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The low-energy spectrum of N-boson clusters with pairwise zero-range interactions is believed to
be governed by a three-body parameter. We study the ground state of N-boson clusters with infinite
two-body s-wave scattering length by performing ab initio Monte Carlo simulations. To prevent
Thomas collapse, different finite-range three-body regulators are used. The energy and structural
properties for the three-body Hamiltonian with two-body zero-range interactions and three-body
regulator are in much better agreement with the “ideal zero-range Efimov theory” results than those
for Hamiltonian with two-body finite-range interactions. For larger clusters we find that the ground
state energy and structural properties of the Hamiltonian with two-body zero-range interactions
and finite-range three-body regulators are not universally determined by the three-body parameter,
i.e., dependences on the specific form of the three-body regulator are observed. For comparison,
we consider Hamiltonian with two-body van der Waals interactions and no three-body regulator.
For the interactions considered, the ground state energy of the N-body clusters is—if scaled by the
three-body ground state energy—fairly universal, i.e., the dependence on the short-range details of
the two-body van der Waals potentials is small. Our results are compared with the literature.

PACS numbers: 03.75.-b

I. INTRODUCTION

The unitary regime, where the two-body s-wave scat-
tering length is infinitely large, can be reached in ultra
cold dilute atomic gases using Feshbach resonance tech-
niques [1]. Two-component Fermi gases were realized ex-
perimentally and found to be stable and universal even in
the large s-wave scattering length regime [2–4], i.e., the
properties of the system were found to be governed, to a
very good approximation, by the s-wave scattering length
as alone and independent of the details of the interac-
tion potential [5–7]. Unitary Bose gases, in contrast, are
short-lived [8–10]. Their properties depend on the details
of the interaction potential. Typically, this dependence
is encapsulated by a three-body parameter [11].

Efimov predicted that three identical bosons inter-
acting through two-body potentials with infinitely large
s-wave scattering length as and vanishing effective
range support an infinite number of three-body bound

states [12]. The binding momenta κ
(n)
3 of the trimers

(n labels the states) display a geometric scaling, i.e.,

κ
(n)
3 /κ

(n+1)
3 ≈ 22.6944 [11, 12]. If the binding momen-

tum of one trimer is known, that of the other trimers is
also known. Importantly, the binding momenta them-
selves cannot be determined solely from a theory that
is based on two-body zero-range potentials. Rather, a
three-body parameter is needed to regularize the prob-
lem (i.e., to set the absolute scale of the three-body spec-
trum). The three-body regulator can be introduced in
many ways. In this work, we consider three different
regularization approaches: (i) a Hamiltonian with two-
body zero-range potentials and a zero-range three-body
potential, (ii) a Hamiltonian with two-body zero-range
potentials and a purely repulsive three-body potential,
and (iii) a Hamiltonian with finite-range two-body po-

tentials and no three-body potential.

Much less is known about four- and higher-body sys-
tems at unitarity [13–21]. N -body cluster states are be-
lieved to be attached to each trimer, i.e., for a trimer with

binding momentum κ
(n)
3 , two N -body states are believed

to exist with binding momenta C
(1)
N κ

(n)
3 and C

(2)
N κ

(n)
3 ,

where C
(1)
N and C

(2)
N are dimensionless parameters that

do not depend on n. Whether four- and higher-body
parameters exist has been under debate in the literature.

The study ofN -body states attached to Efimov trimers
is challenging for several reasons. To date, no analytical
solutions for N ≥ 4 exist. Numerical treatments have
to be capable of describing vastly different length scales.
For finite-range two-body interactions, the lowest trimer
state is typically not a “pure” Efimov state. Thus, one
would ideally like to investigate N -body droplets that are
tied to the first- or second-excited trimer states. The cor-
responding N -body states (N ≥ 4; see Fig. 1 for an illus-
tration of the four-body spectrum as a function of 1/as)
are not bound states but resonance states, which are not
stable with respect to break-up into smaller sub-units.
Thus, the numerical approach of choice would ideally be
capable of treating N -body resonance states whose size
is many orders of magnitude larger than the range of the
underlying two-body potential.

To bypass these numerical challenges, this work pur-
sues, as have other works before [21, 23], an approach
that considers N -body droplets (the thick dashed lines in
Fig. 1 show the two four-body states) tied to the energet-
ically lowest-lying trimer state (thick solid line in Fig. 1).
To ensure that the trimer ground state has the key char-
acteristics of a true Efimov trimer state, we employ two-
body zero-range interactions together with a purely re-
pulsive three-body potential that serves as a regulator;
we refer to this model as 2bZR+3bRp (2b, ZR, 3b, and
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FIG. 1: (Color online) Schematic illustration of the en-
ergy spectrum for four identical bosons. The x marks the
(1/as, E) = (0, 0) point. The dotted line shows the en-
ergy of the weakly-bound dimer. The solid lines show dif-
ferent Efimov trimer states, which become unbound on the
positive scattering length side at the atom-dimer threshold.
The dashed lines show “ground state” and “excited state”
tetramers that are attached to each Efimov trimer. These
tetramer states hit the dimer-dimer threshold on the positive
scattering length side (the energy of the two dimers is shown
by the dash-dotted line). It should be noted that the excited
tetramer state turns into a virtual state for a certain region
of positive scattering lengths [22]; this detail is not reflected
in the plot.

TABLE I: Summary of potential models considered in this
work. For each model, the two-body potential V2b and the
three-body potential V3b are listed. V2b for 2bZR+3bZR,
2bZR+3bHC, and 2bZR+3bRp is the Fermi-Huang pseu-
dopotential [24]; as is set to infinity. VZR(R) for 2bZR+3bZR
is treated as a zero-range boundary condition. VHC,R0

(R) is
the hardcore repulsive potential; VHC,R0

(R) = 0 for R > R0

and VHC,R0
(R) = ∞ for R < R0. V0 and r0 for 2bG, c12 and

c6 for 2bLJ, c10 and c6 for 2b10-6, and c8 and c6 for 2b8-6
are chosen such that the s-wave scattering length is infinitely
large and the two-body system supports one zero-energy s-
wave bound state.

model V2b V3b

2bZR+3bZR 4π~
2

m
asδ

(3)(r) ∂
∂r

r VZR(R)

2bZR+3bHC 4π~
2

m
asδ

(3)(r) ∂
∂r

r VHC,R0
(R)

2bZR+3bRp 4π~
2

m
asδ

(3)(r) ∂
∂r

r
Cp

Rp

2bG V0 exp[−r2/(2r20)] —
2bLJ c12

r12
− c6

r6
—

2b10-6 c10
r10

− c6
r6

—
2b8-6 c8

r8
− c6

r6
—

R stand for two-body, zero-range, three-body, and repul-
sive, respectively, and p denotes the power of the repul-
sive three-body potential; see below). The forms of V2b
and V3b for the model 2bZR+3bRp are given in Table I
and the Hamiltonian H for N particles with mass m and

position vector rj reads

H = −
N
∑

j=1

~
2

2m
∇2

j +

N
∑

j<k

V2b(rjk) +

N
∑

j<k<l

V3b(Rjkl), (1)

where the two-body potential V2b depends on the inter-
particle distance vector rjk (rjk = rj−rk) and the three-
body potential V3b depends on the three-body hyperra-
dius Rjkl,

Rjkl =
√

(r2jk + r
2
jl + r

2
kl)/3. (2)

