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Using the example of dysprosium atoms in an optical lattice, we show how dipolar interactions
between magnetic dipoles can be used to obtain fractional quantum Hall states. In our approach,
dysprosium atoms are trapped one atom per site in a deep optical lattice with negligible tunneling.
Microwave and spatially dependent optical dressing fields are used to define an effective spin-1/2 or
spin-1 degree of freedom in each atom. Thinking of spin-1/2 particles as hardcore bosons, dipole-
dipole interactions give rise to boson hopping, topological flat bands with Chern number 1, and the
ν = 1/2 Laughlin state. Thinking of spin-1 particles as two-component hardcore bosons, dipole-
dipole interactions again give rise to boson hopping, topological flat bands with Chern number 2,
and the bilayer Halperin (2,2,1) state. By adjusting the optical fields, we find a phase diagram, in
which the (2,2,1) state competes with superfluidity. Generalizations to solid-state magnetic dipoles
are discussed.

PACS numbers: 67.85.-d, 73.43.-f, 37.10.Jk, 05.30.Pr

I. INTRODUCTION

In addition to their fundamental importance, topolog-
ical phases of matter may eventually enable the realiza-
tion of fault-tolerant quantum computing [1] and robust
quantum state transfer [2]. Thanks to unprecedented
controllability and purity, synthetic atomic, molecular,
and optical systems are rapidly gaining momentum in
their ability to exhibit some of the most exotic topolog-
ical phases [3–10]. Dipolar systems, such as Rydberg
atoms, polar molecules, and magnetic atoms, have re-
cently attracted a particular degree of attention thanks
to the strength of the interactions and the natural link be-
tween dipolar interactions and topology [11–19]. Indeed,
thanks to the Einstein-de-Haas effect, dipolar interaction
can convert internal angular momentum into angular mo-
mentum describing the rotation of the two interacting
dipoles around each other. It is not surprising that the
resulting rotation can be harnessed for generating effec-
tive gauge fields. However, nearly all dipolar topological
literature to date focuses on interacting topological states
arising from flat Chern bands with a Chern number equal
to one. The exception is Ref. [17], which does consider
bands with higher Chern number, but which provides no
path for making the bands sufficiently flat for realizing
interacting topological phases. In this article, utilizing
the magnetic atom dysprosium [20], we demonstrate for
the first time how to create a topological flat band with
Chern number C = 2 and to utilize the resulting band-
structure to realize the bilayer Halperin (2,2,1) fractional
quantum Hall state [21]. By adjusting applied fields, we
find a phase diagram, in which the (2,2,1) state competes

with neighboring superfluids.

The excitement behind lattice models with flat C = 2
bands stems from the fact that fractional quantum Hall
states (also referred to as fractional Chern insulators in
the context of lattice models) in C = 1 bands are typ-
ically analogous to continuum fractional quantum Hall
states in Landau levels (which also have C = 1). On the
other hand, some fractional quantum Hall states in C = 2
bands do not have simple Landau-level analogues [22, 23].
In the case of the (2,2,1) state discussed in the present
manuscript, a Landau-level analogue does exist but re-
quires the consideration of a bilayer system. There have
been several proposals for engineering flat C = 2 bands in
solid-state contexts [24–27]. At fractional filling of those
models, there is numerical evidence for the (2,2,1) state
[26, 28–30] and for other bosonic [30] and fermionic [27]
fractional quantum Hall states. The purity and control-
lability of atomic and molecular systems, as well as access
to probes not available in the solid state, make realizing
flat C = 2 bands in dipolar systems an intriguing direc-
tion. Furthermore, as we will discuss in the Outlook, in
combination with extrinsic defects [31], which are also ar-
guably easier to realize in atomic and molecular systems
than in solid-state systems, our proposal may open up
avenues for realizing other exotic topological phenomena
such as parafermionic zero modes and Fibonacci anyons.

The goal of the present manuscript is to demonstrate
the controllability and potential of magnetic dipoles for
simulating many-body phases, with a particular focus on
fractional quantum Hall states in C = 2 bands. Because
of the small energy scales that our dysprosium proposal
relies on, the constraints required by our approach are
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challenging for current-generation experiments. There-
fore, our approach should be viewed as a general frame-
work rather than an experimental blueprint. In the case
of bilayer fractional quantum Hall states, this general
framework consists of dressing dipoles to construct ef-
fective spin-1 particles, which can be mapped to two-
component hardcore bosons; dipole-dipole interactions
then give rise to boson hopping, C = 2 flat bands, and the
bilayer Halperin (2,2,1) state. Significant optimization of
our dysprosium proposal may bring it closer to experi-
mental reality. Furthermore, the control techniques that
we demonstrate for dysprosium should be readily applica-
ble to other magnetic atoms, such as erbium [32, 33] and
chromium [34], and to magnetic molecules, such as Dy2

and Er2 [35]. The latter, in particular, have larger dipole
moments than the individual atoms and will give rise to
stronger interactions, partially alleviating the problem
of small energy scales. As we discuss in detail in the
manuscript, our control techniques and the approach to
dipolar fractional quantum Hall states can also be natu-
rally generalized to solid-state magnetic dipoles, such as
Nitrogen-Vacancy defects in diamond [36]. While solid-
state defects have smaller magnetic dipoles than dyspro-
sium, one may be able to bring such defects much closer
to each other. Finally, we expect our approach to engi-
neering fractional quantum Hall states in C = 2 bands to
be also straightforwardly extendable to electric dipoles,
such as polar molecules [37] and Rydberg atoms [38],
which offer much larger energy scales and may, thus, pro-
vide an easier path towards an experimental realization.

The remainder of the article is organized as follows. In
Sec. II, we describe the effective Hamiltonian associated
with a two-dimensional lattice of ultracold dysprosium
atoms. We demonstrate that magnetic dipolar interac-
tions mediate both long-range dynamics (hopping) and
interactions. Microwave and optical radiation is used to
break time-reversal symmetry and to control the specific
nature of the atomic degrees of freedom. By tuning these
dressing parameters, we realize the ν = 1/2 fractional
Chern insulator and clarify its characteristics with a vari-
ety of numerical diagnostics. In Sec. III, we generalize our
approach to solid-state magnetic dipoles. Specifically, we
consider the example of Nitrogen-Vacancy defects in di-
amond and offer a route to sub-optical-wavelength reso-
lution dressing via patterned dielectrics. In Sec. IV, we
discuss how to realize a C = 2 topological flat band with
dysprosium, by considering an effective spin-1 atomic de-
gree of freedom. Upon populating this band-structure
with a finite density of interacting particles, we find a
ground state that exhibits a Hall conductivity σxy = 2/3
consistent with the (2,2,1) Halperin state. In Sec. V, we
elaborate on the experimental considerations and discuss
the challenges using current technologies. Finally, in Sec.
VI, we present a brief outlook.
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FIG. 1. (a) Dysprosium atoms are loaded one atom per site
into a square lattice in the X-Y plane. (b) The quantization
axis of the atoms ẑ (red) is determined by the polarization of
an applied optical field discussed below (no static magnetic or
electric fields are applied). To obtain the x-y-z coordinate sys-
tem, one rotates the X-Y -Z coordinate system by Φ0 around
the Ẑ axis and then by Θ0 around the ŷ axis. (c) The relevant
161Dy level structure (the vertical axis shows the energy) used
for obtaining the flat band with Chern number C = 1 and the
corresponding ν = 1/2 Laughlin state. The lower hyperfine
levels labeled by F are in the J = 8 ground electronic state.
Since the nuclear spin is I = 5/2, F runs from 11/2 to 21/2.
To avoid overcrowding the figure with unused energy levels,
we do not show F = 11/2, as well as most of the Zeeman
levels associated with other F levels. Far-detuned light (not
shown) defines the quantization axis by providing an ac Stark
shift ∝ M2 with an F -dependent coefficient. The 421 nm
light (magenta), which drives a transition to the F ′ = 17/2
hyperfine level of the 4f10(5I8)6s6p(1P o

