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We examine coherent memory manipulation in a A-type medium, using the novel second order so-
lution presented by Groves, Clader and Eberly [J. Phys. B: At. Mol. Opt. Phys. 46, 224005 (2013)]
as a guide. The analytical solution obtained using the Darboux transformation and a nonlinear su-
perposition principle describes complicated soliton-pulse dynamics which, by an appropriate choice
of parameters, can be simplified to a well-defined sequence of pulses interacting with the medium. In
this report, this solution is reviewed and put to test by means of a series of numerical simulations,
encompassing all the parameter space and adding the effects of homogeneous broadening due to
spontaneous emission. We find that even though the decohered results deviate from the analytical
prediction they do follow a similar trend that could be used as a guide for future experiments.

PACS numbers: 42.50.Gy,42.50.Md,42.65.Tg,42.65.Sf

I. INTRODUCTION

The seminal work by McCall and Hahn [1, 2] showed
the relevance of a semiclassical treatment of light-matter
interactions for strong fields with intensities far above
the one-photon limit. In this regime, disagreements with
quantum electrodynamics are not noticeable. Their dis-
covery of self-induced transparency (SIT) showed that
new kinds of interactions beyond the well-known Beer’s
law were possible. This paved the way for a number of
interesting phenomena such as coherent population trap-
ping [3], electromagnetically induced transparency (EIT)
[4, 5], and slow and fast light [6-8], to mention a few.
There have been a number of discussions dealing with
the validity of the semiclassical theory against a full QED
treatment (see for example [9]), but no one argues about
its utility. Even today we continue to reap the benefits
from this “incomplete” theory.

Some of these phenomena have been used to achieve
light storage and manipulation [10]. Light can be slowed
up to the point where it stops and is stored in the medium
[11]. Then it can be regenerated as was observed in [12].
Some other schemes have been employed such as a combi-
nation of EIT and four-wave mixing in hot atomic vapor
[13]. The main potential application of the storage and
retrieval of light is towards quantum memories. Quan-
tum optical systems are desirable for this purpose as they
have small decoherence and short interaction times [8].
Here we test the fidelity of the complicated atom-pulse
dynamics given by the novel second order solution de-
rived in [14] to one of the major sources of decoherence:
spontaneous emission.

The interaction of strong electromagnetic fields with
atomic systems leads to nonlinear dynamics which make
it difficult to solve analytically, but it is worth the effort.
The SIT solution to the Maxwell-Bloch equation for a
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FIG. 1. (Color online) Three-level atom in A-configuration
interacting with two fields in two-photon resonance via the
common detuning A, with spontaneous emission I's from the
excited state.

two- level atom made clear the importance of the pulse
area for the interaction. This is defined as

0(z,t) = /t Oz, t)dt. 1)

When one takes the limit of infinite time we get the en-
tire area of the given pulse which follows the predictions
of the area theorem, namely, the pulse area tends to the
closest even multiple of 7. This results from the smooth-
ing properties of Doppler broadening [15] by taking the
average over the corresponding inhomogeneous distribu-
tion function of the atomic part in the evolution equation
for the field. Here we further explore the usage of non-
linear optical interaction for light storage and memory
manipulation in a A-type system (see Fig. 1) of ultra
cold atoms, where it is appropriate to neglect the effects
of collisional and Doppler broadening.



II. MATHEMATICAL MODEL

We consider the interaction of two fields with a A-
system in two-photon resonance with each field address-
ing a different atomic transition as shown in Fig. 1. Each
field interacts with the atomic system via the dipole mo-
ment operator which only links levels 1 to 3 and 2 to 3;
d = dyz |1) (3] + das 2) (3] + da1 [3) (1] + d32 |3) (2. We
write the fields in carrier-envelope form:

