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We study photon blockade and anti-bunching in the cavity of an optomechanical system in which the me-

chanical resonator is coupled to a two-level system (TLS). In particular, we analyze the effects of the coupling

strength (to the mechanical mode), transition frequency, and decay rate of TLS on the photon blockade. The

statistical properties of the cavity field are affected by the TLS, because the TLS changes the energy-level struc-

ture of the optomechanical system via dressed states formed by the TLS and the mechanical resonator. We find

that the photon blockade and tunneling can be significantly changed by the transition frequency of the TLS and

the coupling strength between the TLS and the mechanical resonator. Therefore, our study provides a method

to tune the photon blockade and tunneling using a controllable TLS.

PACS numbers: 42.50.Pq, 07.10.Cm, 37.30.+i, 42.50.Wk

I. INTRODUCTION

Cavity optomechanics has attracted extensive theoretical

and experimental research activity in the last decade [1–13]. It

ranges from testing fundamental aspects of quantum physics

and gravity to applications in quantum engineering, quantum

measurements [14] and weak-force detection [15–17]. For

example, experiments [18] have demonstrated the quantum

ground state and single-phonon control in a mechanical res-

onator, which is coupled to a superconducting TLS. It has also

been shown that the mechanical resonator can be used for fre-

quency conversion [19–23]. By controlling the frequency and

the time intervals of a pumping field, nonclassical states of the

mechanical motion can be prepared by carrier and sideband

transition processes [24–26].

It is known that photon control can be realized in optome-

chanical systems via an analogue of electromagnetically in-

duced transparency (EIT), well-known in quantum optics. For

instance, it has been found that EIT and photon scattering can

be used to tune photon transmission in optomechanical sys-

tems [27–32]. A TLS coupled to the cavity field of an op-

tomechanical system can affect the photon transmission and

lead to nonclassical effects for the cavity field [33–37]. When

the TLS is a controllable superconducting qubit, we find that

the EIT window of the optomechanical system can be changed

by the superconducting qubit, or, in other words, that the me-

chanical resonator can affect the absorption and dispersion

of the circuit QED system [38]. Moreover, the mechani-

cal resonator of an optomechanical system can also interact

with a TLS [39], which can affect the ground state cooling of

the mechanical resonator [40], the nonlinearity of the cavity

field [41], and so on. When the cavity field in such a hybrid

system is driven by a strong classical field and a weak probe

∗Electronic address: yuxiliu@mail.tsinghua.edu.cn

field, the splitting of the phonon energy levels leads to two-

color EIT windows [42], which can be switched to a single

one by adjusting the transition frequency of the TLS.

Photon control in an optomechanical system can also be re-

alized via photon blockade and tunneling, which result from

the nonlinearity of the cavity field. Photon blockade prevents

subsequent photons from resonantly entering the cavity, while

the photon-induced tunneling increases the probability of sub-

sequent photons entering the cavity. Thus, photon block-

ade corresponds to a single-photon transition process, while

photon tunneling corresponds to two-photon or multi-photon

transition processes. If an optomechanical system coupled to

a TLS via a mechanical resonator, both the mechanical res-

onator and the TLS can induce a nonlinearity in the cavity

field, and thus they can be used to realize photon blockade

and tunneling. Photon blockade has been studied in various

systems, e.g., cavity QED [43–51], circuit QED [52–55], and

optomechanical devices [56–58]. In addition to the single-

photon blockade, multiphoton blockade was also studied the-

oretically (see, e.g., [59–62] and references therein) and even

observed experimentally [50, 63–66]. However, to our knowl-

edge, there is no study on how to control photon blockade and

tunneling.

In this paper, we study a method to tune photon blockade

and anti-bunching in an optomechanical system via a TLS

which is coupled to the mechanical resonator of the optome-

chanical device. In such a hybrid system [41], the dressed

states formed by the mechanical resonator and the TLS af-

fect the photon and phonon blockade of the optomechani-

cal system. It is known that the eigenstates of phonons in

an optomechanical devices are described by displaced Fock

states [56] due to the phonon-photon coupling via the radia-

tion pressure. Therefore, the dressed states in the hybrid sys-

tem should be more complicated, because they formed by the

displaced phonon states of the mechanical resonator and the

TLS [67, 68]. If the mechanical mode and the TLS are in

the ultrastrong coupling regime, the rotating wave approxi-

mation (RWA) doesn’t work, the Rabi type interaction should
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FIG. 1: (Color online) (a) Schematic diagram of a hybrid structure