1 )(8, 1)o9 state (only
2 out of 18 Zeeman states are used and hence shown), and
the microwaves (black) define the dark dressed states |↓〉 and
|↑〉. The dressing optical field is different on the two sublat-
tices [green and yellow in (a)] making the state |↑〉 sublattice-
dependent. Levels |1〉 and |2〉 comprising state |↓〉 are color-
coded red, while levels |3〉, |4〉, |5〉, and |6〉 comprising state
|↑〉 are color-coded blue.

II. C = 1 FLAT BAND AND THE ν = 1/2
LAUGHLIN STATE

To introduce the main features of dysprosium, as well
as dipolar-mediated topological flat bands and fractional
Chern insulators, we will first show how to obtain a flat
band with Chern number C = 1 and use it to realize
a ν = 1/2 Laughlin state with dysprosium. As shown
in Fig. 1(a), we consider loading 161Dy one atom per
site in a square lattice in the X-Y plane with nearest-
neighbor spacing of λlat/2 = 266 nm created with off-
resonant light of λlat = 532 nm wavelength. We further
assume that the lattice is so deep that tunneling is negli-
gible, which allows us to avoid dipolar relaxation [39] and
light-assisted collisions [40]. No static magnetic fields are
applied. Instead, the quantization axis [ẑ in Fig. 1(b)] is
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determined by an off-resonant linearly polarized optical
field (not shown), which provides a shift ∝ M2 shown
in Fig. 1(c) and discussed in detail in Sec. V. To avoid
overcrowding Fig. 1(c), most unused Zeeman states are
not shown. As shown in Fig. 1(b), the quantization axis

ẑ is pointing in a tunable direction different from Ẑ.
Optical and microwave dressing fields are then used to

construct dressed dark states |↓〉 = (|1〉 + |2〉)/
√

2 and

|↑〉 = −s |3〉 + v |4〉 + w(|5〉 + |6〉)/
√

2, where the site-
dependent coefficients s, v, and w in the definition of |↑〉
are controlled by the amplitudes of the applied fields. For
example, the Rabi frequencies Ω1 and Ω2 of the two op-
tical Raman fields coupling states |4〉 and |6〉 to an opti-
cally excited state |e〉 give rise to the following term in the
Hamiltonian: |e〉 (〈4|Ω1+〈6|Ω2). Thanks to the destruc-
tive interference of two excitation pathways, the state
|↑〉 = −s |3〉+v |4〉+w(|5〉+|6〉)/

√
2 is a zero-energy dark

eigenstate of this Hamiltonian term provided Ω2/Ω1 =

−
√

2v/w. Therefore, the ratio of the Rabi frequencies
Ω2 and Ω1 can be used to set the ratio of the amplitudes
of states |4〉 and |6〉 in the dark state |↑〉. Similarly, the
Rabi frequencies of the two microwaves coupling state |6〉
to state |F = 19/2,M = −1/2〉 can be chosen in such a
way that the amplitude of state |F = 19/2,M = −1/2〉 in
the dark state is negligible compared to the amplitude of
state |6〉. Continuing in this way, the Rabi frequencies of
the four optical and four microwave fields coupling states
|3〉, |5〉, |F = 19/2,M = −1/2〉, |6〉, and |4〉 can be chosen
to make |↑〉 the unique dark state for any desired values of
s, v, and w. As we will discuss below, the site-to-site vari-
ation of the Rabi frequencies of the optical fields can be
used to achieve the desired site-dependence of coefficients
s, v, and w needed to make a flat band. A similar pro-
cedure applies to state |↓〉, except there only microwave
fields are used, so that the composition of state |↓〉 is site-
independent. Assuming that the optical fields have Rabi
frequencies with typical amplitudes ∼ Ωdr � ∆, where
∆ is the detuning from the optically excited state, and
assuming that the microwave fields have Rabi frequen-
cies with typical amplitudes ∼ Ω2

dr/∆, the dark states
|↑〉 and |↓〉 are separated from the bright states by an
energy ∼ Ω2

dr/∆.
We choose to build our dark states |↑〉 and |↓〉 out

of Zeeman levels with small values of |M |, specifically
|M | = 3/2 and 5/2, as opposed to stretched or near-
stretched states with |M | ≈ F . This allows us to max-
imize the transition dipole moments between the states
involved and to simultaneously minimize the sensitivity
of the energy levels to stray magnetic fields. We do not
use states with |M | = 1/2 in |↑〉 and |↓〉 since such states
would complicate our analysis, as we will point out below.

Interactions between the effective spin-1/2 particles
are mediated by magnetic dipole-dipole interactions. Ig-
noring the small nuclear dipole moment, the interaction
between two dysprosium atoms i and j separated by
(R, θ, φ) in the spherical coordinates associated with the
x-y-z coordinate system [whose orientation relative to the
X-Y -Z coordinate system is determined by (Θ0,Φ0), as

shown in Fig. 1(b)], in the units of µ0(gJµB)2/(4πR3)
(where the Landé g-factor is gJ = 1.24 [41]), is given by

Ĥij = (1− 3 cos2 θ)
[
Ĵzi Ĵ

z
j − 1

4 (Ĵ+
i Ĵ
−
j + Ĵ−i Ĵ

+
j )
]

− 3
4 sin2 θ

[
e−2iφĴ+

i Ĵ
+
j + h.c.

]
. (1)

Here J = 8 is the total electronic angular momentum as-
sociated with the electronic ground state. We set ~ = 1
throughout the paper. Since |↑〉 and |↓〉 do not contain
states with |M | = 1/2, Eq. (1) does not include terms

of the form Ĵ+
i Ĵ

z
j and Ĵ−i Ĵ

z
j , which are off-resonant for

states with |M | > 1/2. The presence of these terms
would have complicated our analysis.