E(x, t) 2513(:6, t)eiksz—wist)
+ 523 (z, t)ei(kzg‘w_w%t) +c.c (2)

where w3 and wag3 are the field frequencies, k13 and kg
the vacuum wave numbers and &13(z, t) and Eyg(z,t) are
the slowly-varying field envelopes. We assume that the
envelopes change slowly over many cycles of the optical
frequency, thus justifying the slow-varying envelope ap-
proximation (SVEA). Following [14] we refer to the 1-3
field as the signal pulse and the 2-3 field as the control
pulse. In the rotating wave approximation (RWA) the
bare frequencies wy3 and we3 are eliminated in favor of
A, their common detuning, and the total Hamiltonian
takes the form:

L0 0 o
a=-"1 0 o o (3)
Q3 oz —2A

where we defined the Rabi frequencies, Q;3(x,t) = 2(?31 .
Ers(x,t)/h and Qos(w,t) = 2dss - Eas(x,t)/h, and the de-
tuning A = (B3 — E1)/h —wiz = (B3 — Ea)/h — was (E;
corresponds to the energy of level |i)). The dynamics of
the system are dictated by the von Neumann equation
for the density matrix of the atomic sample:
0p -

ih— = [H,p 4

thor = [H, 5] (4)
and by Maxwell’s wave equation in the SVEA for the
field evolution:

0 10 .
<% * z&) s = tnapn .
and
0 10 .
(% * za) fhaa =tz .

Here, we defined the atom-field coupling parameters
1153 = Nwjs|d;s|?/heoe with j =1, 2.

We consider the case of coherent short pulses for which
it is justified to neglect homogeneous relaxation processes
due to the fast interaction with the medium. This gives
us a set of eight nonlinear partial differential equations
that need to be solved simultaneously. As has been shown
by Park and Shin [16] and Clader and Eberly [17], for the

case of two-photon resonance and equal atom-field cou-
pling parameters, p13 = po3 = i, the system of equations
given by (4) and (5) become integrable and thus can be
solved by methods such as inverse scattering [18], the
Bécklund transformation [19] and the Darboux transfor-
mation [20, 21]. This can be easily shown by the intro-
duction of the constant matrix

W=i[3)(3 = ; (6)

S OO
o O O
SO O

so that Egs. (4) and (5) in the traveling-wave coordinates
T =1t—2x/cand Z = x can be expressed as:

op
ihor = [H, p] (7a)
and
815{7 e s
57 —T[W,P]- (7b)

By combining these two equations it is clear that the
Lax equation,

7,0 — 0V + U, V] =0, (8)

is satisfied where the Lax operators are defined as U=
—(i/R)H — AW and V = (in/2))p, and A is a constant
known as the spectral parameter. This effectively shows
that the Maxwell-Bloch equations (7) are integrable.

The solution obtained in [14] is a second-order solution
obtained from the nonlinear superposition of two first-
order solutions, which in turn were obtained by means
of the Darboux transformation from the trivial solu-
tion of a quiescent medium, p = |1) (1], and no fields,
Q13 = Q93 = 0. With an appropriate choice of parame-
ters, this complicated solution can be reduced to a well-
defined sequence of pulses interacting with the medium
(see Fig. 2), transferring information back and forth.

As was done in [17] we will define the total pulse area
as

Orot = V/]613] + |023|2, 9)

and we have that 6,1 = 27 for the two first-order solu-
tions. This concept can be extended to the second-order
solution by applying it to the pulses in each step of the
sequence, as long as they are sufficiently separated, as in
Fig. 2 where the two steps are separated by an ellipsis.
We will label the parameters pertaining to different steps
of the sequence of pulses by the letters a and b. For the
first step, in the limit ¢/7, < —1 we have a SIT-like signal
pulse propagating, driving population from the ground
state |1) into the excited state |3) and coherently driving
it back, thus obtaining the characteristic 2m-pulse shaped
as an hyperbolic secant. As the control pulse is only zero
in the limit of infinite negative time, some of the excited
population is coherently driven into the ground state |2),
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FIG. 2. (Color online) Hlustration of the pulse evolution dic-
tated by the second order analytical solution obtained by
Groves et al. [14]. Appropriate parameters were chosen so
that the intricate analytical solution could be simplified into
a well-defined sequence of pulses, composed of two steps (sep-
arated by the ellipsis). In the first step, at t/7. = —10 a
2m-signal pulse comes in and as it interacts with the medium,
gives way to a control pulse while storing its information at
kex1 = 0. During the storage process, which takes place be-
tween t/7, = —7.5 and 2.5, the areas of the individual pulses
are no longer equal to 27 but the total pulse area (see Eq. (9))
remains constant and equal to 27. At t/7, = 2.5 we can see
that the initial 27-signal pulse is gone and has been taken
over by a 27- control pulse propagating away at the speed of
light. The second step starts at ¢t/7, = 12.5 as a 2m-control
pulse comes in and collides with the information imprint left
by the signal pulse. During the collision, which takes place
between times t/7, = 15 and 22.5, the initial signal pulse is
retrieved and redeposited at k,x2 = 3, effectively pushing the
imprint further into the medium. Here again, during the in-
teraction the total pulse area is conserved and equal to 2m.
When the re-encoding has taken place, the control pulse re-
covers its original pulse area of 2w and propagates away at
the speed of light. The corresponding imprint is depicted in
Fig. 3.

thus amplifying the seed of the control pulse and deplet-
ing the signal pulse. During this transfer the signal pulse
encodes its information into the ground state elements
P11, p22 and p1o of the density matrix. This encoding we
refer to as an imprint. After the storage process is over
we get a 2m-control pulse propagating away at the speed
of light as it is decoupled from the medium. Both signal
and control pulses have a duration of 7,, and they are
time-matched. Therefore the ratio between their Rabi
frequencies is independent of time and given by:

Qllls(xvt) _ e—Na(w—wl) (1())
QSS(‘Tv t) ’

where the absorption coefficient is given by k, = pu7,/2,
as we are neglecting the effects of Doppler broadening,
and z is the location of the imprint. This relation shows

us how we should map the analytical solution to appro-
priate initial conditions for the numerical computation.
It is easy to see that, by integrating the previous equation
with respect to T' and by considering that our medium
starts at © = 0, we can get x1 in terms of the pulse areas:

= n (I, (1)

For the second step we start with a 2m-control pulse
of duration 7, decoupled from the medium. When this
control pulse collides with the imprint, the signal pulse
is retrieved which, upon interaction with the medium,
stores its information in a displaced location. When the
re-encoding has taken place, the control pulse recovers
its original pulse area of 27 and propagates away at the
speed of light. The end result is the displacement of the
imprint further into the medium with a w-phase shift for
p12 if 7 < 7,. The displacement is controlled by the
phase-lag parameter defined as:

TadT (12)

8% = koo — Ker1 = In

Ta — Tb

where x5 is the new location of the imprint. Note that
the addition of Doppler broadening would affect the def-
inition of the absorption coefficient and thus change the
group velocity of the pulses in the medium as was shown
in [17], but the storage procedure would carry through.
The results of creation and displacement of the imprint
are shown in Fig. 3. Continuous lines show the first im-
printed density matrix elements, and the dashed lines
show their displacements.

Having reviewed the main results of the analytical so-
lution we now address the question of how these ideas can
be used for storage and retrieval of optical pulses. The
first step is to consider media of finite length and use
Eq. (11) to determine the pulses’ input areas in order to
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0.5

FIG. 3. (Color online) Information encoding into a A-system:
Imprint as it has been encoded in the ground state density
matrix elements before (continuous line) and after the dis-
placement (dashed lines). The imprint was generated by the
pulse sequence depicted in Fig. 2, the snapshots were taken
at times t/7, = 5 for the initial imprint and t/7, = 25 for the
displaced one.



store the signal pulse at the desired location. This loca-
tion must be chosen so that most of the imprint fits in-
side the medium for optimal information storage. Signal
pulse storage takes place as described by the dynamics of
the first step in the sequence of pulses, where the control
pulse overtakes the signal pulse. Now that we have the
information stored inside the medium we want to be able
to retrieve it. To do this we inject a second control pulse
of area 27 and duration such that according to Eq. (12)
the imprint is pushed outside the medium. When the
control pulse collides with the imprint it retrieves the
signal pulse that was stored in the medium, as described
by the second step in the sequence. According to the pre-
vious results, the signal pulse travels until it reaches the
location where the imprint is supposed to be re-encoded.
However, this never takes place because the location lies
outside the medium. Thus by frustrating the signal pulse
re-storage by means of the end face of the medium we are
able to retrieve it. Of course this retrieval can be done
in any number of steps, displacing the imprint closer to
the end face before retrieving it.

III. NUMERICAL RESULTS
A. Initial Considerations

The analytical solution is fairly restrictive as it assumes
an infinite medium and 27 pulses with asymptotic hyper-
bolic secant shape with infinitely long tails. Addition-
ally, we have neglected the effects of homogeneous relax-
ation phenomena and the atom-field coupling parameters
were kept equal. As we are considering the propagation
of pulses in an ultra-cold atomic system, we can safely
omit the effects of collisional and Doppler broadening,
but spontaneous emission I's is still present and could
have a noticeable effect. We modify the von Neumann
equation (7a) to account for this:

dpu i, i r

(f?pll“l :5(213%1 - 5913013 + 73/’33 (132)

dp2e i, i r

ap;f :5923%2 - 5923023 + 73/’33 (13D)

_ap;?’ =— 5913P31 + 5913P13 - 5923032 + 5923p23

—T'3pa3 (13c)

) P i

% :§Ql3p32 - 5923P13 (13d)

;}3 =iAp13 — 5923P12 + 5913(933 —pu) — 73p13
(13e)

5’;3 =iApa3 — 5913021 + 5923(’)33 —p2) - 73%
(13f)

and for the field:

o0 .

8Z13 = 1j13P31 (14a)
o0 .

6Z23 = 123pP32. (14b)

The time and length scales are respectively defined in
terms of the duration and absorption coefficient associ-
ated with the first signal pulse. We abandon the ide-
alized conditions of infinitely long media and pulses by
considering a medium ten absorption lengths long (un-
less otherwise noted) and setting the Rabi frequencies to
zero when |7,9| < 107°. For each simulation we will con-
sider three cases: Hyperbolic secant-shaped pulses with
no decay channels, Gaussian-shaped pulses with no decay
channels and hyperbolic-secant shaped pulses with decay
channels. This allows the effects of shape and homoge-
neous broadening to be studied separately. The shape of
the pulses we will use throughout are:

Q= isech <Z> (15a)
T T
and
2
0= 5 (15b)
2nT

For the simulations, we consider a sample of 8"Rb us-
ing the D5 line and consider a pulse duration such that
7.I's = 0.01, so 7, =~ 0.26ns. For the atom-field cou-
pling parameters we have that pos/pis = 0.99998 [22].
From these estimates we clearly see that the approxima-
tions made in order to get the analytical solution were
justified. Nonetheless we need to study their effects to
determine whether these pulse dynamics are an experi-
mentally realizable scenario. For simplicity the detuning
is taken to be zero. Another thing worth noting is that
we cannot choose an arbitrary pulse duration because we
need to be able to resolve the hyperfine splitting of the
ground state but not of the excited state in order to have
a A-system. For the case of Rb we have the condition
that 0.15ns < 7, < 2ns. We could have considered Cs
atoms to attain smaller values for 7,I's by using shorter
pulses, down to 0.1ns [23]. Or if we want to use longer
pulses, we could use K but with the compromise of a
larger value for 7,I's(> 0.03) [24]. Note that the impor-
tant quantity is 7,I's and not just I's as what matters
here is how long the spontaneous decay time is with re-
spect to the interaction time between the pulses and the
atomic system.

B. Location of Initial Imprint

First, we consider how the shape and finiteness of the
pulses, as well as the effects of homogeneous relaxation,
affect the location of the first imprint. The results of the
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FIG. 4. (Color online) Location of the initial imprint: (a) as a function of the control pulse area with a 27 signal pulse, (b) as
a function of the total pulse area keeping the ratio of the pulses’ areas constant so that the predicted location is k,z1 = 5, and
(c) as a function of the duration of the control pulse with a 27 signal pulse and a predicted location of kez1 = 5. These plots
compare the location of the initial imprint for four different cases. The black solid line is the formula given by the analytical
solution, Eq. (11). The three plots with the markers represent the results of the numerical simulations for which we considered
a medium ten absorption lengths long, finite pulses taking 2 = 0 when |7,9| < 10~° and an initial 27 signal pulse. The plot
with blue circle markers represents the case of a hyperbolic secant pulse shape with 7,I's = 0, the one with green upside down
triangle markers adds the effects of spontaneous emission to the previous one with 7,I's = 0.01, and finally the plot with red
square markers considers a Gaussian-shaped pulse with 7,I'3s = 0.

numerical simulations are summarized in Fig. 4. For the
dependence on the control pulse area, Fig. 4a, we notice
that the hyperbolic secant-shaped pulse completely over-
laps the curve given by the theory. We see that the effect
of spontaneous emission is to lower the curve very slightly
while maintaining the same shape. The Gaussian-shaped
pulse clearly deviates from the expected behavior, but
keeps a predictable trend and in the grand scheme has
the same dependence, i.e., the location of the imprint in-
creases when the control pulse area decreases. The effects
of spontaneous emission on the Gaussian-shaped pulse
curve are analogous to those of the hyperbolic secant-
shaped pulse, namely, to lower the curve while keeping
the same type of dependence (the data for this case is
not presented for the sake of clarity in the figures).

The analytical solution sets the total pulse area of
each step of the process equal to 2w, but we are free
to change that in the simulations. From an experimen-
tal point of view, it is important to know this depen-
dence as it might be difficult to control the area of the
pulses with much precision. Setting the ratio of the sig-
nal to control pulse area such that Eq. (11) predicts an
imprint location of k,z1 = 5, we vary the total pulse
area (see Fig. 4b). We find that for all three cases there
appears to be a linear dependence with similar positive
slope, A(kqz1)/A6%, ~ 5/ for the hyperbolic secant
shaped- and A(kq,x1)/A0%, ~ 6.5/7 for the Gaussian-

shaped pulses. Here we only consider small variations
inherent to any realistic experimental scenario and so
this behavior cannot be extrapolated to arbitrarily large
and small pulse areas. In particular, if we consider areas
smaller than 7 then the pulses are not strong enough to
promote the necessary population transfer for the initial
SIT propagation and then the transfer from signal to con-
trol pulses. For pulse areas larger than 37 we would get
pulse breakup and thus a different kind of interaction.

Another restriction from the solution is that signal
and control pulses are time matched (this might not be
ideal for an experiment as one would have to change
the duration of the control pulses between consecutive
steps). Relaxing this condition we find a behavior sim-
ilar to the previous case (see Fig. 4c¢): the imprint lo-
cation increases with the duration of the control pulse.
Once again all three cases seem to have similar positive
slopes, A(kq21)/A(1./7s) = 0.5 for the hyperbolic se-
cants and A(kqx1)/A(1./7s) = 0.73 for the Gaussian. It
is also worth mentioning that the shape of the imprint is
the same as the one predicted theoretically (Fig. 3) for
the two cases where the pulses are hyperbolic secants,
but for the Gaussian-shaped pulse it is approximately
1.4 times wider. This is a consequence of the reshap-
ing of the Gaussian pulse to a corresponding hyperbolic
secant-shaped pulse with slightly different time duration.
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FIG. 5. (Color online) Displacement of the imprint as a function of: (a) the duration of the second control pulse, (b) the
control pulse area, and (c) the location of the initial imprint. We consider the same three cases as those described in Fig. 4,
represented by the same markers. For (a) and (b) we considered an initial 27 signal pulse with the necessary pulse area of
the corresponding control pulse so that the location of the first imprint is at xKex1 = 3. Then for (a) we kept the area of the
second control pulse equal to 27. The dashed light gray line marks the end of the medium and the black solid line is the result
predicted by Eq. (12). For (c) we considered a longer medium, 15 absorption lengths long, and we chose the control pulse
duration so that we had a displacement of 5% = 3 when the initial imprint was at Kqex1 = 3.