Importantly, the N -body HamiltonianH is well behaved,
i.e., the ground state is well defined thanks to the three-
body regulator. As we show in Sec. II, the three-body
regulator produces three-body states that share many
characteristics with the pure three-body Efimov state.
Pure three-body Efimov states are obtained if the two-
body interactions are of zero range and the hyperra-
dial boundary condition at R123 = 0 is specified [11].
Since the hyperradial boundary condition or logarithmic
derivative can be imposed via a delta-function in the hy-
perradius, we refer to this model as 2bZR+3bZR.
Our work considers the N -body ground state using a

novel Monte Carlo approach [25] that allows for the treat-
ment of two-body zero-range interactions. The Monte
Carlo approach can unfortunately not treat three-body
zero-range interactions, i.e., it is not capable of treat-
ing the Hamiltonian 2bZR+3bZR. A key objective of the
present work is then to investigate how the properties of
N -body droplets in the ground state, supported by the
model Hamiltonian 2bZR+3bRp, change with the num-
ber of particles and with the power p of the three-body
regulator. An important question is to which degree the
N -body properties are determined by the three-body pa-
rameter.
For comparison, we also consider Hamiltonian with

finite-range two-body Gaussian or van der Waals inter-
actions and no three-body interaction. The ground state
manifolds of these models, referred to as 2bG, 2bLJ,
2b10-6, and 2b8-6 (see Table I), lack—as we show—a
number of key Efimov characteristics. Two-body Gaus-
sian interactions have been employed extensively in the
literature [19, 21, 26–28], sometimes also in combination
with a repulsive three-body regulator [23, 29].
Although the structural properties of the ground state

trimers for the Hamiltonian with two-body van der Waals
interactions differ notably from those for the pure Efi-
mov trimer [30, 31], these systems exhibit universal fea-
tures [27, 32–39]. Specifically, the trimer ground state

binding momentum κ
(1)
3 at unitarity is, to a good ap-

proximation, determined by the van der Waals length
LvdW [27, 39] and independent of the short-range de-
tails. For the two-body Lenard-Jones potential, one finds

κ
(1)
3 ≈ 0.230/LvdW [40], where LvdW = (

√
mc6/~)

1/2/2.
This relationship is nowadays being attributed to van
der Waals universality. Moreover, the binding momen-
tum spacing of 23.4 between the ground state and the
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first excited state is quite close to the spacing of 22.6944
exhibited by consective pure Efimov trimers [40]. It is
thus interesting to investigate if van der Waals universal-
ity exists for N > 3, i.e., to answer the question whether
or not the N -body ground state energy depends on the
short-range details of the two-body van der Waals poten-
tial.
The remainder of this paper is organized as fol-

lows. Section II compares the properties of the three-
boson system with infinitely large s-wave scattering
length interacting through 2bZR+3bZR, 2bZR+3bHC,
and 2bZR+3bRp and illustrates the benefits and limita-
tions of these models. Section III reviews several liter-
ature results for N -body droplets. Section IV extends
the calculations for the 2bZR+3bRp interaction model
to clusters with N ≤ 15. In addition to the energy, var-
ious structural properties are discussed in detail. Sec-
tion V compares the results for the model 2bZR+3bRp
with those for systems with two-body finite-range inter-
actions (i.e., for the models 2bG, 2bLJ, 2b10-6, and 2b8-
6). Finally, Sec. VI concludes.

II. THREE-BODY SYSTEM AT UNITARITY

To understand the three-body system, it is instruc-
tive to rewrite the Hamiltonian H , Eq. (1), for N = 3
in hyperspherical coordinates [41]. To this end, we first
separate off the center of mass degrees of freedom and
restrict ourselves to states with vanishing relative orbital
angular momentum. For the 2bZR+3bZR, 2bZR+3bHC,
and 2bZR+3bRp models with infinitely large two-body
s-wave scattering length as, the hyperradial and hyper-
angular degrees of freedom separate [11, 42]. The lowest
eigen value of the hyperangular Schrödinger equation is
typically denoted by s0, where s0 ≈ 1.006ı [11, 12]. This
eigen value enters into the hyperradial Schrödinger equa-
tion with hyperradial Hamiltonian HR,

HR = − ~
2

2m

∂2

∂R2
+

~
2(s20 − 1/4)

2mR2
+ V3b(R) (3)

(for notational simplicity, the three-body hyperradius
is denoted by R throughout this section). If V3b(R)
is equal to zero, the eigen energies of the Hamiltonian
HR are not well defined. To make the problem well-
defined without explicitly introducing a length scale, a
boundary condition at R = 0, which serves as a reg-
ulator and defines a scale, can be specified. This is
the model 2bZR+3bZR. The energy spectrum of the
2bZR+3bZR model Hamiltonian displays a perfect ge-
ometric series [11]. For an eigen state with binding mo-

mentum κ
(n)
3 [the corresponding energy is (~κ

(n)
3 )2/m],

there exists a tighter and a looser bound state with bind-

ing momentum κ
(n−1)
3 = exp(π/|s0|)κ(n)3 and κ

(n+1)
3 =

exp(−π/|s0|)κ(n)3 , respectively. Here, exp(π/|s0|) is ap-
proximately equal to 22.6944. The three-body spectrum
for the 2bZR+3bZR model is not bounded from below;
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FIG. 2: (Color online) Breaking of the scale invariance for
the three-boson system at unitarity with three-body hard-
core regulator. The circles show the difference between the

binding momentum ratio κ
(n)
3 /κ

(n+1)
3 of the nth and (n+1)th

states for the model 2bZR+3bHC and the ratio exp(π/|s0|) =
22.6944 for the model 2bZR+3bZR as a function of n. The
solid line shows a fit to the data points. The breaking of the
scale invariance becomes weaker with increasing n.

in our notation, this means that n can take non-positive
values, i.e., n = . . . ,−2,−1, 0, 1, 2, . . . There exists an
infinity of three-body bound states and each hyperradial
wavefunction ψn(R) has infinitely many nodes. The hy-
perradial wavefunctions of these states collapse if scaled

by the binding momentum κ
(n)
3 , i.e., (κ

(n)
3 )1/2ψn(κ

(n)
3 R)

is the same for all states.

We now consider finite-range three-body regulators.
As a first toy model, we consider a hardcore repul-
sive three-body potential, i.e., we consider the model
2bZR+3bHC (see Table I). In this case, the hyperan-
gular and hyperradial parts separate as before and the
Hamiltonian HR supports a well defined ground state

with energy E
(1)
3 or binding momentum κ

(1)
3 (in our no-

tation, n = 1, 2, . . . ). For the nth state with binding

momentum κ
(n)
3 , the hyperradial wavefunction has n− 1

nodes. The circles in Fig. 2 show the difference between
the binding momentum ratios for the model 2bZR+3bHC
and the model 2bZR+3bZR. The binding momentum ra-
tio for the ground and first excited states of the model
2bZR+3bHC is approximately 22.7064. The deviation
from the model 2bZR+3bZR is 0.0120 or 0.053%. As
we go to excited states, the deviations decrease ex-
ponentially. A log-linear fit of the deviations yields

κ
(n)
3 /κ

(n+1)
3 − exp(π/|s0|) ≈ exp(1.823− 6.244n) (see the

solid line in Fig. 2). The overlap between the wavefunc-
tion of the ground state of the model 2bZR+3bHC and
the wavefunction of the model 2bZR+3bZR with the
same binding momentum is 0.99947, i.e., the inner re-
gion where the wavefunction for the model 2bZR+3bHC
deviates from the true Efimov wavefunction is insignif-
icant. The three-body hardcore potential breaks the
scale-invariance and introduces n-dependent energy spac-
ings.