consisting of a TLS coupled to the mechanical resonator of an op-

tomechanical system. The TLS (within the black dashed circle) is

denoted by a yellow dot inside the oscillating mirror represented by

a black spring. Here, | ↓〉 and | ↑〉 denote the ground state and ex-

cited state, respectively, of the TLS. The parameters ωq , ωa, ωb, and

ωd denote the frequencies of the TLS, cavity field, oscillating mir-

ror, and driving field, respectively. (b) A schematic diagram for the

couplings in the hybrid system with dissipation. The TLS is cou-

pled to the mechanical resonator by the Rabi type with the coupling

strength g, the mechanical resonator is coupled to the cavity field

with coupling strength χ, and the cavity field is driven by an external

field with amplitude Ω. Here, a (a†) and b (b†) are the annihilation

(creation) operators of the cavity mode and mechanical resonator, re-

spectively, and σx = σ+ + σ−. γa, γb, and γq denote the decay

rates of the cavity field, the mechanical resonator and the TLS, re-

spectively.

be considered. In particular, the effect of strong and ultra-

strong coupling on the photon blockade is analyzed in many

systems [69–72].

The model studied here is a combination of the usual pro-

totype optomechanical models. Hybrid systems composed

of a TLS coupled to the cavity field of an optomechani-

cal system have been studied widely (see, e.g., the recent

Refs. [33–37, 42] and references therein). Specifically, we

consider a standard Hamiltonian for two interacting oscilla-

tors (i.e., optical and mechanical resonators) in which the

mechanical oscillator interacts also with a two-level system

(TLS). It is worth noting that the model studied here is non-

trivial because the couplings between its constituent subsys-

tems are nonlinear. For example, the interaction between

the two oscillators is proportional to the photon number and

the position of a mechanical resonator. This nonlinear inter-

actions can induce nonlinearity of the oscillators. For ex-

ample, as will be shown below, the optical oscillator, due

to its interaction with the mechanical oscillator, can be ef-

fectively described by a Kerr-type nonlinearity. It is known

that the standard Kerr nonlinearity can induce various non-

classical effects [73, 74]. These include self-squeezing [75–

78], generation of two-component [76, 79, 80] and multi-

component [81, 82] Schrödinger cat states, and photon anti-

bunching (if the nonlinearity is driven). The latter is a signa-

ture of photon blockade (also referred to as optical state trun-

cation) [43, 44, 46], as also studied here.

The creation of photons due to the mechanical resonator

(i.e., oscillating mirror, which causes time-dependent varia-

tions of the geometry of our mesoscopic optomechanical sys-

tem) can be interpreted as a result of the dynamical Casimir

effect (DCE), which is also known as non-stationary Casimir

effect or motion-induced radiation (from a dynamically de-

forming mirror). As explained in Ref. [83]: “The term ‘dy-

namical Casimir effect’ is used nowadays for a rather wide

group of phenomena whose common feature is the creation

of quanta (photons) from the initial vacuum (or some other)

state of some field (electromagnetic field in the majority of

cases) due to time-dependent variations of the geometry (di-

mensions) or material properties (e.g., the dielectric constant

or conductivity) of some macroscopic system.” Specifically,

we can interpret the occurrence of photon blockade in the

studied system as follows: As mentioned above, the nonlinear

interaction between the mechanical and optical resonators of

our system can induce an effective Kerr-type nonlinearity of

the optical resonator. This driven Kerr nonlinearity can result

in photon blockade. Note that this driving is applied directly

via the coupling of the mechanical and optical resonators (be-

ing related to the DCE) and indirectly via the coupling of the

mechanical resonator with the TLS.

The DCE was studied in analogous systems in a number of

recent works (see, e.g., Refs. [83–89]). In particular, Ref. [83]

analyzed strong modifications of the cavity field statistics in

the DCE due to the interaction with TLSs. Here, we study

the effect of a single TLS on photon blockade as can be re-

vealed by photon antibunching. The light generated via the

DCE can exhibit various other nonclassical properties [84] in-

cluding squeezing [85–87, 90, 91].
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The paper is organized as follows: In Sec. II, we describe

the theoretical model. In Sec. III, we write down the mas-

ter equation and derive the analytical solution in the weak-

pumping limit. The photon blockade is analyzed via the

second-order degree of coherence in Sec. IV. We finally sum-

marize our results in Sec. V.

II. ENERGY LEVEL STRUCTURE OF THE HYBRID

SYSTEM

A. Theoretical model

As schematically shown in Fig. 1, we study a hybrid sys-

tem which consists of an optomechanical cavity coupled to

a TLS with its mechanical mode. We assume that there is no

direct coupling between the TLS and the cavity field of the op-

tomechanical part. In this case, the Hamiltonian of the hybrid

system can be written as

H0 = ~ωaa
†a+ ~ωbb

†b+
~

2
ωqσz − ~χa†a

(

b† + b
)

+~g
(

b† + b
)

σx. (1)

Here, a (a†) and b (b†) are the annihilation (creation) operators

of the cavity field and the mechanical resonator, respectively.

The frequencies of the cavity field and the mechanical res-

onator are denoted by ωa and ωb, respectively. The transition

frequency of the TLS is ωq. The Pauli operators σz and σx
are used to describe the TLS with the ladder operators defined

by σx = σ+ + σ−. The coupling strength between the cavity

field and the mechanical resonator is χ, and the parameter g
describes the coupling strength between the mechanical res-

onator and the TLS.

It has been shown (e.g., in Ref. [24]) that the mechanical

resonator can mediate a Kerr nonlinear interaction between

photons of the cavity field in an optomechanical system. Thus,

when the mechanical resonator is coupled to the TLS, the me-

chanical resonator will induce the effect of the TLS on the

nonlinearity of the cavity field. To see this clearly, we apply

a unitary transformation, U = exp [−χa†a(b† − b)/ωb], to

Eq. (1). Then the total Hamiltonian in Eq. (1) becomes

H ′
0 = ~ωaa

†a+ ~
2gχ

ωb
σxa

†a+
~

2
ωqσz + ~ωbb

†b

−~
χ2

ωb
a†aa†a+ ~g

(

b† + b
)

σx. (2)

Besides the energy level shift −n2χ2/ωb (n = 0, 1, 2, · · ·)
induced by the mechanical resonator with the photon num-

ber n, the interaction between the TLS and the cavity field

through 2~gχσxa
†a/ωb also leads to a photon energy level

shift 2gχ〈σx〉/ωb, which is twice the result found with the

RWA [42]. This interaction induces a new nonlinearity of the

cavity field. For example, in the case of large detuning be-

tween the cavity field and the TLS, the TLS can induce an-

other photon-photon Kerr interaction term [92]. If we define

n
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FIG. 2: (Color online) Schematic diagram of the energy levels of the

hybrid system when the TLS resonantly interacts with the mechani-

cal resonator (the ground state energy of the TLS is assumed to be 0).

Here |n〉 (n = 0, 1, 2, · · ·) represent the Fock states of the photons.

If the photon number is zero, the dressed states of the phonon and

the TLS are: |1±〉 = |1, ↓〉 ± |0, ↑〉 and |2±〉 = |2, ↓〉 ± |1, ↑〉.
Here | ↑〉 and | ↓〉 denote the eigenstates of the TLS which is

not coupled to mechanical resonator. When the photon number

is nonzero, the expressions of the wave functions for the dressed

states are given by |m̃±(n)〉 in Eq. (5) (n,m = 0, 1, 2, · · ·), and

the corresponding eigenvalues are given in Eq. (4) (in the stable

regime). Here δ1 = ∆′(1) − ∆0 and δ2 = ∆′(2) − 4∆0, where

∆′(n) = 2gχ〈σx〉/ωb and ∆0 = χ2/ωb.

∆0 = χ2/ωb as the photon nonlinearity induced by the me-

chanical resonator in the optomechanical system, then the to-

tal photon energy levels shifts for the one-photon and two-

photon states of the hybrid system are δ1 = ∆′(1)−∆0, and

δ2 = ∆′(2) − 4∆0, respectively, as schematically shown in

Fig. 2. Here, both ∆′(n) = 2gχ〈σx〉/ωb and 〈σx〉 depend on

the photon number n [42].

B. Eigenvalues and eigenstates

We now analyze the eigenvalues and eigenstates of the sys-

tem when the cavity field of the optomechanical system is in

a Fock state |n〉 with the photon number n. In this case, the

quantity χn can be considered as an effective driving field for

the coupled system of the mechanical resonator and the TLS,

and the effective Hamiltonian of the mechanical resonator and

the TLS for the photon Fock state n can be given, from Eq. (1),

as

Hb = ~ωbb
†b+

~

2
ωqσz + ~g

(

b† + b
)

σx − ~χn
(

b† + b
)

,(3)

where the constant term ~ωan has been neglected.

Let us first study the eigenvalues and eigenstates when the

mechanical resonator and the TLS satisfy the resonant inter-

action condition in Eq. (4), i.e. ∆d = ωb−ωq = 0. Under the
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RWA, the dressed state energy levels in the interaction picture

can be given as [67],

En,m,± = ±~
√
mg

[

1−
(

2χn

g

)2
]3/4

. (4)

Here, m (m = 1, 2, . . .) denotes the phonon number, and the

energy levels of the dressed states are also functions of the

photon number n. If the effective driving field is not very

strong, that is, 2χn < g, the dressed states will be stable.

Otherwise the phonons have large chances to transit to high

energy levels and the dressed states will be unstable [67, 68].