Assuming that the energy separation ∼ Ω2
dr/∆ of the

dark states |↑〉 and |↓〉 from the bright states is larger
than the dipole-dipole interaction strength, we project
the Hamiltonian in Eq. (1) onto the four-dimensional
Hilbert space, where each of the two atoms is in state
|↓〉 = |0〉 or |↑〉 = â† |0〉. We have introduced the cre-

ation operator â†j for a hardcore boson on site j. As

shown in Appendix A, Eq. (1) then reduces to

Ĥij = (1− 3 cos2 θ)
[
n̂in̂j

{
µ2
4(|vi|2 − |si|2)(|vj |2 − |sj |2)

− 1
8µ

2
53(w∗iwj(sis

∗
j + viv

∗
j ) + h.c.)

}
+
{
â†i âj(µ

2
26w
∗
iwj − 1

8µ
2
13(s∗i sj + v∗i vj)) + h.c.

}]
− 3

4 sin2 θ
[
e−2iφ

{
1
2µ

2
53n̂in̂j(s

∗
iw
∗
j vjwi + s∗jw

∗
i viwj)

− 1
2µ

2
13(â†i âjvjs

∗
i + âiâ

†
jvis

∗
j )
}

+ h.c.
]
, (2)

where n̂i = â†i âi and µαβ = 〈α|Ĵz,±|β〉, where the dif-
ference between the M quantum numbers of |α〉 and |β〉
determines the choice of z or ±. Notice that, in contrast
to electric-dipole implementations, the bare |F,M〉 states
in Fig. 1(c) have substantial dipole moments even in the
absence of applied fields.

The dipole-dipole interaction Hamiltonian describing
all the atoms can then be written as

Ĥdd =
∑
i6=j

[
tij â
†
i âj + Vij n̂in̂j

]
, (3)

where the hopping amplitudes tij and the density-density
interactions Vij can be read out from Eq. (2).

In Fig. 2, we show the C = 1 topological flat band
and the resulting ν = 1/2 Laughlin state on a torus, ex-
hibiting the expected gapped two-fold degenerate ground
state. Each ground state was verified to have the many-
body Chern number of 1/2 and the correct quasi-hole
statistics obeying the generalized Pauli principle [42].
The specific values, used in Fig. 2, of site-dependent co-
efficients s, v, w and of the direction of (Θ0,Φ0) of the
quantization axis relative to the X-Y -Z plane are given
in Appendix A. In particular, we would like to set arbi-
trary s, v, and w on one sublattice [yellow in Fig. 1(a)]
and arbitrary s, v, and w on the other sublattice [green
in Fig. 1(a)]. On top of that, we would like the value of
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FIG. 2. (a) Flat topological band with Chern number C = 1.
The flatness of the band (band gap divided by band width)
is ≈ 8. (b) The momentum-resolved eigenvalues for the
ν = 1/2 fractional Chern insulator with 6 hardcore bosons
on a 6 × 4 torus. The momentum sector n2 + 4n1 corre-
sponds to (kx, ky) = (n1/3, n2/2 − n1/3)π, n1 = 0, 1, 2, and
n2 = 0, 1, 2, 3. The spectrum features a gap separating two
degenerate ground states at (kx, ky) = (0, 0) and (0, π) (blue)
from the other states by a gap.

w to alternate every other row. The 421 nm optical fields
shown in Fig. 1(c) are key to generating this site depen-
dence of s, v, and w, while the microwave fields provide
spatially uniform couplings. Specifically, first, we apply
an optical field with a nonzero π-polarized component
(with respect to the quantization axis ẑ) that is uniform
across the square lattice by having the light’s k-vector
perpendicular to the plane of the atoms. Furthermore,
the beam’s polarization can always be chosen such that
its σ+ and σ− components (with respect to the quantiza-
tion axis ẑ) have equal intensity. These σ± components
will thus only result in ac Stark shifts that keep the ener-
gies of |F,M〉 and |F,−M〉 equal and that can therefore
be simply absorbed into the ac Stark shifts ∝ M2 that
define the quantization axis. Second, since 421 nm is less
than the wavelength of light λlat = 532 nm used to create
the optical lattice, we can take a beam propagating along
X̂ and rotate its k-vector slightly around Ŷ , such that,
within the XY plane of the atoms, it acquires periodic-
ity of twice the lattice spacing along X̂. We will have
two such beams corresponding to clockwise and counter-
clockwise rotations around Ŷ . We then similarly take a
beam propagating along Ŷ and rotate its k-vector slightly
around X̂, such that, within the XY plane of the atoms,
it acquires periodicity of twice the lattice spacing along
Ŷ . Again, we will have two such beams corresponding
to clockwise and counterclockwise rotations around X̂.
The electric field of each of the resulting four beams
is described by two complex numbers corresponding to
the amplitudes of the two transverse polarization com-
ponents. The resulting eight complex numbers can be
generically tuned to get no π-polarization amplitude on
any of the atoms and simultaneously arbitrary σ+ and σ−

amplitudes on the two sublattices subject to the desired
sign alternation every other row.

III. IMPLEMENTATION IN NV CENTERS

To depict the generality of our construction, we
now consider magnetic dipoles associated with Nitrogen-
Vacancy color centers in diamond. The NV center has
received a tremendous amount of interest in recent years
owing to the fact that its electronic spin can be polarized,
manipulated and optically detected under ambient con-
ditions [43–49]. Each NV center also harbors a localized
nuclear spin, which exhibits extremely long coherence
times [50]. Using a combination of these electronic and
nuclear degrees of freedom, we will demonstrate the abil-
ity to realize topological flat bands. Our approach will
be analogous to the previous section: namely, the use of
microwave and optical fields to break time-reversal sym-
metry and to realize appropriately dressed eigenstates.

The electronic ground state of each NV center is a
spin-1 triplet described by the Hamiltonian,

ĤNV = D0(Ŝz)2−µeBŜz, (4)

where D0/2π = 2.87 GHz is the zero field splitting,
µe = −(2π)2.8 MHz/G is the electron spin gyromag-
netic ratio, and B is a magnetic field applied parallel to
the NV axis. Electronic spins of two NV centers inter-
act via the magnetic dipole-dipole interaction Hamilto-
nian in Eq. (1) with the substitutions Ĵ±,z → Ŝ±,z and
gJµB → µe. The NV electronic spin is coupled via hy-
perfine interactions to the I = 1/2 nuclear spin of the
15N impurity via

ĤHF = A‖Ŝ
z Îz +A⊥(ŜxÎx + Ŝy Îy), (5)

where A‖/2π ≈ 3.0 MHz and A⊥/2π ≈ 3.7 MHz [51–
53]. We assume that a dc magnetic field tunes the en-
ergies of states

∣∣0,− 1
2

〉
and

∣∣1, 12〉 to be nearly equal
and simultaneously far-detunes the energies of states∣∣−1,± 1

2

〉
, where states are labeled by |Sz, Iz〉. The

A⊥ term in Eq. (5) mixes the
∣∣0, 12〉 and

∣∣1,− 1
2

〉
states,

yielding the energy levels shown versus magnetic field in
Fig. 3(a), where we have defined the eigenstates |A〉 =
β
∣∣1,− 1

2

〉
− α

∣∣0, 12〉, |B〉 =
∣∣0,− 1

2

〉
, |C〉 =

∣∣1, 12〉, and

|D〉 = α
∣∣1,− 1

2

〉
+ β

∣∣0, 12〉. To allow for resonant hops of
spin excitations, we work at B ≈ −1028 G where states
|B〉 and |C〉 are nearly degenerate. This near-degeneracy

is needed to keep the crucial Ĵ+
i Ĵ

+
j (i.e. Ŝ+

i Ŝ
+
j ) transi-

tions of Eq. (1) resonant. In the dysprosium implementa-
tion, the corresponding degeneracy of the Zeeman levels
M and −M was achieved by working at zero magnetic
field.

The effective states we use on each NV center are |0〉 =
|A〉 and |1〉 = s|B〉+v|C〉+w|D〉. Analogous to the case
of dysprosium, the coefficients s, v, w are determined via
an optical “M” dressing scheme [Fig. 3(b)] where the two
excited states are |±〉 ∝ |Ex〉±|A2〉, with |Ex〉 , |A2〉 being
two specific electronic excited states of the NV [54, 55].
The state |1〉 is the so-called dark state of the M-scheme
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FIG. 3. (a) Magnetic field required to tune the hyperfine
coupled NV states to their desired resonances. (b) Optical
dressing M-scheme which enables sufficient control to realize
topological flat bands.

with s = Ω2Ω4/Ω̃, v = Ω1Ω3/Ω̃, and w = −Ω1Ω4/Ω̃,

where Ω̃ is a normalization. Note that lasers 1 and 3 must
be linearly polarized, while lasers 2 and 4 are circularly
polarized. This elliptical polarization of light explicitly
breaks time-reversal symmetry.

The mixing angle tan(θi) = |si/vi| characterizes the
strength of the effective dipole moment of |1〉, thereby
determining the magnitude of the interactions. In the
limit θi → 0, we have s → 0; since the state |B〉 carries
no electronic spin dipole moment, the dipolar interac-
tion strength increases as θi → 0. Topological flat-bands
are found for a variety of parameter regimes, and frac-
tional Chern insulating ground states are typically ob-
tained for θi > 0.5, where long-range interactions are
relatively weak.

A. Optical Dressing and Strain

One challenge that arises in the context of implement-
ing topological phases with solid-state magnetic dipoles is
the ability to vary dressed states on length scales smaller
than an optical wavelength. Indeed, to obtain flat topo-
logical band structures, we require spatially inhomoge-
neous optical dressing from site to site, a nontrivial task
for lattice spacings a ∼ 20 nm (required to achieve suf-
ficiently strong magnetic dipole-dipole interactions) well
below optical resolution. In the case of NVs, one can, in
principle, accomplish this task by modulating an applied
dc electric field from site to site, using a patterned con-
ducting nanostructure on the surface of the diamond as
shown in Fig. 4. A dc electric field applied parallel to the
NV axis shifts the electronic excited state with respect to
the ground state triplet due to its strong electric dipole
moment, dES‖ ∼ (2π)1 MHz cm/V. The ground state

dipole moment is significantly weaker, dGS‖ ∼ (2π)0.35Hz

cm/V, and can be safely neglected [55]. Thanks to the
application of a dc voltage between the patterned surface
conductor and a back gate, the electric field on red and
blue sites tunes the optical transitions of the NV centers
in and out of resonance with red and blue optical driving
lasers, which are applied globally [Fig. 4(b)]. For a dia-
mond sample of thickness 10 µm, an applied voltage of
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FIG. 4. Control of solid-state spins. (a) Two dimensional ar-
ray of implanted NV centers near diamond 110 surface, with
NV lattice spacing a = 20 nm. A uniform applied electric field
and a dielectric nanostructure patterned on the surface modu-
late the displacement field at each NV center. (b) Schematic
optical dressing scheme. The left panel corresponds to the
bare level structure and the right panel corresponds to the
shifted level structure in the presence of gating. Spin states
|∓1〉 in the electronic ground state are coupled to the |A2〉
excited state with σ± polarized light. We have left out the hy-
perfine structure for simplicity. Modulated displacement field
brings the two frequencies (red and blue) of optical dressing
in and out of resonance. (c) Patterned dielectric on the sur-
face of diamond (with an indium tin oxide back gate) which
can yield a local dc field on the order of 103V/cm as shown
in (d).

V ∼ 1 V generates a dc field of E ∼ 103 V/cm [Fig. 4(d),
field difference between two x’s], resulting in excited state
shifts of order ∼ GHz, which is significantly larger than
the intrinsic line width γe/2π ∼ 10 MHz.

While this approach, in principle, allows for a site-
dependent optical dressing, one needs to be extremely
careful to consider the effects of local strain fields. These
strain fields couples to NVs in the same way as an ef-
fective electric field. In diamond grown by chemical va-
por deposition (CVD) and implanted with NV centers,
unwanted defects unavoidably lead to local variations in
strain. The two predominant sources of strain in CVD di-
amond are point defects, such as vacancy clusters and in-
terstitials, and line defects, such as stacking faults which
align along the growth direction.

To estimate the strain from point defects, we take a
defect concentration of 0.0001% [56–58], corresponding
to an average point defect separation of r̄pt ∼ 20 nm.
For a defect strength of A ∼ 10−4 nm3, the resulting
strain variations are of order ε ∼ A/r̄3pt ∼ 10−8, inducing
shifts of the NV excited state of ∼ 10 MHz [59–61].

Next we turn to the expected dominant source of lo-
cal strain variation, arising from stacking faults aligned
along the diamond growth direction. We model the strain
from stacking faults using elasticity theory and assuming
straight line defects. For a typical Burgers vector of mag-
nitude b ∼ 2 Å, the strain at distance r̄lin from the line
defect is given by ε ∼ bµ/ [2π(1− ν)r̄lin], where µ is the
shear modulus in diamond and ν is Poisson’s ratio [62].
For an areal density of 104/cm2 [63], we have an average
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distance of ∼ 100 µm between line defects. We estimate
typical strain variations of 1 GHz to 10 GHz on length
scales of 100 µm, in agreement with recent experiments
[64]. However, we expect much smaller strain variations
on length scales smaller than r̄lin. In particular, in a
250 nm× 250 nm region between line defects, numerical
simulations give average strain variations of ∼ 10 MHz.

These estimates suggest that local strain variations in
a small NV lattice might not destroy the spatially inho-
mogeneous optical dressing obtained via patterned elec-
tric fields; however, such an implementation is extremely
challenging and our discussion of NV centers is meant
mainly as a proof-of-principle analysis.

IV. C = 2 FLAT BAND AND THE HALPERIN
(2,2,1) STATE

Having demonstrated the generality of our approach by
extending it to NV centers in diamond, we now switch
back to the dysprosium implementation. Having intro-
duced in Sec. II the potential of dysprosium for creat-
ing fractional quantum Hall states on the example of the
ν = 1/2 Laughlin state and the underlying C = 1 flat
band, we now move on to the construction of the topo-
logical flat band with Chern number C = 2. At ν = 1/3
filling fraction, this band will give rise to the Halperin
(2,2,1) bilayer fractional quantum Hall state.

We will follow the idea of Ref. [26] for generating the
C = 2 flat topological band. Suppose one has created a
C = 1 flat topological band on a square lattice with a
two-site unit cell for a boson â, like we did above for the
hardcore bosons arising from the spin-1/2 model in dys-

prosium. Now let us introduce another species b̂ of bosons
that obeys exactly the same hopping Hamiltonian, except
it is shifted relative to the hopping Hamiltonian for â by
one lattice site in the X direction. Diagonalizing the re-
sulting Hamiltonian clearly gives four bands: two C = 1
bands and two C = −1 bands. The idea is then to merge
the two flat C = 1 bands into a single flat C = 2 band.
To do this, on one sublattice, one defines the hardcore

boson Â = â and the hardcore boson B̂ = b̂, while on the

other sublattice one does the opposite and defines Â = b̂
and B̂ = â. The resulting model recovers the full transla-
tional symmetry of the lattice and has therefore only two
bands with C = ±2. We will realize the vacuum state
and the two species of bosons on each site using a spin-1
particle. Therefore, our bosons will be hardcore both to
themselves and to each other, interactions that will be
sufficient for realizing the Halperin (2,2,1) bilayer state.

We start with the same equation (1) as in the C = 1
discussion, but now project onto dressed states |↓〉, |↑〉,
and |⇑〉, whose precise construction in terms of the
ground hyperfine states of 161Dy is relegated to Appendix

B. We then define |0〉 = |↓〉, â† |0〉 = |↑〉, and b̂† |0〉 = |⇑〉.
Choosing the dressed states in such a way that long-range
density-density interactions vanish and such that â† and

b̂† have the same hopping matrix elements t′ij (corre-
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FIG. 5. (a) Flat topological band with Chern number C = 2.
The flatness of the band (band gap divided by band width)
is ≈ 11. (b) The momentum-resolved eigenvalues for the
ν = 1/3 fractional Chern insulator with 4 two-component
hardcore bosons on a 3 × 4 torus. The momentum sector
corresponds to (kx, ky) = (2n1/3, n2/2)π, n1 = 0, 1, 2, and
n2 = 0, 1, 2, 3. The spectrum features a gap separating the
three degenerate ground states at (kx, ky) = (0, 0), (2π/3,0),
and (4π/3,0) (blue) from the other states by a gap.

sponding to a C = 1 flat band) but shifted relative to
each other by one unit in the X direction, we obtain

Ĥdd =
∑
i 6=j

(t′ij â
†
i âj + t′

i−X̂,j−X̂ b̂
†
i b̂j). (6)

Following the above-described redefinition from (â, b̂) to

(Â, B̂), we arrive at a Hamiltonian describing a C = 2
flat band. In Fig. 5(a), we show the resulting C = 2
flat topological band. At ν = 1/3 filling fraction, we
will show that this topological flat band gives rise to the
bilayer Halperin (2,2,1) state [21] shown in Fig. 5(b). To
understand the nature of this state, it is helpful to turn to
the usual K-matrix description of bilayer quantum Hall
systems, with wavefunction

∏
i<j(z1i − z1j)l

∏
i<j(z2i −

z2j)
m
∏
i,j(z1i − z2j)ne−

1
4 (

∑
i |z1i|2+

∑
j |z2j |2), where zpi is

the complex lattice coordinate of the ith hardcore boson
in the pth layer. Here, l and m are even integers so that
the wavefunction is consistent with Bose statistics, while
n can be any non-negative integer. The K-matrix is then
defined as

K =

[
l n
n m

]
.

In our case, from the structure factor, one finds that the
state does not seem to preference a specific orbital type,
suggesting a charge vector ~q = (1, 1). The transverse
Hall conductance σxy is then given by

σxy = qK−1q. (7)

From the numerics, we observe a gapped three-fold de-
generate ground state on a torus, each exhibiting a trans-
verse Hall conductance, σxy = 2/3 [26, 28]. Combined
with the fact that ground state degeneracy is given by
the determinant of K, this suggests that we are indeed
observing the (l,m, n) = (2, 2, 1) state.

In Fig. 6, we show the entire C = 2 phase diagram [as
a function of electric field tilt angle (Θ0,Φ0)], where the
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FIG. 6. The phase diagram obtained by starting with the
Halperin (2,2,1) state shown in Fig. 5 (red circle) and varying
the direction (Θ0, Φ0) of the quantization axis.

state in Fig. 5(b) is a single point (shown as a red cir-
cle) at Θ0 = 0.68 and Φ0 = 5.83. Similarly to Fig. 5, the
phase diagram is obtained using exact diagonalization on
a 3 × 4 torus, with two orbitals per site, and a total of
4 particles, corresponding to a density of ν = 1/3 parti-
cles per unit cell. The finite momentum superfluid has
states which twist into the continuum but the ground
state looks like it is at finite momentum instead of in
the (kx, ky) = (0, 0) sector. The phase diagram is (a
schematic smoothed version) based upon a back grid of
100 points. We sample at 10 equally spaced points along
Θ0 and Φ0 and at each, we obtain the spectrum, the
structure factor of the lowest energy state in all momen-
tum sectors, the superfluid response from boundary con-
dition twists, and the manybody Chern number σxy. In
the region called (2,2,1), σxy is numerically 2/3 within
< 1% error, which is a strong indicator that this is in-
deed the Halperin (2,2,1) state.

V. EXPERIMENTAL CONSIDERATIONS

Our scheme relies on the following ladder of energy
scales: (Vhf/2π = 1 GHz) � (V2/2π � 300 Hz) �
((Ω2

dr/∆)/2π = 30 Hz) � (Vdd/2π = 3 Hz) �
(EFQH/2π = 500 mHz) � (Γsc/2π = Γ′sc/2π =
100 mHz). The first inequality Vhf � V2 ensures that
the ac Stark shift V2 ∝ M2, which defines the quan-
tization axis, does not mix different F levels separated
by Vhf, which, in turn, ensures that the dipole moments
of the involved states and transitions are given by their
zero-field values, which simplifies the calculations. The
second inequality V2 � Ω2

dr/∆ ensures that the opti-
cal fields (Rabi frequency Ωdr and effective two-photon
Rabi frequency Ω2

dr/∆) and microwave fields (Rabi fre-
quency Ω2

dr/∆) are sufficiently weak to spectroscopically
resolve the different transitions split by V2, allowing us
to consider only the desired couplings. The inequality
Ω2

dr/∆� Vdd ensures that dipole-dipole interactions Vdd,

whose strength can be read out from the vertical energy
scale in Figs. 2(a) and 5(a), do not perturb the dark
states |↑〉 and |↓〉 (and |⇑〉 for the C = 2 example) de-
fined by the dressing fields and do not cause transitions
from these dark states to the bright states. We will dis-
cuss below that the small 3 Hz interaction energy scale is
not fundamental and can likely be significantly increased.
The inequality Vdd � EFQH, where EFQH is the frac-
tional quantum Hall energy scale, which can be read out
from the gap in Figs. 2(b) and 5(b), is not required but
arises naturally since EFQH is determined by Vdd, so we
included this inequality in the ladder of energy scales.
Finally, the inequality EFQH � Γsc,Γ

′
sc means that the

photon scattering rates Γsc and Γ′sc due to the optical
fields (used for Ωdr and for V2, respectively) should be
much smaller than the energy scale EFQH of the Hamil-
tonian of interest. This condition ensures that photon
scattering does not destroy the desired many-body state
and does not lead to heating during a typical experiment
of duration ∼ 1/EFQH.

Let us now discuss the scattering rate Γ′sc arising due
to the optical fields creating V2 [65]. To be specific, we
assume that V2 is created with 741 nm π-polarized light.
We will use a detuning ∆′ much smaller than the hyper-
fine structure in both the ground state and the excited
state. We will use a typical Rabi frequency Ω′ � ∆′.
Therefore, we will need to apply a separate light field for
each F to be shifted. Let us therefore consider a sin-
gle level F . The 741 nm light will be detuned ∆′ away
from the F → F transition. Since the |F,M〉 → |F,M〉
Clebsch-Gordan coefficient is proportional to M , this will
result in an M -dependent ac Stark shift Ω′2M2/∆ and
a scattering rate Γ′(Ω′/∆′)2M2, where Γ′ is the sponta-
neous emission rate of the 741 nm transition. Since we
are working with small values of |M | ∼ 1 (as opposed to
|M | ∼ F ), we can adopt the estimates V2 = Ω′2/∆′ and
Γ′sc = Γ′(Ω′/∆′)2. Since Γ′/2π = 1.8 kHz [66], in order
to get Γ′sc/2π = 100 mHz and V2/2π = 300 Hz, we need
∆′/2π = 5 MHz and Ω′/2π = 40 kHz. For a (100µm)2

beam cross-section, this Rabi frequency can be obtained
with less than a mW of power, which is easily achiev-
able. It is worth pointing out the importance of using
the F → F transition: for an F → F ± 1 transition
and |M | ∼ 1, the ratio of the scattering rate to the M -
dependent part of the ac Stark shift would have been F 2

times larger.

We now turn to the scattering rate Γsc associated
with the fact that dipole-dipole interactions make the
dark state imperfect on the 421 nm transition. This
scattering rate is given by Γsc = Γ(Vdd/Ωdr)

2, where
Γ/2π = 32 MHz is the linewidth of the 421 nm transition
[66]. To get Γsc/2π = 100 mHz and Ω2

dr/∆ = (2π)30
Hz, we need ∆/2π = 100 MHz and Ωdr/2π = 50 kHz,
which is easily achievable. Assuming we are tuning to
the blue of the F ′ = 17/2 hyperfine level of the excited
state [see Fig. 1(c)], the resulting detuning from both the
F ′ = 15/2 state and the F ′ = 19/2 state is δ ≈ (2π)1
GHz, resulting in scattering from these levels at rates
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∼ Γ(Ωdr/δ)
2 < (2π)100 mHz.

An important advantage of our proposal is that we are
not relying on collisions between the atoms, which allows
us to avoid dipolar relaxation [39] and light-assisted col-
lisions [40]. On the other hand, the main limitation of
our proposal is the small energy scale EFQH/2π = 100
mHz and the resulting stringent requirements on the
linewidths of the lasers and coherence times of the atoms.
An additional requirement is to make sure stray mag-
netic fields are weak enough that the Zeeman shifts are
small on the scale of dipole-dipole interaction strength
Vdd/2π = 5 Hz to ensure that the crucial J+

i J
+
j tran-

sitions in Eq. (1) stay resonant. In particular, this
requires magnetic fields smaller than a micro Gauss,
which is challenging. At the same time, our goal in
the present manuscript is to demonstrate the control-
lability and the potential of magnetic dipoles in gen-
eral, and magnetic atoms in particular, for obtaining
fractional quantum Hall states in general and those in
C = 2 bands, in particular. We leave it to future work
to optimize and modify the presented schemes with the
goal of increasing the interaction energies by working at
smaller lattice spacing [67–70] and by choosing more op-
timal level configurations. Indeed, the maximum achiev-
able interaction for two dysprosium atoms λlat/2 apart is
≈ µ0(10µB)2/[4π(λlat/2)3] = (2π)70 Hz and occurs when
they are both in a |Jz| = 8 state. While such a diagonal
interaction does not immediately give rise to the hopping
of excitations between sites, its large energy scale hints
at the possible existence of schemes similar to ours but
with a significantly larger Vdd compared to our value of
(2π)3 Hz.

To prepare the fractional Chern insulator ground state,
we envision first tuning Θ0 and Φ0 to the part of the
phase diagram where the ground state is a superfluid. If
the superfluid phase exhibits weak quantum correlations,
then it could, in principle, be approximated by a disen-
tangled state, in which each atom is in a well-defined
spin state. This can be prepared by adiabatically turn-
ing on the fields responsible for V2 and the dressing on a
time-scale faster than the inverse of Vdd. Next, we imag-
ine adiabatically ramping from our prepared low-energy-
density superfluid to the fractional Chern insulator. This
can only be done if the phase transition between the two
states is continuous [71], a question which is unknown for
the (2,2,1) state.

The detection of the fractional Chern insulator can be
carried out by effectively realizing Bragg spectroscopy.
Specifically, the momentum- and energy-resolved spec-
tral function can be measured by attempting to drive
the |↓〉− |↑〉 transition with different spatially dependent
Rabi frequencies and different detunings. One can then
use the spectral function to identify the bulk gap and the
gapless chiral edges [72, 73].

VI. OUTLOOK

Our proposal generalizes naturally to other magnetic
atoms, such as erbium [32, 33] and, to a lesser degree due
to a smaller dipole moment, chromium [34]. It can also
be generalized to magnetic molecules such as Dy2 and
Er2 [35], which have larger dipole moments than their
single-atom counterparts. Finally, our proposal can also
be extended to engineer bilayer fractional Chern insula-
tors in electric dipoles, such as polar molecules [37, 74–
76] and Rydberg atoms [38, 77], which can offer much
stronger interactions than magnetic dipoles.

This proposal also opens up avenues for engineering
other exotic topological states. In particular, by replac-

ing hopping terms (of the form â†i âj + h.c.) with pairing

terms (of the form â†i â
†
j + h.c.) along the rungs of a fi-

nite ladder, one expects to get parafermionic zero modes
at the ends of the ladder, by analogy with proposals in
solid-state heterostructures [22, 78–81] and cold atoms
[82]. The local replacement of pairing with hopping can
be engineered by dressing the dipoles along the legs of
the finite ladder in a way that is different from the rest
of the system. An introduction of an array of such lad-
ders into the (2,2,1) state may then lead, by analogy with
Ref. [83], to a gapped ground state supporting Fibonacci
anyons, which are universal for topological quantum com-
puting via braiding alone [1]. In fact, by extending the
conjecture of Refs. [83, 84], partially supported by nu-
merics [85, 86] (although see Refs. [87, 88]), one might
expect that even the introduction of uniform pairing on
top of the (2,2,1) state may give rise to the Fibonacci
phase. Instead of introducing pairing, one might also be
able to obtain the Fibonacci state by introducing uniform
tunneling between two fractional Chern insulator layers
[84, 86], something we can also engineer in the dipolar
approach. The use of uniform pairing or tunneling is
an exciting prospect as the corresponding dressing would
be significantly simpler relative to the approach involv-
ing an array of ladders [83] and would therefore consti-
tute a particularly promising approach towards universal
topological quantum computing in ultracold atomic and
molecular systems.
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Appendix A: Details behind the C = 1 topological
flat band and the ν = 1/2 Laughlin state

In this Appendix, we present the details behind the
C = 1 topological flat band and the ν = 1/2 Laughlin

state discussed in Sec. II.
Assuming the M -dependent ac-Stark shift V2 is greater

than the typical strength Vdd of dipole-dipole interac-
tions, we can project the Hamiltonian in Eq. (1) on the
36-dimensional Hilbert space, where each atom is in one
of the states |1〉 through |6〉 defined in Fig. 1(c), to obtain

Ĥij = (1− 3 cos2 θ)
[
µ2
4(n̂4 − n̂3)(n̂4 − n̂3) + µ2

26(|15〉 〈51|+ |26〉 〈62|+ |16〉 〈52|+ |25〉 〈61|+ h.c.)

− 1
4µ

2
13(|13〉 〈31|+ |24〉 〈42|+ h.c.)− 1

4µ
2
53(|53〉 〈35|+ |64〉 〈46|+ h.c.)

]
− 3

4 sin2 θ
[
e−2iφ{µ2

13(|32〉 〈14|+ |23〉 〈41|)− µ2
53(|36〉 〈54|+ |63〉 〈45|)}+ h.c.

]
, (A1)

where µ4 = 〈4|Ĵz|4〉 = 720
323 , µ26 = 〈2|Ĵz|6〉 = 2

√
154
19 ,

µ13 = 〈1|Ĵ+|3〉 = 288
√
77

323 and µ53 = 〈5|Ĵ+|3〉 = − 14
√
2

19 .

Assuming the separation Ω2
dr/∆ between the dark

states |↑〉, |↓〉 and the bright states is larger than the
interaction strength Vdd, we can further project the re-
sulting Hamiltonian on the 4-dimensional Hilbert space
spanned by |↓〉 = |0〉 and |↑〉 = â† |0〉 on each atom, re-
sulting in Eq. (2).

In Fig. 2, we use Θ0 = 2.35 and Φ0 = 4.13 as
the angles determining the direction of the dc elec-
tric field. The remaining parameters on the two
sublattices (which we denote by 1 and 2 in the sub-
script) are parametrized as s1/2 = sin(α1/2) sin(θ1/2),

v1/2 = sin(α1/2) cos(θ1/2)eiφ1/2 , w1/2 =

cos(α1/2)eiγ1/2 with {θ1, θ2, φ1, φ2, α1, α2, γ1, γ2} =
{2.28, 1.59,−0.05, 1.51, 0.46, 0.11, 1.60, 1.23}. As ex-
plained in the main text, we make a further modification
by changing the sign of w1 and w2 every other row.
While this modification does not increase the size of the
unit cell, it is an important ingredient allowing us to
obtain a sufficiently flat topological band.

In passing, we note that we can get the same band-
structure as for polar molecules [13] in a small electric
field by adding two additional levels to the linear super-
position composing |↑〉.

Appendix B: Details behind the C = 2 topological
flat band, the Halperin (2,2,1) state, and the

corresponding phase diagram

In this Appendix, we present the details behind the
C = 2 topological flat band and the Halperin (2,2,1)

state discussed in Sec. IV.

Instead of using the simplest possible level structure for
obtaining a flat C = 2 topological band with 161Dy, we
instead choose to demonstrate the full power and the full
tunability of dipolar interactions between dressed states
by realizing a Hamiltonian describing two-component
hardcore bosons, each of which obeys the same Hamil-
tonian as hardcore bosons in C = 1 bands realized with
polar molecules [13]. This derivation allows us to estab-
lish a certain degree of equivalence between implemen-
tations of topological flat bands and fractional quantum
Hall states with different dipoles, both electric and mag-
netic. We will therefore consider the level structure and
the dressed states shown in Fig. A1, where we assume p
and q are real, positive, and site-independent.

Transition matrix elements between |⇑〉 and |↑〉 vanish
because of the F → F ± 0, 1 selection rule ensuring the
absence of terms exchanging the two types of excitations
|⇑〉 and |↑〉. Starting with Eq. (1), and keeping only those
terms that will contribute to the interaction involving
states |↓〉, |↑〉, and |⇑〉, we obtain
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FIG. A1. The level structure of161Dy relevant for implementing the C = 2 flat band and the resulting Halperin (2,2,1) state.

Ĥij = (1− 3 cos2 θ)
[
(µ6(n̂6 − n̂5) + µ7(n̂7 − n̂8) + µ14(n̂14 − n̂13) + µ16(n̂16 − n̂15))×
×(µ6(n̂6 − n̂5) + µ7(n̂7 − n̂8) + µ14(n̂14 − n̂13) + µ15(n̂15 − n̂16))

+µ2
19(|19〉 〈91|+ |2, 10〉 〈10, 2|+ |1, 10〉 〈92|+ |29〉 〈10, 1|+ h.c.)

+µ2
1,11(|1, 11〉 〈11, 1|+ |2, 12〉 〈12, 2|+ |1, 12〉 〈11, 2|+ |2, 11〉 〈12, 1|+ h.c.)

− 1
4µ

2
35(|35〉 〈53|+ |46〉 〈64|+ h.c.)− 1

4µ
2
83(|38〉 〈83|+ |47〉 〈74|+ h.c.)

]
− 3

4 sin2 θ
[
e−2iφ{µ2

35(|36〉 〈54|+ |63〉 〈45|) + µ2
83(|84〉 〈37|+ |48〉 〈73|)}+ h.c.

]
(A1)

= (1−3 cos2 θ)
[
(n̂iµn,i + m̂iµm,i)(n̂jµn,j + m̂jµm,j) +

{
â†i âj(µ

2
19w
∗
iwjp

2 − 1
8µ

2
35(s∗i sj + v∗i vj)q

2) + h.c.
}

+
{
b̂†i b̂j(µ

2
1,11W

∗
i Wjp

2 − 1
8µ

2
83(S∗i Sj + V ∗i Vj)q

2) + h.c.
}]

− 3
4 sin2 θ

[
e−2iφ

{
− 1

2µ
2
35(â†i âjv

∗
i sj + âiâ

†
jv
∗
j si)q

2 − 1
2µ

2
83(b̂†i b̂jV

∗
i Sj + b̂ib̂

†
jV
∗
j Si)q

2
}

+ h.c.
]
, (A2)

where the second expression is obtained by making a
further projection onto |↓〉 = |0〉, |↑〉 = â† |0〉, and

|⇑〉 = b̂† |0〉. Here n̂i = â†i âi, m̂i = b̂†i b̂i, µn,i =
µ6(|vi|2−|si|2) +µ14(|bi|2−|ai|2), and µm,i = µ7(|Si|2−
|Vi|2) + µ15(|Ai|2 − |Bi|2).

To reduce the Hamiltonian governing â and b̂ to two
copies of hardcore bosons obtained from polar molecules
in near-zero electric field [13], we define siq = rs̃i, viq =

rṽi, wip = rw̃i|µ35/(2µ19)|, Siq = |µ35/µ83|rS̃i, Viq =

|µ35/µ83|rṼi, Wip = rW̃i|µ35/(2µ1,11)|. We keep |s̃i|2 +

|ṽi|2 + |w̃i|2 = 1 and |S̃i|2 + |Ṽi|2 + |W̃i|2 = 1. r is

a positive real number. c and C are used to keep the
states normalized. To mimic polar molecules, which are
electric dipoles and thus have no induced dipole moments
at small electric fields, we would like to choose ai, bi, Ai,
and Bi such that µn,i = µm,i = 0. To do this, we reduce
r from 1 and below until we find p such that there is
enough population in ai, bi, Ai, and Bi levels to cancel

dipole moments µn,i and µm,i for â and b̂, respectively,
for both sublattices. For example, for the parameters
used to produce Fig. 5, r = 0.265 and p = 0.953.

The resulting Hamiltonian is:
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4

r2µ2
35

Ĥij = (1−3 cos2 θ)
[
â†i âj(w̃

∗
i w̃j − 1

2 (s̃∗i s̃j + ṽ∗i ṽj)) + b̂†i b̂j(W̃
∗
i W̃j − 1

2 (S̃∗i S̃j + Ṽ ∗i Ṽj))
]

+ 3
2 sin2 θ cos(2φ)

[
â†i âj(ṽ

∗
i s̃j + s̃∗i ṽj) + b̂†i b̂j(Ṽ

∗
i S̃j + S̃∗i Ṽj)

]
− 3

2 sin2 θ sin(2φ)i
[
â†i âj(ṽ

∗
i s̃j − s̃∗i ṽj) + b̂†i b̂j(Ṽ

∗
i S̃j − S̃∗i Ṽj)

]
+ h.c.. (A3)

As desired, it has no density-density interactions, and

both â and b̂ obey the hopping Hamiltonian derived from
polar molecules [13].

In Fig. 5, we use Θ0 = 0.68 and Φ0 = 5.83 as
the angles determining the direction of the dc electric
field. The remaining parameters on the two sublat-
tices (which we denote by 1 and 2 in the subscript)

are parametrized as s̃1/2 = S̃1/2 = sin(α̃1/2) sin(θ̃1/2),

ṽ1/2 = Ṽ1/2 = sin(α̃1/2) cos(θ̃1/2)eiφ̃1/2 , w̃1/2 = W̃1/2 =

cos(α̃1/2)eiγ̃1/2 with {θ̃1, θ̃2, φ̃1, φ̃2, α̃1, α̃2, γ̃1, γ̃2} =
{0.53, 0.97, 1.36, 3.49, 2.84, 2.03, 4.26, 3.84}. As in the
C = 1 example, an additional minus sign is imposed on
w1/2 and W1/2 on every other row. It is important to

repeat that, while â and b̂ here obey the same Hamilto-
nian, one should be shifted relative to the other by one
lattice site in the X direction. The parameters used in
Fig. 6 are the same as those in Fig. 5, except Θ0 and Φ0

are varied.
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man, Rep. Prog. Phys. 77, 126401 (2014).

[5] Y. J. Lin, R. L. Compton, K. Jimenez-Garcia, J. V.
Porto, and I. B. Spielman, Nature (London) 462, 628
(2009).

[6] G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat,
T. Uehlinger, D. Greif, and T. Esslinger, Nature (Lon-
don) 515, 237 (2014).

[7] J. Struck, C. Olschlager, M. Weinberg, P. Hauke, J. Si-
monet, A. Eckardt, M. Lewenstein, K. Sengstock, and
P. Windpassinger, Phys. Rev. Let. 108, 225304 (2012).

[8] M. Aidelsburger, M. Atala, M. Lohse, J. T. Barreiro,
B. Paredes, and I. Bloch, Phys. Rev. Lett. 111, 185301
(2013).

[9] M. Hafezi, S. Mittal, J. Fan, A. Migdall, and J. M.
Taylor, Nature Photon. 7, 1001 (2013).

[10] M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer,
D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Sza-
meit, Nature (London) 496, 196 (2013).

[11] A. Micheli, G. K. Brennen, and P. Zoller, Nature Phys.
2, 341 (2006).

[12] N. Y. Yao, C. R. Laumann, A. V. Gorshkov, S. D. Ben-
nett, E. Demler, P. Zoller, and M. D. Lukin, Phys. Rev.
Lett. 109, 266804 (2012).

[13] N. Y. Yao, A. V. Gorshkov, C. R. Laumann, A. M.
Läuchli, J. Ye, and M. D. Lukin, Phys. Rev. Lett. 110,
185302 (2013).

[14] M. Kiffner, W. Li, and D. Jaksch, Phys. Rev. Lett. 110,
170402 (2013).

[15] M. F. Maghrebi, N. Y. Yao, M. Hafezi, T. Pohl,
O. Firstenberg, and A. V. Gorshkov, Phys. Rev. A 91,

033838 (2015).
[16] A. V. Gorshkov, K. R. A. