ψ0〉

=
∏

j=±s

[

exp(j) +
Γ1(2n+ 1− exp(j))

2(ν + Γ1)

]− 1

2

.
(21)

Here s is the squeezing factor (see Appendix C). The
steady-state fidelity F∞ mainly depends on four factors:
the mean thermal excitation phonon number n, the cou-
pling strength ν, the squeezing factor s, and the mechan-
ical damping rate Γ1. We can see that the fidelity F∞ can
be increased by decreasing the mechanical damping rate
Γ1, and, as shown in Sec. II, Γ1 can be reduced by intro-
ducing a chaotic feedback loop. In fact, after introducing
the chaotic feedback control, the effective damping rate
of the mechanical mode is given by

Γ′
1 = MΓ1. (22)

Thus the modified fidelity F ′
∞ can be written as

F ′
∞ =

∏

j=±s

[

exp(j) +
Γ′
1(2n+ 1− exp(j))

2(ν + Γ′
1)

]− 1

2

. (23)

When the controller in the feedback loop enters the
chaotic regime, we have Γ′

1 ≈ 0, and thus F ′
∞ ≈ 1, which

means almost perfect quantum state transfer.
Then, we numerically calculate the steady-state fidelity

F∞ between the input state and the steady state of
the mechanical resonator. Two different Gaussian in-
put states are considered: coherent states and squeezed
states.

A. Coherent input state

In this subsection, we consider the quantum mechan-
ical memory system with a coherent input state. For a
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coherent input state, the squeezing factor s = 0. Thus,
in this case, the fidelity F c

∞ can be simplified as

F c
∞ =

[

1 +
Γ1n

ν + Γ1

]−1

. (24)

By comparing the fidelity between the input state
and the steady state of the mechanical mode (under the
noise-decoupling control [see Fig. 9(a)] and without the
noise-decoupling control [see Fig. 9(b)]), we find remark-
able improvement of the efficiency of the quantum mem-
ory by introducing chaotic control. From Fig. 9(a) and
Fig. 9(b), we can observe that the decrease of the mean
thermal excitation phonon number n or the increase of
the parameter ν would lead to the improvement of the
fidelity of the quantum transfer. If we fix the parameter
ν = 50 kHz, the fidelity of the quantum transfer will fall
to zero rapidly when increasing the excitation phonon
number n without introducing the noise-decoupling con-
trol [Fig. 9(a)]. We find that the fidelity of the quan-
tum memory is increased and approaches one even when
the mean thermal excitation phonon number n exceeds
105 after introducing the noise-decoupling control. This
means that our noise-decoupling method efficiently re-
duces the damping rate of the mechanical mode Γ1, and
thus protects the coherent input state from decoherence.

B. Squeezed input state

Let us consider the case that the input state is a
squeezed state with squeezing factor s 6= 0. By adjusting
the squeezing factor s and the mean thermal excitation
phonon number n, we study the fidelity between the in-
put squeezed state and the steady state of the mechanical
mode.
Compared to case without noise-decoupling control

shown in Fig. 10(a), the fidelity under noise-decoupling
control is significantly improved [see Fig. 10(b)] for dif-
ferent chosen system parameters. As shown in Fig. 10(a)
and (b), the fidelity decreases when increasing the squeez-
ing factor s and the mean thermal excitation phonon
number n. Here we vary the squeezing factor s from −5
to 5, and it can be found that the curve of fidelity is sym-
metrical about the plane s = 0 in the three-dimensional
fidelity space. For each parameter n, the fidelity is max-
imized when s = 0, which corresponds to the case that
the input state is a coherent state. The quantum in-
formation stored in the memory system is more likely
to be damaged by the heat bath when increasing the
degree of the squeezing factor s. As shown in Fig. 10,
the fidelity of quantum transfer F = 0.16 is very low
when n = 105 and s = 0 without the noise-decoupling
control [see Fig. 10(a)], while, with the same condition,
the fidelity is enhanced to be F = 0.96 if we introduce
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FIG. 9: (Color online) The fidelity (a) before the noise de-
coupling and (b) after the noise decoupling. Here n is the
mean thermal excitation phonon number which follows the
Boltzmann distribution, and ν is a parameter related to
the optomechanical coupling strength. The parameters are:
Ω1/2π = 1 MHz, Γ1/2π = 5 Hz for (a), and Γ′