We can see from Eq. (4) that each energy level has an extra

term compared with ±~
√
mg of the common dressed states

in the resonant interaction between a TLS and a harmonic res-

onator. Here, the splitting width of the dressed states is af-

fected by the quantum states of both photons and phonons.

If the photon number is zero, the eigenvalues correspond-

ing to the dressed states in Eq. (4) become ±~
√
mg, and

the corresponding dressed states can be written as |m±〉 =

[|m, ↓〉 ± |m− 1, ↑〉] /
√
2, which are the common dressed

states of the resonant interaction between the TLS and a

harmonic resonator, as schematically shown in Fig. 2. The

dressed states, corresponding to the eigenvalues in Eq. (4),

can be written as [67],

|m̃±(n)〉 =
1√
2
[|η, β(En,m,±);m− 1〉|P 〉

±i|η, β(En,m,±);m〉|M〉] . (5)

Here |P 〉 and |M〉 correspond to quantum states of the TLS,

and the expression of |P 〉 is given by

|P 〉 =
1√
2

[

(

1 +
√
ε
)1/2 | ↑〉 −

(

1−
√
ε
)1/2 | ↓〉

]

, (6)

with ε = 1 − (2χn/g)
2
. The expression of |M〉 can be ob-

tained by replacing | ↑〉 and | ↓〉 with | ↓〉 and | ↑〉 in Eq. (6).

The state |η;β;m〉 in Eq. (5) is given as

|η;β;m〉 = D(β)S(η)|m〉. (7)

The squeezing operator in Eq. (7) is defined as S(η) =
exp [ 12 (ηb

†2 − η∗b2)], while the expression of the displace-

ment operator is D(β) = exp (βb† − β∗b). The parameters

β and η are defined as β(E) = 2iχnE/
(

~g2ε
)

, η = r, and

exp (2r) =
√
ε. We can find that the dressed states in the

hybrid system are formed by the superposition states |P 〉 and

|M〉 of the TLS, not the eigenstates | ↑〉 or | ↓〉 as in com-

mon dressed states. This leads to more complicated phenom-

ena when a probe field passes through such a system. If the

mechanical resonator and the TLS are in the large detuning

regime, the energy level spacing between two dressed states

becomes larger [67].

In circuit QED, the standard photon blockade is signifi-

cantly changed by the ultrastrong coupling between the cav-

ity field and the TLS [93]. Since the sideband-transition pro-

cesses in optomechanics usually accompany the absorption or

emission of phonons, the variation of phonon energy levels in

a hybrid system can also affect transitions of photons. So we

will also study the effect of the ultrastrong coupling between

the mechanical resonator and the TLS on the photon blockade

in the hybrid devices.

III. MASTER EQUATION AND WEAK PUMPING LIMIT

A. Master equation

To study photon blockade, we assume that the cavity field

of the hybrid system is driven by a classical field with fre-

quency ωd, the coupling strength between the driving field

and the cavity field is |Ω|. In the rotating reference frame at

the frequencyωd, the Hamiltonian of the driven hybrid system

becomes

Hr = ~∆aa
†a+ ~ωbb

†b+
~

2
ωqσz − ~χa†a

(

b† + b
)

+~g
(

b† + b
)

σx + i~
(

Ωa† − Ω∗a
)

, (8)

where ∆a = ωa − ωd describes the detuning between the

cavity field and the driving filed.

After introducing the environmental noise, the master equa-

tion of the density operator ρ for the driven hybrid system can

be given as

ρ̇ =
i

~
[ρ,Hr] + La(ρ) + Lb(ρ) + Lσ(ρ). (9)

The Lindblad dissipators for the photons and phonons are

given by

Lo(ρ) = γono

(

oρo† + o†ρo− o†oρ− ρo†o
)

+
γo
2

(

2oρo† − o†oρ− ρo†o
)

, (10)

where o = a or b corresponds to the variables of the photon

or phonon, respectively. The Lindblad dissipator for the two-

level system is

Lσ(ρ) = γqnq (σ−ρσ+ + σ+ρσ− − σ+σ−ρ− ρσ+σ−)

+
γq
2

(2σ−ρσ+ − σ+σ−ρ− ρσ+σ−) . (11)

This type of master equation was studied by, e.g, Kossakowski

et al. [94–96] already in the 1970s. Here γa, γb, and γq are

the decay rates of the photon, the phonon, and the TLS, re-

spectively, while na, nb, and nq correspond to thermal fluc-

tuation quantum numbers, with ni = 1/[exp(~ωi/(kBT ))]
(i = a, b, q) where kB is the Boltzmann constant and T is

the temperature. Usually, the thermal photon number na can

be neglected in the low-temperature limit because of the high

frequency of the cavity field.