The discontinuity of the derivative of the wavefunc-
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FIG. 3: (Color online) Binding momentum characteristics for
the three-boson system with three-body power law regulator
at unitarity. The circles show the ratio of the binding mo-
mentum of two consecutive states for the model 2bZR+3bRp
as a function of p. Panel (a) shows the binding momentum
ratio for the ground and the first excited states while panel
(b) shows the ratio for the first and the second excited states.
The solid and dashed lines show the binding momentum ratio
for the models 2bZR+3bZR and 2bZR+3bHC, respectively.

tion at R = R0 makes the three-body hardcore regu-
lator challenging to treat numerically, at least by the
path integral Monte Carlo (PIMC) technique employed in
Sec. IV. Thus, we consider three-body power law poten-
tials, which approach the hardcore potential for p→ ∞.
The circles in Fig. 3 show the binding momentum ratios
for the model 2bZR+3bRp as a function of p. Figures
3(a) and 3(b) show the binding momentum ratios for the
ground and first excited states, and the first and sec-
ond excited states, respectively. As expected, the bind-
ing momentum ratios approach the value for the model
2bZR+3bHC (dashed lines) in the large p limit. For com-
parison, the solid lines show the binding momentum ratio
for the model 2bZR+3bZR. The deviations between the
binding momentum ratios for the 2bZR+3bRp and the
2bZR+3bHC models are largest for p = 4. Similar to the
model 2bZR+3bHC, the binding momentum ratios for
the model 2bZR+3bRp approach the value exp(π/|s0|)
exponentially with increasing n.

The spacing of the momenta is not the only way to
characterize how universal the system is, i.e., how close a
given system is to the true Efimov scenario described by
the model 2bZR+3bZR. The structural properties pro-
vide additional insights. Indeed, the structures of weakly-
bound three-body systems with positive as have recently
been measured [30, 31]. We first look at the distribu-
tion of the angles θjkl between each pair of position vec-

0 π/4 π/2 3π/4 π
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P(
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FIG. 4: (Color online) Angular distributions for three iden-
tical bosons at unitarity. The circles, triangles and squares
show the angular distributions Ptot(θ), Pmin(θ), and Pmax(θ)
for the model 2bZR; these distributions are identical to those
for the models 2bZR+3bHC and 2bZR+3bRp. The solid, dot-
ted, and dashed lines show the angular distributions Ptot(θ),
Pmin(θ), and Pmax(θ) for the model 2bG.

tors, θjkl = arccos(r̂jk · r̂kl). The distribution Ptot(θ)
considers all three angles of each triangle, while the dis-
tribution Pmin(θ) [Pmax(θ)] considers only the smallest
[largest] of the three angles of each triangle. The nor-
malizations are chosen such that

∫ π

0
Ptot(θ)dθ = 3 and

∫ π

0
Pmin(θ)dθ =

∫ π

0
Pmax(θ)dθ = 1. For infinitely large

as (as considered throughout this section), these angular
distributions only depend on the hyperangles and not on
the hyperradius. Thus, they are the same for the mod-
els 2bZR+3bZR, 2bZR+3bHC, and 2bZR+3bRp. The
circles, triangles, and squares in Fig. 4 show Ptot(θ),
Pmin(θ), and Pmax(θ), respectively, for these models.
Ptot(θ) is approximately linear and approaches a finite
value for θ → 0. We are interested in the angular distri-
butions for two reasons. (i) For the models 2bG, 2bLJ,
2b10-6, and 2b8-6, the hyperangular and hyperradial de-
grees of freedom do not separate and the difference be-
tween their angular distributions and those for the two-
body zero-range models provides valuable insights (see
Ref. [40]). (ii) For the N -body clusters, the angular dis-
tributions, which depend on both the hyperangles and
the N -particle hyperradius, can serve to monitor the
three-body correlations.
Solid, dotted, and dashed lines in Fig. 4 show the an-

gular distributions Ptot(θ), Pmin(θ), and Pmax(θ), respec-
tively, of the three-body ground state for the model 2bG.
Compared to that for the two-body zero-range models,
the angular distribution near θ = 0 for the finite-range
model displays distinctly different behavior. For the
Gaussian model, the probability of finding an angle of
zero is zero and the angular distribution peaks at around
0.17π or 31◦. For the zero-range model, the angular dis-
tribution peaks at 0 and Ptot(0) is finite. This is because
the zero-range boundary condition makes the probabil-
ity to find two particles at the same position finite. A
vanishing interparticle distance corresponds to a triangle
in which one of the three angles θjkl is zero. Since the
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FIG. 5: (Color online) Radial density ρ(r) for three identical
bosons at unitarity (r is measured relative to the center of
mass of the three-body system). The dashed and solid lines
show ρ(r) for the models 2bZR+3bZR and 2bZR+3bRp with
p = 6, respectively.

angular distributions for the models 2bZR+3bZR and
2bG show distinctly different features, one might expect
that the binding momentum ratios κ(1)/κ(2) for these two

models also differ. The value of κ
(1)
3 /κ

(2)
3 for the model

2bG is 22.983, which differs by only 1.27% from that for
the model 2bZR+3bZR. This indicates that it is insuffi-
cient to only evaluate the binding momentum ratios to
judge how universal the system is. We note that the dis-
tribution P (θ) for the ground state of the N = 3 system
with two-body Lenard-Jones interactions is quite similar
to that for the ground state of the N = 3 system with
two-body Gaussian interactions [40].
We now consider the radial density ρ(r) (r is mea-

sured relative to the center of mass of the three-body
system) for the models 2bZR+3bZR and 2bZR+3bRp
with p = 6. The radial density ρ(r) is normalized such
that 4π

∫

∞

0 ρ(r)r2dr = N and depends on the hyperra-
dius and the hyperangles. The dashed and solid lines
in Fig. 5 show the radial density ρ(r) for the models
2bZR+3bZR and 2bZR+3bRp with p = 6, respectively.
For the latter, the ground state density is shown. The
radial densities are scaled by their respective binding mo-
mentum κ3. The solid and dashed lines agree well in the
large r region and differ notably in the small r region.
The deviation in the small r region comes from the fact
that the hyperradial density for the model 2bZR+3bZR
decays much slower for small R than that for the model
2bZR+3bRp. Note that even though the radial densities
for the two models differ by about a factor of two in the
small r region, the difference between the integrated con-
tributions is small because the volume element contains
an r2 factor.

III. N-BODY CLUSTERS AT UNITARITY:

OVERVIEW OF LITERATURE RESULTS

This section discusses various literature results for the
energy of weakly-bound N -body droplets (N > 3) at
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FIG. 6: (Color online) Energy per particle of N-boson clusters
at unitarity. (a) Summary of literature results. The dashed
and dotted lines show the analytical prediction by Gattobi-
gio and Kievsky [21] and Nicholson [43], respectively. The
triangles show the diffusion Monte Carlo (DMC) energies for
a Hamiltonian with two-body square well interaction and re-
pulsive three-body hardcore regulator [23]. The diamonds
show the energy for the model 2bG [28]. (b) Summary of our
PIMC calculations. The circles and pluses are for the model
2bZR+3bRp with p = 4 and 8, respectively; the error bars
(not shown) are of the order of the symbol sizes. The squares,
diamonds, and triangles are for the model 2bZR+3bRp with
p = 5, 6, and 7, respectively; the error bars (not shown) are
smaller than the symbol sizes. (c) Summary of our calcula-
tions for two-body van der Waals models. The circles, crosses,
and squares show our DMC results for the models 2bLJ, 2b10-
6, and 2b8-6, respectively.

unitarity. The diamonds in Fig. 6(a) show the N -boson
energy per particle EN/N for the model 2bG as a func-
tion of N [21, 26, 28]. The energy per particle increases
approximately linearly with N for N > 6 (for smaller N ,
some deviations from the linear behavior exist). Based
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on the fact that the energy per particle, and correspond-
ingly the binding momentum, scale linearly with N for
the model 2bG, Gattobigio et al. [21] proposed an ana-
lytical form for the N -boson system with two-body zero-
range interactions and fixed three-body parameter,

κN
κ3

= 1 +

(

κ4
κ3

− 1

)

(N − 3) (4)

[see the dashed line in Fig. 6(a)]. The ratio κ4/κ3 is not
taken from the ground state calculations for the Gaussian
two-body interaction model, for which κ4/κ3 =

√
5.86,

but from Deltuva’s calculations for highly excited four-
body resonance states. Deltuva finds the universal ratio
κ4/κ3 =

√
4.61 [17]. Gattobigio et al.’s expression, con-

verted to the energy, exhibits a leading order N2 and
sub-leading order N dependence.
It should be noted that the ground state energy of the

Hamiltonian with pairwise Gaussian interactions scales
differently with N for N & 10 than that of Hamilto-
nian with pairwise interactions with short-range repul-
sion. For interactions with repulsive core, it is well-
established that the energy per particle increases weaker
than linear for N & 10 (see, e.g., the literature on he-
lium and tritium droplets [44, 45]). Gattobigio et al. [26]
noted that Eq. (4) applies not only to systems with zero-
range interactions but also to systems with finite-range
interactions in the regime where E/N is approximately
proportional to N (e.g., to helium droplets with N . 10).
In this case, the ratio κ4/κ3 for the finite-range potential
is taken as input and the binding momentum for N > 4
is predicted. We return to this discussion in Sec. V.
Independent evidence for the leading-order N depen-

dence of the energy per particle for the Hamiltonian with
two-body zero-range interactions comes from lattice cal-
culations for even N [43]. Assuming that the distribution
of the two-body correlator is exactly log normal, Nichol-
son deduced an analytical expression for the energy per
particle, EN/N = (N/2− 1)E4/4 [see the dotted line in
Fig. 6(a)] [43]. To plot this expression, we used Deltuva’s
value of E4/E3 = 4.61. It should be noted that the coef-
ficients predicted by Gattobigio et al. and Nicholson for
the leading order N dependence differ by about a factor
of 2.
A somewhat different N -dependence of the energy per

particle was observed in the numerical calculations by
von Stecher [see triangles in Fig. 6(a)] [23]. In fact,
the idea to use a three-body regulator, as in our model
2bZR+3bRp, to make the ground state trimer large and
Efimov-like was introduced in Ref. [23]. Von Stecher em-
ployed a model Hamiltonian with two-body square well
potential with infinitely large two-body s-wave scattering
length and three-body hardcore potential. For N . 10,
the energy per particle increases approximately linearly
with increasingN . For largerN , the triangles in Fig. 6(a)
flatten. Reference [46] interpreted this as a turnover to
a N0 dependence of the energy per particle. Such a be-
havior suggests a saturation of the density for large N .
This saturation would be a consequence of the balance

of the two-body attractive and three-body repulsive in-
teractions.
The discussion above shows that the dependence of

the energies tied to Efimov trimers is not well under-
stood. Specifically, neither the functional form of the en-
ergy per particle nor the coefficients are agreed upon. In
the following sections, we attempt to understand where
the discrepancies of the literature results come from.

IV. N-BODY RESULTS AT UNITARITY FOR

THE MODEL 2bZR+3bRp

To calculate the N -boson energy for the Hamiltonian
with interaction model 2bZR+3bRp, we apply the PIMC
technique [25, 47]. The PIMC technique is an, in prin-
ciple, exact finite-temperature method; the errors, which
originate from the discretization of the imaginary time
and the stochastic evaluation of integrals, can be re-
duced systematically. To obtain the ground state en-
ergy of the N -boson Hamiltonian, the PIMC approach
has to be extended to the zero-temperature limit. Typ-
ically, this is achieved by the path integral ground state
approach [47, 48]. Here, we pursue an alternative strat-
egy. Namely, we work in the finite temperature regime
where the thermal contribution to the energy is known
and where the structural properties of interest are not
affected by the temperature. This approach was intro-
duced and benchmarked in Ref. [28]. The basic idea is
to place the droplet in a weak external harmonic confine-
ment, whose angular frequency ω is chosen such that the
center of mass energy spectrum becomes discretized and
the relative motion is unaffected by the trap. This re-
quirement corresponds to |EN | ≫ ~ω. Since the density
of states of the harmonically trapped center of mass pseu-
doparticle is known analytically, the ground state energy
EN of the N -boson droplet in free space can be extracted
from the finite-temperature energy [25, 28].
The circles, squares, diamonds, triangles, and pluses

in Fig. 6(b) show the energy per particle for the model
2bZR+3bRp with p = 4, 5, 6, 7, and 8, respectively, as
a function of N (see also Table II and the Supplemen-
tal Material [54]). For each p, the energy per particle is
scaled by the respective trimer energy per particle. For
a fixed p, the energy per particle increases monotonically
and smoothly as a function of N , i.e, even-odd effects,
which have been observed in trapped and homogeneous
two-component Fermi gases [49–51], are—if existent—
smaller than our statistical error bars. For fixed N ,
the scaled energy per particle increases with increasing p
(p ≥ 4); this increase becomes smaller with increasing p.
Similarly to von Stecher’s energy per particle [23] [trian-
gles in Fig. 6(a)], the scaled energy per particle increases
roughly linearly for smallish N and then flattens out for
larger N . This effect is most pronounced for p = 4 and
5, where the flattening sets in around N = 8 − 10, and
least pronounced for p = 8. The reason for the flattening
is that the clusters develop, for sufficiently large N , more
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TABLE II: PIMC energies for the model 2bZR+3bRp
for N = 4 − 15. Columns 2-4 show the scaled energy
EN/N/(E3/3) for p = 5, 6, and 7, respectively. The error
bars (not explicitly reported) are around 3%.

N 2bZR+3bR5 2bZR+3bR6 2bZR+3bR7
4 3.46 3.64 3.73
5 6.19 6.53 6.70
6 8.69 9.42 9.81
7 10.9 12.0 12.6
8 12.8 14.3 15.1
9 14.5 16.4 17.5
10 15.9 18.3 19.7
11 17.3 20.0 21.5
12 18.4 21.5 23.3
13 19.4 22.8 25.0
14 20.3 24.2 26.4
15 21.1 25.2 27.8
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FIG. 7: (Color online) Comparison of our PIMC energies
(left) and literature results (right) for selected N . Panels (a),
(b), and (c) show our PIMC energy per particle for N-boson
clusters interacting through the model 2bZR+3bRp as a func-
tion of p for N = 6, 10, and 13, respectively. For comparison,
panels (d), (e), and (f) show the energy per particle from
the literature for the same N . The triangles, diamonds, and
squares are from von Stecher [23], Nicholson [43], and Gatto-
bigio et al. [21]. Since the work by Nicholson is restricted to
even N , comparison for N = 13 cannot be made.

than one pair distance scale (see below for more details).
The circles in Fig. 7 replot the PIMC energy per par-

ticle for selected N . As the power p increases, the scaled
energy approaches a constant. Based on our discussion
in Sec. II, the p→ ∞ energy should coincide with the en-
ergy for the model 2bZR+3bHC. It is thus instructive to
compare our scaled energies, extrapolated by eye to the
p → ∞ limit, with those obtained by von Stecher [23],
who employed a two-body square well potential and a
three-body hardcore regulator [see triangles in Figs. 7(d)-

7(f)]. We find that our p → ∞ energy per particle lies
above von Stecher’s energy per particle by something like
10− 20%, 20− 30%, and 30− 50% for N = 6, 10, and 13,
respectively. Since the three-body sectors are treated on
consistent footing (3bRp→3bHC as p → ∞), we specu-
late that the difference arises from the different two-body
interactions. However, we did not perform calculations
to confirm this and can thus not rule out other reasons.
As can be seen from Fig. 7, Nicholson’s energy prediction
lies notably below our large p energies while Gattobigio et
al.’s prediction lies above our large p energies for N & 8.
If the N -body energies were determined solely by a

three-body parameter κ3, the model 2bZR+3bRp for dif-
ferent p would yield the same scaled energies, i.e., the
symbols in Fig. 6(b) would collapse to a single curve. The
fact that they do not collapse indicates that the three-
body parameter is not sufficient to predict the energy of
the N -boson clusters, at least not for the models consid-
ered. To gain more insight into this, it is instructive to
analyze the length scales of the model 2bZR+3bRp. Four
length scales can be identified (see rows 3–6 of Table III).
(i) The characteristic length scale Lp of the three-body
repulsive potential. (ii) The length scale L̄3 defined by
the three-body binding energy. (iii) The length scale L̄N

defined by the energy of the cluster. And, (iv) the length
scale l̄N associated with the energy per particle of the
cluster. Inspection of the definitions given in Table III
shows that L̄N and l̄N are not independent.
For p = 4–8, we find L̄3/Lp ≈ 29.3, 28.8, 27.6, 26.6, and

25.9, i.e., the trimer is significantly larger than the scale
of the underlying repulsive three-body potential. This
ensures, as discussed in Sec. II, that the trimer ground
state described by the model 2bZR+3bRp with p ≥ 4
exhibits the key characteristics of an Efimov state. It is
instructive to alternatively think about the trimer size in
terms of the average interparticle spacing r̄. For trimers
with p = 4–8, we find r̄/Lp ≈ 18.7, 18.5, 17.7, 17.1, and
16.6.
For p = 6, we find that L̄N/Lp changes from 11.2 for

N = 4 to 8.37 for N = 5 to 2.46 for N = 15. This sug-
gests that the N -boson droplet “sees” increasingly more
of the three-body regulator as N increases, i.e., that the
dependence of EN/N on p increases with increasing N .
The length scale l̄N , in contrast, suggests a larger sepa-
ration of scales; for N = 13, e.g., we have l̄N/Lp = 7.69
for p = 4 and l̄N/Lp = 6.85 for p = 8. In fact, if EN/N

scales as N , then L̄N and l̄N scale as 1/N and 1/
√
N ,

respectively. If EN/N scales as N0, then L̄N and l̄N
scale as 1/

√
N and N0, respectively. This implies that—

unless the energy scales linearly (or even weaker) with
N for large N—the properties of the N -boson droplets
are expected to be notably affected by the choice of the
three-body regulator.
Alternatively, one can consider the average interparti-

cle distance r̄ and the average sub-three-body hyperra-
dius R̄. The squares in Fig. 8(a) show the average inter-
particle spacing r̄, i.e., the expectation value of the pair
distance, as a function of N in units of 1/κ3 (left axis)
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TABLE III: Summary of the definitions of length scales. The van der Waals length LvdW is defined in Ref. [1]. Lp for p = 6
agrees with LvdW if m is replaced by the reduced two-body mass m/2.

length scale definition description
Lg r0 characteristic length scale of the two-body Gaussian potential

LvdW (
√
mc6/~)

1/2/2 characteristic length scale of the two-body van der Waals potential

Lp [1/(p − 2)
√

2mCp/~]
2/(p−2) characteristic length scale of the three-body repulsive potential

L̄3 1/κ3 = ~/
√

m|E3| length scale set by the three-body binding energy

L̄N 1/κN = ~/
√

m|EN | length scale set by the N-body binding energy

l̄N ~/
√

m|EN |/N =
√
NL̄N length scale set by the N-body binding energy per particle

r̄ average interparticle spacing
R̄ average sub-three-body hyperradius
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FIG. 8: (Color online) Expectation value r̄ of the pair dis-
tance as a function of N for N-boson systems interacting
through various models. (a) The squares are for the model
2bZR+3bRp with p = 6. (b) The triangles are for the model
2bG. (c) The circles are for the model 2bLJ. The error bars
show the variance of the pair distance. The pair distances
are plotted using two different units: (i) the inverse three-
body binding momentum (left axis) and (ii) the characteristic
length scale of the model Hamiltonian (right axis).

and in units of L6 (right axis) for the model 2bZR+3bRp
with p = 6. The error bars indicate the variance ∆r of
the pair distance, ∆r =

√

〈r2〉 − 〈r〉2, where 〈〉 indicates
the quantum mechanical expectation value [55]. As the
number of particles N increases, both the mean and vari-
ance of the pair distance are nearly constant. The mean
and variance of the pair distance are about one order of
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FIG. 9: (Color online) (a) Expectation value R̄ of the sub-
three-body hyperradius (triple size) as a function of N for N-
boson systems interacting through the model 2bZR+3bR6.
The error bars show the variance of the triple size. (b)
Triple distribution function Ptriple(R) for the N = 13 clus-
ter scaled using the three-body binding momentum κ3. The
solid lines from top to bottom at κ3R = 0.6 are for the model
2bZR+3bRp with p = 4, 5, 6, 7, and 8. The inset replots the
triple distribution functions using the binding momentum κ13

of the N = 13 droplet. In these units, the triple distribution
functions for different p collapse.

magnitude larger than the internal length scale Lp. The
relatively large variance of the Hamiltonian with model
interaction 2bZR+3bRp implies that the clusters are dif-
fuse and liquid-like. The squares in Fig. 9(a) show the av-
erage sub-three-body hyperradius R̄, i.e., the expectation
value of the triple size, as a function of N for the model
2bZR+3bRp with p = 6. The error bars indicate the
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FIG. 10: (Color online) (a) Maximum density ρmax as a func-
tion of N for N-boson systems interacting through various
models. The circles, squares, and diamonds are for the model
2bZR+3bRp with p = 5 (lowest data set), 6, and 7 (highest
data set), respectively. For comparison, the line is for the
model 2bG. (b) Same data as in (a) but replotted as the min-

imum average interparticle distance (ρmax)
−1/3. The right

axis shows the data for the model 2bZR+3bR6 in units of L6.

variance. The mean and variance of the sub-three-body
hyperradius behave similar to the mean and variance of
the pair distance.
The average pair distance and sub-three-body hyper-

radius are obtained by averaging over all possible pairs
and triples regardless of whether or not the particles are
close to each other. To get more “local” information,
we calculate the maximum density and subsequently the
closest pair distance. The circles, squares, and diamonds
in Fig. 10(a) show the maximum ρmax of the radial den-
sity for the model 2bZR+3bRp with p = 5, 6, and 7,
respectively, as a function of N . We find that unlike for
N = 3 (see Fig. 5), the radial density peaks at r = 0
for N ≥ 4. For all p, the maximum of the radial den-
sity is roughly a constant for the largest N considered.
This constant depends—as the energy per particle—on
the three-body regulator. The circles, squares, and dia-
monds in Fig. 10(b) show the smallest average pair dis-
tance for the model 2bZR+3bRp with p = 5, 6, and 7,
respectively, as a function of N . The smallest average
pair distance decreases with increasing N and approxi-
mately saturates for the largestN considered. The small-
est average pair distance is only about five times larger
than the characteristic length scale Lp of the three-body
regulator.
The above length scale discussion can be expanded by

considering distribution functions. The scaled pair dis-
tribution function 4πr2Ppair(r), normalized according to
4π

∫

∞

0 r2Ppair(r)dr = 1, tells one the probability to find
two particles at a distance r from each other. The lines
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FIG. 11: (Color online) Scaled pair distribution function
4πr2Ppair(r) for N = 13 bosons interacting through various
models. (a) The solid lines from top to bottom at κ3r = 0.8
are for the model 2bZR+3bRp with p = 4–8, scaled using
the three-body binding momentum κ3. The inset replots the
pair distribution functions scaled using the binding momen-
tum κ13 of the N = 13 droplet. In these units, the pair
distribution functions for different p collapse. (b) The dashed
and dotted lines show the scaled distribution functions for
the models 2bLJ and 2bG, respectively, using the three-body
binding momentum κ3.

from top to bottom at κ3r = 0.8 in Fig. 11(a) show the
scaled pair distribution function 4πr2Ppair(r) for N = 13
interacting through 2bZR+3bRp with p = 4–8. The am-
plitude at r = 0 is finite and roughly independent of p.
This makes sense as it is a signature of the two-body
zero-range interactions, which enforce a finite amplitude
at r = 0.

The triple distribution function Ptriple(R), normalized
according to

∫

∞

0
Ptriple(R)dR = 1, tells one the probabil-

ity to find three particles with sub-three-body hyperra-
dius R. The solid lines from top to bottom at κ3R =
0.6 in Fig. 9(b) show the triple distribution function
Ptriple(R) for N = 13 interacting through 2bZR+3bRp
with p = 4–8. The triple distribution functions are broad
and structureless, indicating that the clusters are diffuse
and liquid-like and that no small three-body sub-systems
are formed.

Figures 9(b) and 11(a) show that the distribution func-
tions Ppair(r) and Ptriple(R) do not collapse if scaled by
the three-body binding momentum κ3. The distribution
functions for p = 4 are notably broader than those for
p > 4. Figures 9(a) and 11(a) suggest that the distribu-
tion functions converge in the large p limit (i.e., in the
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FIG. 12: (Color online) Angular distribution Ptot(θ) for N-
boson clusters interacting through the model 2bZR+3bRp
with p = 6. The lines from top to bottom at θ = 0 are
for N = 5, 6, 7, 9, and 13.

three-body hardcore regulator limit). Similar behavior is
observed for otherN . As shown in the insets of Figs. 9(b)
and 11(a), the distribution functions collapse to a very
good approximation to a single curve if scaled by the
binding momentum κN of the N -body droplet. This can
be understood as a new type of universality, which is
weaker than the “Efimov universality”: The binding mo-
mentum κN allows one to collapse the distribution func-
tions for the models 2bZR+3bRp for sufficiently large p
but κN is not determined by κ3 (the latter would consti-
tute “Efimov universality”). The dominance of κN arises
because the vast majority of the wave function amplitude
is located in the classically forbidden region [52] (for pure
zero-range interactions, the classically allowed region is
reduced to a single point).
At the three-body level, the angular distribution func-

tions for the models 2bZR+3bRp and 2bZR+3bZR co-
incide since the hyperradial and hyperangular degrees of
freedom separate. This is not the case for N > 3, since
the three-body regulator depends on the N -body hyper-
radius and a subset of the 3N − 4 hyperangles. For fixed
N , we find that the dependence of the angular distribu-
tion functions Ptot(θ) on the power p of the three-body
regulator is small [much smaller than the dependence of
Ppair(r) and Ptriple(R) on p]. Figure 12 shows the an-
gular distribution function Ptot(θ) for N -boson clusters
interacting through 2bZR+3bR6 for variousN . The lines
from top to bottom at θ = 0 are for N = 5, 6, 7, 9, and
13. As the number of particles increases, the probability
of finding triangles with small angles decreases but re-
mains finite. Intuitively, this is because Ptot(θ) accounts
for all the trimer configurations and not just the “closest
trimers”.
Combining the information displayed in Figs. 6–12,

the key characteristics of the ground state of N -boson
droplets interacting through the model 2bZR+3bRp with
p ≥ 4 can be summarized as follows: (i) The depen-
dence of the energy and the structural properties on the
three-body regulator decreases with increasing p; (ii) the
dependence of the energy and the structural properties

on the three-body regulator cannot be explained by sim-
ple length scale arguments (the separation of scales is
largest for the p = 4 regulator and smallest for the p = 8
regulator); (iii) the pair and triple distribution functions
collapse to a very good approximation to a single curve
if scaled by the binding momentum of the N -body sys-
tem, suggesting that 1/κN and not 1/κ3 is the governing
length scale for N > 3.

V. RESULTS FOR OTHER INTERACTION

MODELS

We now compare the findings for N -boson systems in-
teracting through the model 2bZR+3bRp with p = 4− 8
(see the previous section) with those for N -boson sys-
tems interacting through the models 2bG, 2bLJ, 2b10-6
and 2b8-6.
We start our discussion with the model 2bG, for which

the energy per particle scales, to a very good approx-
imation, linearly with N for N & 6 [see diamonds in
Fig. 6(a)]. The model 2bG has no repulsive core and is
characterized by a single length scale, the width r0. Us-
ing a simple variational Gaussian product wave function
in the single-particle coordinates, one can readily show
that the ground state energy scales as N2 and that the
peak density increases quadratically with N . Indeed, our
calculations shown in Figs. 8(b) and 10 for up to N = 15
clearly support that the droplet shrinks with increasing
N . As can be seen in Fig. 8(b), the average interpar-
ticle distance quickly decreases to a value smaller than
r0. We conclude that the N2 scaling of the energy for
the model 2bG predominantly reflects the absence of a
repulsive core in the potential energy and less so Efimov
characteristics.
Next, we discuss the properties of the Hamiltonian in-