1/2π = 0.037
Hz for (b).

the noise-decoupling control [see Fig. 10(b)]. When the
squeezing factor s is increased to approach 5, the fidelity
decreases to zero rapidly without the noise-decoupling
control [see Fig. 10(a)], while it will remain nonzero, i.e.,
F = 0.38, when we introduce the noise-decoupling con-
trol [see Fig. 10(b)].

V. CONCLUSION

To summarize, by introducing a chaotic feedback con-
trol loop, we propose a strategy to decouple a nanome-
chanical resonator in a quadratically-coupled optome-
chanical system from the environmental noises. The
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FIG. 10: (Color online) The fidelity (a) before noise decou-
pling and (b) after noise decoupling. The parameters used
here are: ν/2π = 10 kHz, Γ1/2π = 5 Hz for (a), and
Γ′

1/2π = 0.037 Hz for (b). The natural frequency of the me-
chanical mode is here assumed to be Ω1/2π = 1 MHz.

main advantage of this method is to introduce a chaotic
controller to significantly broaden the spectrum of a me-
chanical resonator, and thus efficiently suppress the envi-
ronmental noise. As a specific application, we study this
proposed noise-decoupled nanomechanical resonator of a
rectangular optomechanical system as a quantum mem-
ory to store the information transferred from external
optical signals. Compared to other optomechanical de-
vices, this rectangular optomechanical system can simul-
taneously support both a quadratic-coupling mode and
a linear-coupling mode. We use the quadratic-coupling
mode of the rectangular optomechanical system for noise
suppression, by placing an optomechanical resonator at
the node of the rectangular membrane; and the linear-
coupling mode for storing quantum information, by plac-
ing another optomechanical resonator at the anti-node of

the rectangular membrane. Two different input states,
i.e., coherent and squeezed states, are studied to show the
efficiency of this quantum memory. The numerical results
show that the fidelity of this quantum memory is greatly
improved after introducing our noise-decoupling strategy.
We believe that this nonlinear coherent-feedback strategy
will have various applications, such as nonlinear modu-
lation of photon transport and high-sensitivity quantum
measurements, which will be considered in future work.
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Appendix A: Theory of Markovian coherent

feedback network

To study the multi-channel quantum input-output net-
work, we now introduce the SLH method presented in
Ref. [69]. In the SLH language, an open quantum sys-
tem can be fully characterized by G = (S,L,H), where S
denotes a n×n unitary scattering matrix, which satisfies
SS† = S†S = I, L represents the dissipation operator
which is determined by the dissipation channels induced
by the input fields, and H is the free Hamiltonian of the
system. Within the framework of G = (S,L,H), the
quantum Langevin equation of an arbitrary system op-
erator X is given by

Ẋ =− i[X,Hsys] + {L†[X,L] + [L†, X ]L}/2
+ {bin[L†, X ] + [X,L]b†in}.

(A1)

The SLH method provides a convenient way to study
all-optical quantum coherent forward and feedback net-
works [69]. For example, we show in Fig. 11 two quantum
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components: G1 = (S1, L1, H1) and G2 = (S2, L2, H2).
The series product of these two components can be pa-
rameterized by

G2 ⊲ G1 = [S2S1, L2 + S2L1,

H1 +H2 +
1

2i
(L†

2S2L1 − L†
1S

†
2L2)].(A2)
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b
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FIG. 11: (Color online) Schematic diagram of the series prod-
uct of two cascaded-connected components.