C. Displacement of the Imprint

Now that we know we can imprint the information
of the signal pulse into the atomic system given non-
idealized conditions, we have to study the next step of
the pulse sequence: The displacement of the imprint. In
order to do this, we select the initial pulse area of the
control pulse for each case using the results from the
previous section, so that the initial imprint is made at
Kqx1 = 3 combined with a 27 signal pulse. Then we vary
the control pulse duration and find the new position of
the imprint. The results are summarized in Fig. 5a.

As predicted by the theory, the closer 7, is to 7,, the
more the imprint is displaced. Additionally, the new im-
print is identical to the initial one except for a m-phase
shift when the control pulse duration is smaller than the
signal pulse. We also notice that the different parameters
affect the displacement in a similar way regarding the
location of the initial imprint. The hyperbolic secant-
shaped pulse closely follows the behavior dictated by
Eq. (12), while the addition of decay causes a decrease in
the displacement. However, the Gaussian-shaped pulse
causes a displacement that is typically larger than that
given by the analytical solution (here again the effects
of spontaneous emission for the Gaussian-shaped pulse
are analogous to those of the hyperbolic secant-shaped
pulse). The biggest difference from the theoretical pre-
diction is that there is an upper limit in how much the
imprint can be moved (this is true for all three cases).

This will define how close the imprint must be to the end
face so that the signal pulse can be retrieved. Another
feature is that if we consider the case 7, > 7, we get sim-
ilar results but the imprint does not present the m-phase
shift. This might be desirable if we want the retrieved
signal pulse to have the same phase as the original (as
we will see in the next section), but one must be careful
because homogeneous relaxation will affect the displace-
ment even more if the pulses interact with the medium
for a longer time.

We also explore the dependence of the displacement
with respect to the control pulse area 655 as noted before,
a parameter not accessible from the analytical solution.
As shown in Fig. 5b, the results are quite surprising. We
find that the displacement increases as we decrease the
pulse area, until it reaches a maximum (these are hidden
by the plateaus which represent that the imprint has been
pushed outside the medium) and then starts decreasing
again. For all three cases, the “optimal” pulse area is
actually less than the 27 predicted by the theory, and not
only do we have maxima for these smaller areas but the
displacement can be much greater than the one predicted
in Eq. (12).

There is also some dependence on first imprint loca-
tion, and there are two possible tendencies as shown in
Fig. 5¢c. The first is an increase in the displacement as
we increase x; until it reaches a steady value. This be-
havior is obtained when there are no decay channels and
is due to the finiteness of the medium which cuts off part



TABLE 1. Retrieval efficiency and correlation coefficient for 1
and 2 steps processes.

7 steps
Case 1 step 2 steps
n T n T
Sech 98% 1.0000 98% 1.0000
Decay 65% 0.9998 66% 0.9998
Gaussian  94% 0.9940 94% 0.9941

of the information deposited by the signal pulse, so the
closer we get to the center of the medium the more room
there is for the imprint to be made. As for the Gaussian-
shaped pulse, it is affected the most because the imprint
is wider. When we consider spontaneous emission, an-
other process takes over: The further into the medium
the first imprint is made, the less it will be displaced by
the second control pulse. This can be understood by the
fact that the longer it takes to deposit the information
of the signal pulse, the longer the decay is effective, pro-
voking some information loss and this ultimately leads to
less displacement.

D. Retrieval of the Signal Pulse

One of the most important effects of the boundaries in
the medium is to cut off the pulse transfer process of the
analytical solution, thus providing a way to retrieve the
initial signal pulse. In order to quantify the accuracy of
the retrieval process we define the retrieval efficiency as

Iout Qout 2dt
p= 15 T (1)
Il3 f|Ql3| dt

Clearly this quantity only gives information about the
output signal pulse intensity but does not take into ac-
count any possible reshaping of the pulse. To account
for this we calculate the correlation coefficient r between
the input and output signal pulses. This is particularly
important for the Gaussian-shaped pulses which are re-
shaped into hyperbolic secants as they propagate through
the medium. This has already been noted in the case of
atomic vapors at room temperature [17, 25]. From the
previous sections it should be clear that the retrieval pro-
cess can take place in any number of steps, but for the
sake of clarity we will treat only two cases: two and three
step retrieval. Additionally, we will only consider control
pulses of area equal to 27 and of duration time equal
or smaller than that of the initial signal pulse for the
displacement and retrieval steps.

Let us first consider the one-step process. Here we
want to make the imprint somewhere in the medium such
that it can be retrieved without having to move it closer
to the boundary (this limit is set by the case where we
consider homogeneous relaxation). For this we consider

the necessary pulse areas for each case so that the initial
imprint is made at k,z1 = 8, and for the second step
we consider a control pulse with the same duration as
the signal pulse, giving us the maximum displacement.
For the two-step process we will make the initial imprint
at Kqexr1 = 5, then tailor the time duration of the fol-
lowing control pulse so that we displace the imprint by
5%® = 3 and finally push the imprint outside the medium
be means of another control pulse of duration equal to
the original signal pulse. The results are summarized in
Table I. We notice that, when no decay is present, the ef-
ficiency is high (larger than 90%) but as soon as homoge-
neous relaxation is added it drops to 65% for one-step and
66% for two-step. As for the correlation coefficient, it is
fairly close to unity in all cases, indicating that the shape
of the pulse is mostly preserved throughout the storage
and retrieval procedure. The Gaussian-shaped pulses are
the ones that have the lowest r values as could have been
expected because of the reshaping during propagation.
In any case, we are able to retrieve a good portion of the
initial signal pulse and see that this does not depend on
the number of steps involved. In the one-step case, the
retrieved signal pulse has a m-phase shift with respect to
the original. The correct phase can be obtained by in-
verting the initial storing control pulse or by increasing
the duration of the second control pulse as discussed in
Sec. ITT C. In the two-step process, the signal pulse comes
out with the same phase due to the w-phase shift in the
displacement step.

IV. CONCLUSIONS

In this report we have shown that previously predicted
memory manipulation by means of idealized atomic pulse
dynamics is plausible even in non-idealized conditions.
The shape of the pulse and the effects of spontaneous
emission have an impact on the quantitative results but
the storage and retrieval of the signal pulse are achieved
in all cases. We have quantified the deviations in each
case and even shown some new features that could add
more control to the process and lift some restrictions.
The length of the medium has no effect on the memory
manipulation, but should be chosen so that most of the
information can be deposited into the medium. This may
no longer be true if we consider the reflection of the pulses
at the end face.

Another aspect that we noticed throughout this work,
and that has been noted elsewhere, is the stability against
the total pulse area. When considering pulses of different
area than 2w, be it bigger or smaller, the pulses are re-
shaped as they propagate in an effort to obtain a 27 total
area. This is completely analogous to the predictions of
the area theorem [1, 2] for an homogeneously broadened
two-level atom. Additionally, we can ask which is the
appropriate extension of the total pulse area for higher
order solutions, particularly when the two first- order so-
lutions overlap.



We can also think of extending this analysis to more
complicated pulse sequences. This would be the same as
simulating higher-order solutions of the Maxwell-Bloch
equations obtained by further applications of the nonlin-
ear superposition rule. This could possibly pave the way
for making multiple imprints belonging to different signal
pulses and then manipulating them by means of control
pulses.
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