The master equation in Eq. (9) can also be numerically

solved in the complete basis |n,m, z〉 (for n,m = 0, 1, 2, . . .,
and z =↑, ↓) in the case of weak driving field and low tem-

peratures [85, 86, 97]. Because higher excited states can be

neglected in this case, the photon and phonon numbers can be

truncated to small values. By numerically solving the mas-

ter equation, we can obtain ρ which in turn lets us calculate

various physical properties of the hybrid system.
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B. Analytical solutions in the weak-driving limit

If the driving field coupling Ω is very weak in comparison

to the Kerr nonlinearity, and also the temperature is very low,

then, due to photon blockade, only lower energy levels of the

cavity field and mechanical resonator are occupied. If the pho-

ton number n and phonon number m are truncated to n = 2
and m = 1, respectively, then the quantum state of the hybrid

system can be written by [98–100]

|ψ〉 = C00↓|0, 0, ↓〉+ C00↑|0, 0, ↑〉+ C10↓|1, 0, ↓〉
+C10↑|1, 0, ↑〉+ C01↓|0, 1, ↓〉+ C01↑|0, 1, ↑〉
+C20↓|2, 0, ↓〉+ C20↑|2, 0, ↑〉+ C11↓|1, 1, ↓〉
+C11↑|1, 1, ↑〉+ C21↓|2, 1, ↓〉. (12)

The coefficients Cnmk (with photon numbers n = 0, 1, 2,

phonon numbers m = 0, 1, and the eigenvalues k =↓, ↑ of

the dressed TLS states) describe the amplitudes of the corre-

sponding quantum states, and pnmk = |Cnmk|2 are the corre-

sponding occupation probabilities.

We use the second-order degree of coherence to describe

the statistical properties of the cavity field. The equal-time

second-order degree of coherence is defined by

g(2)(0) =
〈a†(t)a†(t)a(t)a(t)〉

〈a†(t)a(t)〉2 . (13)

In the weak-driving limit, using Eq. (12) and Eq. (13), the

second-order degree of coherence can be approximately given

as

g(2)(0) ≈ 2
(

|C20↓|2 + |C20↑|2 + |C21↓|2
)

(|C10↓|2 + |C10↑|2 + |C11↓|2 + |C11↑|2)2
. (14)

The result of Eq. (14) can be used to approximately describe

the photon statistical properties in the limit of weak driving

and low temperatures. This will be compared with numerical

results, calculated using the master equation, in the following

sections.

To obtain the coefficients C10↓, C10↑, C11↓, C11↑ C20↓,

C20↑, and C21↓ in Eq. (12), we solve the Schrödinger equa-

tion for the quantum state |ψ〉 of the hybrid system

i
d|ψ〉
dt

= H ′
r|ψ〉. (15)

Here, the effective non-Hermitian Hamiltonian

H ′
r = ~∆′

aa
†a+ ~ω′

mb
†b+

~

2
ω′
qσz − ~χa†a

(

b† + b
)

+~g
(

b† + b
)

σx + i~
(

Ωa† − Ω∗a
)

, (16)

includes dissipations with ∆′
a = ∆a − iγa/2, ω′

b = ωb −
iγb/2, and ω′

q = ωq − iγq/2. Here we assume that the ther-

mal fluctuation of the photons, phonons and the TLS can be

neglected in the extreme low-temperature limit.

Because we are interested in the statistical properties of the

cavity field in the steady state, thus we can set d|ψ〉/dt =
0. By substituting Eqs. (12) and (16) into Eq. (15), we can

1
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FIG. 3: (Color online) Equal-time second-order degree of coher-

ence g(2)(0) as a function of ∆a/ωb = (ωa − ωd)/ωb. The solid

curve in each panel is plotted with the Rabi model (without RWA),

while the dashed curve is plotted with the Jaynes-Cummings(J-C)

model (with RWA). The curves in the three panels correspond to

different coupling strengths between the mechanical mode and the

TLS: (a) g/(2π) = 1 MHz; (b) g/(2π) = 5 MHz; and (c)

g/(2π) = 15 MHz. The other parameters for the three solid curves

are: ωb/(2π) = ωq/(2π) = 10 MHz, γa/(2π) = 0.02 MHz,

γb/(2π) = 0.001 MHz, γq/(2π) = 0.002 MHz, χ/(2π) = 0.2
MHz, g/(2π) = 4 MHz, T = 1 mK, and |Ω|/(2π) = 0.02 MHz.

obtain linear equations, as shown in Eqs. (A.1)-(A.10) of the

Appendix. By solving these linear equations, we can obtain

the coefficients in Eq. (12), that is,

C11↓ = iΩη1, C11↑ = iΩη2, (17)

C10↓ = iΩη3, C10↑ = iΩη4, (18)

C20↓ = Ω2η5, C20↑ = Ω2η6, (19)

C21↓ = Ω2η7. (20)

The expressions of ηi(i = 1, 2, · · ·, 7) can be found in

Eqs. (A.12). In the weak-driving and low-temperature limit,

we find that C10↓, C10↑, C11↓, andC11↑ are proportional to Ω,

while C20↓, C20↑, and C21↓ are proportional to Ω2. The value

of C00↓ will be close to 1 and the amplitudes of the excited

state tend to 0 if the value of Ω → 0.

IV. PHOTON BLOCKADE

In an optomechanical system, the mechanical resonator

leads to the nonlinearity and energy levels shift of the cavity

field. For the single-photon state, such shift is ∆0 = χ2/ωb,

while it is 4∆0 for the two-photon state [56]. Both the pho-

ton blockade [56] and tunneling [101, 102] can occur in the

strong single-photon optomechanical coupling regime. Be-

sides mechanical mode, the TLS can also lead to the variation

of photon energy levels (see Eq. (2)). The energy level struc-

ture of the hybrid system becomes very complex since 〈σx〉 is
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a complicated function of χ [42]. The dressed states formed

by the TLS and the mechanical mode lead to the splitting of

phonon energy levels (in standard optomechanical systems).

We now study how a TLS affects the photon blockade of a

hybrid system via the second-order degree of coherence

g(2)(0) =
Tr(ρa†2a2)

[Tr(ρa†a)]2
, (21)

which is calculated here using the master equation in Eq. (9)

and will be compared to the result calculated using Eq. (14).

The value of g(2)(0) < 1 (g(2)(0) > 1) corresponds to sub-

Poisson (or super-Poisson) statistics of the cavity field, which

is a nonclassical (classical) effect. The dips ( resonant peaks)

of g(2)(0) can be used to characterize the photon blockade

(tunneling processes). The photon blockade describes the

single-photon transition, while the photon tunneling corre-

sponds to a multi-photon resonant transition.

We plot g(2)(0) as a function of ∆a/ωb in Fig. 3 by using

the master equation in Eq. (9), the curves in different pan-

els correspond to different values of the coupling strength g
between the mechanical mode and the TLS. To further study

the effect of the counter-rotating term on the photon blockade,

using the master equation in Eq. (9), we compare the numeri-

cal results of g(2)(0) with (solid curves) and without (dashed

curves) the RWA. The minimum value of g(2)(0) is smaller

than 1 at the dip near ∆a/ωb = 0 in the blue solid curve

of Fig. 3(a), so the photon blockade can be observed. If the

value of g is much smaller than the transition frequency ωq ,

the TLS has a small effect on the photon blockade in the blue

solid curve of Fig. 3(a) [compare with the black dashed curve

in Fig. 5(c)]. If the value of g becomes larger, the TLS leads

to two new dips (photon blockade) and several peaks (photon

tunneling) in the green solid curve of Fig. 3(b). This results

from the counter-terms (bσ+ + σ−b
†) which can be under-

stood by comparing the green solid and brown dashed curves

of Fig. 3(b). When the value of coupling strength g is larger

than the transition frequency of the TLS, that is g > ωq , more

dips and peaks appear in the red solid curve of Fig. 3(c). And

the minimum value of g(2)(0) near ∆a/ωb = 0 is larger than

1, so the photon blockade in this regime vanishes in ultra-

strong coupling regime. Actually, a similar phenomenon of

photon blockade in the ultrastrong coupling regime has been

studied in circuit QED [93].

Figure 4 describes the effect of the TLS transition fre-

quency on the photon blockade in the hybrid system. The blue

solid curve of Fig. 4(a) describes g(2)(0) when the mechani-

cal resonator interacts resonantly with a TLS, while the green

solid [in Figs. 4(b)] and red solid curves [in Fig. 4(c)] corre-

spond to the detuning cases. When the mechanical mode and

the TLS are in the detuning regime, the positions of the left

and right dips (relative to the point ∆a/ωb = 0) are changed

in the green solid curve of Fig. 4(b). The minimum value of

g(2)(0) of the left dip becomes larger than 1, so the photon

blockade disappears near this point. But the photon blockade

near the right dip is enhanced. If the detuning |ωq − ωb| is

larger than the coupling strength g, all the dips and peaks in-

duced by the TLS disappear in the red solid curve of Fig. 4(c),

in this case the photon blockade is similar to that of stan-

1
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)
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FIG. 4: (Color online) Equal-time second-order degree of coherence

g(2)(0) as a function of ∆a/ωb = (ωa − ωd)/ωb. The curves in

the three panels correspond to different transition frequencies of the

TLS: (a) ωq/(2π) = 10 MHz; (b) ωq/(2π) = 13 MHz; and (c)

ωq/(2π) = 20 MHz. The other parameters are as in Fig. 3, except

g/(2π) = 4 MHz.

dard optomechanical systems [see the black solid curve in

Fig. 5(c)].