A typical coherent feedback control system is shown in
Fig. 12, which is composed of the controlled system, i.e.,
system 1, and the controller, i.e., system 2. This coherent
feedback control system can be seen as a series product of
three components: G1 = (S1, L1, H1), G2 = (S2, L2, H2),
and Gf = (Sf , Lf , H1). Thus, the corresponding SLH
parameters of this feedback control system can be repre-
sented by

Gf ⊲ G2 ⊲ G1 = (S,L,Hsys), (A3)

where

S = SfS2S1, L = S2S1L1 + S1L2 + Lf , (A4a)

Hsys = H1 +H2 +Hint, (A4b)

and the interaction Hamiltonian induced by the coherent
feedback loop is given by

Hint =
1

2i
(L†

2S2L1 − L†
1S

†
2L2

+ L†
fSfL2 − L†

2S
†
fLf + L†

fSfS2L1 − L†
1S

†
2S

†
fLf).

(A5)

As an example, let us consider our feedback-induced
noise-decoupling system. As introduced in section 3, a
quadratically-coupled optomechanical device (system 1)
and a chaotic controller (system 2) are connected by op-
tical fields to construct a coherent feedback loop, which
is similar to that given by Eq. (A4). Let a1 (a2) be the
annihilation operator of the cavity mode in quantum sys-
tem 1 (2) with corresponding damping rate γ1 (γ2), and
γf is the damping rate of the controlled cavity induced
by the feedback field. In this case, we have L1 =

√
γ1 a1,

L2 =
√
γ2 a2, and Lf =

√
γf a1, and S1 = S2 = Sf = I.

From Eq. (A5), the dissipation operator of the total feed-
back loop can be written as

L = (
√
γ1 +

√
γf )a1 +

√
γ2 a2, (A6)

and the total Hamiltonian of the quantum feedback loop
can be obtained from Eq. (A4) and Eq. (A5) as

Hsys = H1 +H2 +Hint

= H1 +H2 +
1

2i
(
√
γ1γ2 −

√
γ2γf )(a

†
2a1 − a†1a2).

(A7)
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H

FIG. 12: (Color online) Schematic diagram of a coherent feed-
back loop.

Accordingly, the quantum Langevin equations of the
two cavity modes a1 and a2 can be represented by

ȧ1 =− i[a1, H1 +H2]−
1

2
(
√
γ1 +

√
γf )

2a1

−√
γ2γf a2 − (

√
γ1 +

√
γf ) a1,in,

(A8a)

ȧ2 = −i[a2, H1 +H2]−
γ2
2
a2 −

√
γ1γ2 a1 −

√
γ2 a2,in,

(A8b)

where a1,in (a2,in) is the input field fed into the system
1 (2). By substituting Eqs. (1) and (10) into Eq. (A8),
we can obtain the quantum Langevin equation given by
Eq. (12).

Appendix B: Derivation of the decoupling coefficient

M

The decoupling coefficientM is determined by the clas-
sical cavity field f(t), which can be decomposed into
a series of frequency components by the Fourier trans-
form [37, 63].

f(t) =
∞
∑

n=0

An cos(ωnt+ ϕn), (B1)

where ωn, An and ϕn denote the frequency, the amplitude
and the initial phase of the n-th frequency components.



12

Integrating f(t) gives the control-induced phase shift

θ(t) =

∫ t

0

f(τ) dτ =
∞
∑

n=0

An

ωn

sin(ωnt+ ϕn). (B2)

By introducing the Bessel-series expansion, we have

exp [−iθ(t)] = exp

[

−i

∞
∑

n=0

An

ωn

sin(ωnt+ ϕn)

]

=
∏

α

∑

n

Jnα

(

Aα

ωα

)

exp[−inαωαt− inαϕα],

(B3)

where Jnα is the n-th Bessel function of the first kind. We
then neglect the high-order terms in Bessel series, which
can be considered as the fast variables in the system, and
only keeps the zero-order terms in Eq. (B3), by which we
have

exp(−iθ(t)) =
∏

α

J0

(

Aα

ωα

)

= exp

[

∑

α

ln J0

(

Aα

ωα

)

]

.