teracting through the van der Waals models 2bLJ, 2b10-
6, and 2b8-6. Our calculations at unitarity are per-
formed using the same atomic mass and the same c6
coefficient for the three models while the short-range
coefficients are tuned such that the dimer supports a
single s-wave bound state with zero energy. For the
three-body system, we find κ3LvdW = 0.230 for the
model 2bLJ, κ3LvdW = 0.233 for the model 2b10-6, and
κ3LvdW = 0.245 for the model 2b8-6, i.e., the three-body
binding momentum depends weakly on the short-range
scale of the two-body potential. The N -body energies per
particle, in units of the three-body energy per particle,
are summarized in Table IV. These energies are obtained
by the DMC approach [53]. Dividing the N -body ener-
gies by the corresponding three-body energy, the energy
per particle curves for the three van der Waals interac-
tion models nearly collapse [see Fig. 6(c)]. This can be
interpreted as van der Waals universality in the N -body
sector. Due to the repulsive core, the energy per particle
flattens aroundN = 10, indicating that the system starts
to grow outward, i.e., starts to form a “second layer” (of
course, the system is liquid-like and individual layers can-
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TABLE IV: DMC energies for the Hamiltonian with two-
body van der Waals interactions for N = 4−15. Columns 2-4
show the scaled energy EN/N/(E3/3) for the models 2bLJ,
2b10-6, and 2b8-6, respectively. The error bars (not explicitly
reported) are around 1%.

N 2bLJ 2b10-6 2b8-6
4 3.978 3.953 3.960
5 7.827 7.841 7.887
6 11.95 11.99 12.12
7 16.07 16.15 16.40
8 20.09 20.24 20.59
9 23.94 24.15 24.69
10 27.57 27.89 28.57
11 31.07 31.44 32.29
12 34.37 34.81 35.86
13 37.50 38.02 39.25
14 40.46 41.06 42.41
15 43.27 43.97 45.46

not be identified). Consistent with this, Fig. 8(c) shows
that the average interparticle distance first decreases with
increasing N and then slowly increases for N & 8.

The dashed line in Fig. 11(b) shows the pair distribu-
tion function of the N = 13 system interacting through
the model 2bLJ. The amplitude in the small r region
is suppressed compared to the other interaction mod-
els considered due to the repulsive two-body core. Scal-
ing r2Ppair(r) using κ13 (not shown) does not bring the
pair distribution function for the model 2bLJ in agree-
ment with the scaled pair distribution functions shown
in the inset of Fig. 11(a) for the model 2bZR+3bRp with
p = 4 − 8. This reflects the fact that a notably smaller
fraction of the wave function amplitude resides in the
classically forbidden region for the model 2bLJ than for
the model 2bZR+3bRp with p = 4− 8.

As already mentioned in Sec. III, Eq. (4) applies, ac-
cording to Ref. [26], not only to systems with zero-range
interactions but also to systems with finite-range two-
body interactions. To assess the applicability of Eq. (4),
we denote the left hand side of Eq. (4) by κapprN /κ3
and plot the normalized difference between κapprN /κ3
and the exact κN/κ3, as determined by our calcula-
tions. Circles and triangles in Fig. 13 shows the quantity
(κapprN − κN )/κN for the models 2bG and 2bLJ, respec-
tively. For N = 3 and N = 4, the normalized difference
is zero by construction. For N > 4, the normalized dif-
ference is negative for the model 2bG and positive for
the model 2bLJ. The deviations from the functional form
proposed by Gattobigio et al. increase roughly linearly
with N for the model 2bLJ, reaching 13% for N = 15,
and non-linearly for the model 2bG, reaching −20% for
N = 15. Thus if high accuracy predictions are sought,
then Eq. (4) should be used with caution.
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FIG. 13: (Color online) Assessing the applicability of Eq. (4)
for N-boson systems with two-body finite-range interactions
at unitarity. Circles and triangles show the normalized differ-
ence (κappr

N − κN )/κN for the models 2bG and 2bLJ, respec-
tively, as a function of the number of particles N .

VI. CONCLUSIONS

This paper studied weakly-bound Bose droplets at uni-
tarity. These systems are obtained by adding one atom
at a time to an Efimov trimer or a weakly-bound trimer
with Efimov characteristics. We carefully analyzed the
three-body system and then studied larger systems.

The three-body ground state of the Hamiltonian with
two-body zero-range interactions and repulsive three-
body potential (model 2bZR+3bRp) is a nearly ideal Efi-
mov state. The premise was (see also Ref. [23]) that this
would allow us to determine the universal properties of
droplets tied to a three-body Efimov state by studying
N -body ground states. Somewhat surprisingly, we found
dependences of the ground state cluster properties on the
three-body regulator, suggesting that the ground states
become less universal with increasing N . This is a some-
what disappointing finding as the treatment of N -body
excited and resonance states, which are expected to ex-
hibit universal characteristics, is a computationally much
more demanding task. Yet, our study revealed a dif-
ferent type of universality for these model Hamiltonian.
We found that if the lengths are scaled by the N -body
binding momentum, then the dependence on the three-
body regulator diminishes notably. This suggests that
the ground states of these systems are halo states [52],
i.e., states whose amplitude is predominantly located in
the classically forbidden region. The N -body binding
momentum itself is, however, not—as it would be in the
case of N -body Efimov universality—determined by the
three-body binding momentum, especially not as N in-
creases.

Hamiltonian with two-body van der Waals interaction
at unitarity were also investigated. It was found that
the energy per particle, if scaled by the three-body en-
ergy, collapses to a very good approximation to a sin-
gle curve, suggesting that the short-range details of the
van der Waals interaction impact the three- and higher-
body sectors in a similar manner (i.e., the short-range



12

details are to a very good approximation “taken out”
by scaling by the three-body energy). The calculations
presented were for Lenard-Jones and modified Lenard-
Jones potentials; the latter potentials have a −c6/r6 tail
but a softer repulsive core at small distances than typical
van der Waals interactions. We also performed calcula-
tions for (i) the true helium-helium potential scaled by
an overall factor such that the s-wave scattering length is
infinitely large and (ii) the true helium-helium potential
with modified short-range potential such that the s-wave
scattering length is infinitely large (these models were la-
beled He-He(scale) and He-He(arctan) in Ref. [40]). The
energy per particle curves for these systems, which have
a more complicated long-range tail, also collapse, to a
very good approximation, to the same curves as those
for 2bLJ, 2b10-6, and 2b8-6 if scaled by the three-body
energy. The structural properties, specifically the pair
and triple distribution functions, for the van der Waals
systems do not collapse to the same curves as those for
the 2bZR+3bRp model with p = 4 − 8 if scaled using
the N -body binding momentum κN , suggesting that a
good portion of the wave function amplitude of the van
der Waals systems is located in the classically allowed

region.

In the future, it would be interesting to extend the cal-
culations presented here to excited and resonance states.
We expect that the N -body properties become univer-
sal if sufficiently high excitations are being considered.
In the four-body sector, e.g., Deltuva [17] extracted the
universal numbers for κ4/κ3 by going to high-lying res-
onance states (in this case, “high-lying” means third or
higher resonance states). Extending calculations such as
those conducted by Deltuva to N > 4 is, however, chal-
lenging. It would also be interesting to extend the studies
presented in this paper to finite s-wave scattering lengths
and to Bose droplets with an impurity.

Acknowledgement: We thank Aksel Jensen for suggest-
ing that we think about weakly-interacting systems in
the context of classically allowed and classically forbid-
den regions. Support by the National Science Founda-
tion (NSF) through Grant No. PHY-1415112 is grate-
fully acknowledged. This work used the Extreme Sci-
ence and Engineering Discovery Environment (XSEDE),
which is supported by NSF Grant No. OCI-1053575, and
the WSU HPC.

[1] C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, “Fes-
hbach resonances in ultracold gases,” Rev. Mod. Phys.
82, 1225 (2010).

[2] B. DeMarco and D. S. Jin, “Onset of Fermi degeneracy
in a trapped atomic gas,” Science 285, 1703 (1999).

[3] C. A. Regal, M. Greiner, and D. S. Jin, “Observation of
resonance condensation of fermionic atom pairs,” Phys.
Rev. Lett. 92, 040403 (2004).

[4] M. W. Zwierlein, C. A. Stan, C. H. Schunck, S. M. F.
Raupach, A. J. Kerman, and W. Ketterle, “Condensa-
tion of pairs of fermionic atoms near a Feshbach reso-
nance,” Phys. Rev. Lett. 92, 120403 (2004).

[5] S. Giorgini, L. P. Pitaevskii, and S. Stringari, “Theory
of ultracold atomic Fermi gases,” Rev. Mod. Phys. 80,
1215 (2008).

[6] I. Bloch, J. Dalibard, and W. Zwerger, “Many-body
physics with ultracold gases,” Rev. Mod. Phys. 80, 885
(2008).

[7] D. Blume, “Few-body physics with ultracold atomic and
molecular systems in traps,” Rep. Prog. Phys. 75, 046401
(2012).

[8] B. S. Rem, A. T. Grier, I. Ferrier-Barbut, U. Eismann,
T. Langen, N. Navon, L. Khaykovich, F. Werner, D. S.
Petrov, F. Chevy, and C. Salomon, “Lifetime of the Bose
gas with resonant interactions,” Phys. Rev. Lett. 110,
163202 (2013).

[9] R. J. Fletcher, A. L. Gaunt, N. Navon, R. P. Smith, and
Z. Hadzibabic, “Stability of a unitary Bose gas,” Phys.
Rev. Lett. 111, 125303 (2013).

[10] P. Makotyn, C. E. Klauss, D. L. Goldberger, E. A. Cor-
nell, and D. S. Jin, “Universal dynamics of a degenerate
unitary Bose gas,” Nat. Phys. 10, 116 (2014).

[11] E. Braaten and H.-W. Hammer, “Universality in few-
body systems with large scattering length,” Phys. Rep.

428, 259 (2006).
[12] V. Efimov, “Energy levels arising from resonant two-body

forces in a three-body system,” Phys. Lett. B 33, 563
(1970).

[13] L. Platter, H.-W. Hammer, and Ulf-G. Meißner, “Four-
boson system with short-range interactions,” Phys. Rev.
A 70, 052101 (2004).

[14] G. J. Hanna and D. Blume, “Energetics and structural
properties of three-dimensional bosonic clusters near
threshold,” Phys. Rev. A 74, 063604 (2006).

[15] H.-W. Hammer and L. Platter, “Universal properties of
the four-body system with large scattering length,” Euro.
Phys. J. A 32, 113 (2007).

[16] J. von Stecher, J. P. D’Incao, and C. H. Greene, “Sig-
natures of universal four-body phenomena and their re-
lation to the Efimov effect,” Nat. Phys. 5, 417 (2009).

[17] A. Deltuva, “Efimov physics in bosonic atom-trimer scat-
tering,” Phys. Rev. A 82, 040701 (2010).

[18] M. R. Hadizadeh, M. T. Yamashita, L. Tomio, A. Delfino,
and T. Frederico, “Scaling properties of universal
tetramers,” Phys. Rev. Lett. 107, 135304 (2011).

[19] J. von Stecher, “Five- and six-body resonances tied to an
Efimov trimer,” Phys. Rev. Lett. 107, 200402 (2011).

[20] T. Frederico, A. Delfino, M. Hadizadeh, L. Tomio, and
M. Yamashita, “Universality in four-boson systems,”
Few-Body Syst. 54, 559 (2013).

[21] M. Gattobigio and A. Kievsky, “Universality and scaling
in the N-body sector of Efimov physics,” Phys. Rev. A
90, 012502 (2014).

[22] A. Deltuva, R. Lazauskas, and L. Platter, “Universality
in four-body scattering,” Few-Body Syst. 51, 235 (2011).

[23] J. von Stecher, “Weakly bound cluster states of Efimov
character,” J. Phys. B 43, 101002 (2010).

[24] K. Huang and C. N. Yang, “Quantum-mechanical many-

http://dx.doi.org/10.1103/RevModPhys.82.1225
http://dx.doi.org/ 10.1126/science.285.5434.1703
http://dx.doi.org/ 10.1103/PhysRevLett.92.040403
http://dx.doi.org/10.1103/PhysRevLett.92.120403
http://dx.doi.org/ 10.1103/RevModPhys.80.1215
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/ 10.1088/0034-4885/75/4/046401
http://dx.doi.org/ 10.1103/PhysRevLett.110.163202
http://dx.doi.org/10.1103/PhysRevLett.111.125303
http://dx.doi.org/ 10.1038/nphys2850
http://dx.doi.org/ 10.1016/j.physrep.2006.03.001
http://dx.doi.org/ 10.1103/PhysRevA.70.052101
http://dx.doi.org/10.1103/PhysRevA.74.063604
http://dx.doi.org/10.1140/epja/i2006-10301-8
http://dx.doi.org/10.1038/nphys1253
http://dx.doi.org/ 10.1103/PhysRevA.82.040701
http://dx.doi.org/10.1103/PhysRevLett.107.135304
http://dx.doi.org/ 10.1103/PhysRevLett.107.200402
http://dx.doi.org/ 10.1007/s00601-012-0463-6
http://dx.doi.org/ 10.1103/PhysRevA.90.012502
http://dx.doi.org/10.1007/s00601-011-0227-8
http://dx.doi.org/ 10.1088/0953-4075/43/10/101002


13

body problem with hard-sphere interaction,” Phys. Rev.
105, 767 (1957).

[25] Y. Yan and D. Blume, “Incorporating exact two-body
propagators for zero-range interactions into N-body
Monte Carlo simulations,” Phys. Rev. A 91, 043607
(2015).

[26] A. Kievsky, N. K. Timofeyuk, and M. Gattobigio, “N-
boson spectrum from a discrete scale invariance,” Phys.
Rev. A 90, 032504 (2014).

[27] P. Naidon, S. Endo, and M. Ueda, “Microscopic origin
and universality classes of the Efimov three-body param-
eter,” Phys. Rev. Lett. 112, 105301 (2014).

[28] Y. Yan and D. Blume, “Temperature dependence of small
harmonically trapped atom systems with Bose, Fermi,
and Boltzmann statistics,” Phys. Rev. A 90, 013620
(2014).

[29] M. Gattobigio, A. Kievsky, and M. Viviani, “Spectra
of helium clusters with up to six atoms using soft-core
potentials,” Phys. Rev. A 84, 052503 (2011).

[30] J. Voigtsberger, S. Zeller, J. Becht, N. Neumann,
F. Sturm, H.-K. Kim, M. Waitz, F. Trinter, M. Ku-
nitski, A. Kalinin, J. Wu, W. Schöllkopf, D. Bressanini,
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