The effect of the decay rate γq on the photon blockade of

optomechanical systems is discussed in Fig. 5. If the value

of γq becomes larger, the dip near ∆a/ωb = 0 is almost

invariant, but the left and right dips (relative to the point

∆a/ωb = 0) change greatly. The minimum value of g(2)(0)
near the right dip is even larger than 1, so the photon blockade

disappears in this regime. The photon blockade near the left

dip will also vanish if the value of γq continues to increase. If

the decay rate becomes very large, all the new dips and peaks

induced by the TLS vanish, and the photon blockade in the

red solid curve of Fig. 5(c) is then almost the same to that of

standard optomechanical system [see the black dashed curve

in Fig. 5(c)].

In Fig. 6, we compare the results obtained numerically by

the master equation in Eq. (9) with those obtained analyti-

cally in Eq. (14). We plot g(2)(0) as a function of the detun-

ing ∆a/ωb for T = 0. The blue solid curves in Figs. 6(a)

and 6(b) are plotted using the master equation, while the red

dashed curves are plotted with the analytical result in Eq. (14).

The results of two methods are almost the same for Fig. 6(a).

If the coupling strength g becomes larger, the deviations be-

tween the blue solid and red dashed curves in Fig. 6(b) be-

comes larger. This difference originates from the approxi-

mation when Eq. (14) was derived, because some transition

processes, such as |0, 2, ↓〉, |0, 2, ↑〉, |1, 2, ↓〉, etc., were ne-

glected.

Therefore, we conclude that the coupling strength (to the

mechanical mode), transition frequency, and the decay rate of

the TLS can be used to tune the photon blockade and tunneling

of optomechanical systems.
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FIG. 5: (Color online) Equal-time second-order degree of coherence

g(2)(0) as a function of ∆a/ωb = (ωa−ωd)/ωb. The curves in three

panels correspond to different decay rates of TLS: (a) γq/(2π) =
0.002 MHz; (b) γq/(2π) = 0.005 MHz; and (c) γq/(2π) = 0.1
MHz. Here g/(2π) = 4 MHz for the solid curves, while g/(2π) = 0
Hz for black dashed curve in panel (c), and the other parameters are

same as in Fig. 3.

V. CONCLUSIONS

We have studied single-photon blockade and tunnel-

ing(corresponding to multi-photon blockade) of a hybrid sys-

tem consisting of an optomechanical cavity and a TLS. We

find that the photon blockade of the optomechanical device is

significantly affected by a TLS when it is coupled to the me-

chanical resonator. Compared with the results of only the op-

tomechanical cavity, the TLS shifts and splits the peaks and

dips of the second-order degree of coherence of the cavity

field in the optomechanical subset. We also find that the TLS

gives rise to several new peaks and dips in the second-order

degree of coherence of the cavity field in the hybrid system.

If the coupling strength (between the mechanical mode and

the TLS) is comparable or larger than the transition frequency

of the TLS, new blockade dips and resonant peaks appear for

the second degree of coherence. Moreover the new blockade

dips and resonant peaks can be tuned if we change the transi-

tion frequency or the decay rate of the TLS. The photon anti-

bunching of hybrid systems can also be tuned if we change the

parameters of the TLS. That is, our study may provide a new

method to control and tune the nonlinearity and nonclassical

effect of the cavity field of the optomechanical system by cou-

pling to a tunable TLS. Our calculation may also provide an

approach to detect low frequency TLS using optomechanics.
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Appendix: The expansion coefficients of Eq. (16)

In the weak pumping and low temperature limit, only low

excited states of photons and phonons are occupied, then the

quantum state of the hybrid system can be written as a sum

of the finite orthogonal basis states given in Eq. (12). Con-

sidering the effect of environment noises, the effective non-

Hermitian Hamiltonian of the hybrid system can be obtained

in Eq. (16). In the steady state case, we can set d|ψ〉/dt = 0.

Substituting Eqs. (12) and (16) into Eq. (15), we obtain lin-

ear equations about the expanding coefficients of Eq. (12) as

follow:

0 =
(

ω′
q/2

)

C00↑ + gC01↓ − iΩ∗C10↑, (A.1)

0 = ∆−
1 C01↓ + gC00↑ − iΩ∗C11↓, (A.2)

0 = ∆+
1 C01↑ + gC00↓ − iΩ∗C11↑, (A.3)

0 = ∆−
2 C10↓ − χC11↓ + gC11↑ + iΩC00↓

−i
√
2Ω∗C20↓, (A.4)

0 = ∆+
2 C10↑ − χC11↑ + gC11↓ + iΩC00↑

−i
√
2Ω∗C20↑, , (A.5)

0 = ∆−
3 C11↓ − χC10↓ + gC10↑ + iΩC01↓

−i
√
2Ω∗C21↓, , (A.6)

0 = ∆+
3 C11↑ − χC10↑ + gC10↓ + iΩC01↑, (A.7)

0 = ∆−
4 C20↓ − 2χC21↓ + i

√
2ΩC10↓, (A.8)

0 = ∆+
4 C20↑ + gC21↓ + i

√
2ΩC10↑, (A.9)

0 = ∆5C21↓ − 2χC20↓ + gC20↑ + i
√
2ΩC11↓,(A.10)

with the definitions of ∆i(i = 1, 2, . . . , 9) being

∆∓
1 = ω′

m ∓ ω′
q/2,

∆∓
2 = ∆′

a ∓ ω′
q/2,

∆∓
3 = ∆′

a + ω′
m ∓ ω′

q/2,

∆∓
4 = 2∆′

a ∓ ω′
q/2,

∆5 = 2∆′
a + ω′

m − ω′
q/2. (A.11)

The equation 0 = −ω′
qC00↓/2 − iΩ∗C10↓ has no physical

meaning if |Ω| −→ 0, so it was neglected. The system has a

probability to remain in the ground state |0, 0, ↓〉 in the weak-

pumping limit, so we can set C00↓ = 1 (then the expansion

coefficients are unnormalized). The terms (i
√
2Ω∗C20↓) in

Eq. (A.4), (iΩ∗C20↑) in Eq. (A.5), and (−i
√
2Ω∗C21↓) in

Eq. (A.6) are of higher-order in Ω, so they can be neglected.

Through some calculations, we can obtain the solutions of

the expansion coefficients in Eq. (12). The corresponding co-

efficients ηi(i = 1, 2, . . . , 7) are given by

η1 =
(

χ∆+
1 λ11 + g∆+

1 λ9 −∆−
2 gλ9

)

/D1,

η2 = −
(

g∆+
1 λ8 + g∆−

2 λ8 + χ∆+
1 λ10

)

/D1,

η3 = (χη1 − gη2 − 1) /∆−
2 ,

η4 = (χη2 − λ4η1) /λ3,

η5 = (λ13λ14 + 2χgλ15) /D2,

η6 = − (λ12λ15 + 2χgλ14) /D2,

η7 = 2χ (λ13λ14 + 2χgλ15) /(∆5D2) +
√
2η1/∆5

+g (λ12λ15 + 2χgλ14) /(∆5D2), (A.12)

with D1 = ∆+
1 ∆

−
2 (λ9λ10 − λ8λ11) and D2 = λ12λ13 −

4χ2g2. The parameters λi(i = 1, 2, . . . , 15) in the above

equations are

λ1 = ∆−
1 − 2g2/ω′

q,

λ2 = ∆+
2 − 2|Ω|2/ω′

q,

λ3 = λ2 − 4|Ω|2g2/
(

λ1ω
′2
q

)

,

λ4 = g + 2g|Ω|2/
(

λ1ω
′
q

)

,

λ5 = ∆−
3 − |Ω|2/λ1,

λ6 = g + 2|Ω|2g/λ1ω′
q,

λ7 = ∆+
3 − |Ω|2/∆+

1 ,

λ8 = λ5 − χ2/∆−
2 − λ4λ6/λ3,

λ9 = gχ/∆−
2 + χλ6/λ3,

λ10 = gχ/∆−
2 + χλ4/λ3,

λ11 = λ7 − χ2/λ3 − g2/∆−
2 ,

λ12 = ∆−
4 ∆5 − 4χ2,

λ13 = ∆+
4 ∆5 − g2,

λ14 =
√
2(2χη1 +∆5η3),

λ15 =
√
2gη1 −

√
2∆5η4. (A.13)

With the expressions of ηi(i = 1, 2, . . . , 7) in Eqs. (A.12),

we can obtain the analytical result of the second-order de-

gree of coherence in Eq. (14) in the weak-pumping and low-

temperature limit.
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[73] R. Tanaś, Nonclassical states of light propagating in Kerr me-

dia, in: Theory of Non-Classical States of Light ed. V. A.

Dodonov and V. I. Man’ko (Taylor & Francis, London, 2003)

p. 267

[74] S. Haroche and J. M. Raimond, Exploring the Quantum:

Atoms, Cavities and Photons (Oxford University, Oxford,

2006).
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