(B4)
Under the condition that Aα ≪ ωα, the zero-order Bessel
term can be approximately expressed as J0(Aα/ωα) ≈
1 − (Aα/2ωα)

2. Furthermore, from Aα ≪ ωα, we have
ln(1 − (Aα/2ωα)

2) ≈ −(Aα/2ωα)
2. Thus Eq. (B4) can

be simplified as

∏

α

J0

(

Aα

ωα

)

= exp

[

−1

4

∑

α

A2
α

ω2
α

]

= exp

[

−π

2

∫ ωu

ωl

Sf (ω)

ω2
α

dω

]

. (B5)

Let
√
M = exp(−iθ(t)), and M is defined as the decou-

pling factor, then from Eq. (B5) we have

M = exp

[

−π

∫ ωu

ωl

Sf (ω)

ω2
α

dω

]

. (B6)

Appendix C: fidelity of the quantum memory

The Langevin equation of the mechanical operator b̃1
is shown in Eq. (20). The steady value of the mechanical

mode can be obtained by setting db̃1/dt = 0 as

〈b̃1(∞)〉 = −2
√
ν

ν + Γ1
αd, (C1)

where 〈·〉 is the average over the input vacuum fluctu-
ation. We then define the quantum Wiener processes

A(t) =
∫ t

0
ãd(t

′

)dt
′

, B(t) =
∫ t

0
bin(t

′

)dt
′

, by which we can
obtain the quantum stochastic differential equation from
Eq. (20) as

db̃1 = −ν + Γ1

2
b̃1dt−

√
ν αddt−

√
ν dA−

√

Γ1dB. (C2)

The quantum fluctuation terms dA and dB satisfy that

〈dA〉 = 〈dB〉 = 0, (C3)

and obey the quantum Ito rules

dA dA† = (N + 1)dt, dA†dA = N dt,

(dA)2 = M dt, (dA†)2 = M †dt, (C4)

dB dB† = (n+ 1)dt, dB†dB = n dt,

where n represents the thermal excition number, N is the
effective photon number, and M denotes the squeezing
parameter. Here M and N satisfy the inequality M2 ≥
N(N +1). Then we introduce the squeezing factor s [70]
of the input quantum state, which is given by

s = ln [M +M∗ + 2N + 1]. (C5)

To calculate the fidelity of the quantum memory, let

us define the normalized position x = (b̃1 + b̃†1)/
√
2, mo-

mentum p = (b̃1 − b̃†1)/
√
2i, and the conjugate vector

z = (x, p) of the mechanical mode. We also introduce
the symmetrized covariance matrix V , which is given by

V =
1

2
[∆z ∆z

T + (∆z ∆z
T)T], (C6)

where ∆z = z − 〈z〉. With Ito’s rule d(ab) = (da)b +
a(db)+da db, the time evolution of the covariance matrix
V is described by the Lyapunov differential equation

V̇ = AV + V AT + Γ1(n+ 1/2)I2 + ν Λ, (C7)

where A = − [(ν + Γ1)/2] I2, and I2 is the two-
dimensional identity matrix. Here, Λ is a matrix related
to the degree of squeezing, which can be calculated by

Λ =
1

2

(

2N + 1 +M +M∗ M −M∗

M −M∗ 2N + 1− (M +M∗)

)

.

(C8)
For a squeezed input state, the fidelity between the initial
state and the steady state of the mechanical mode is given
by

F∞ =〈Ψ0|ρ∞|Ψ0〉 =
1

√

det(V∞ + V0)

=
∏

j=±s

[

exp (j) +
Γ1(2n+ 1− exp (j))

2(ν + Γ1)

]− 1

2

,

(C9)

where V∞ denotes the stationary solution of the Lya-
punov differential equation [Eq. (C7)] and V0 is the co-
variance matrix of the input state, which can be calcu-
lated by

V0 =
1

2

(

exp (s) 0
0 exp (−s)

)

. (C10)

When the input state is a coherent state, such that M =
N = 0 and thus s = 0, the fidelity in this case can be
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simplified as

F c
∞ =

1
√

det(V∞ + V0)

=

[

1 +
Γ1n

ν + Γ1

]−1

.

(C11)

It can be found from Eqs. (C9) and (C11) that the fi-
delity increases when increasing the mechanical damping
rate Γ1 for both squeezed states and coherent states.
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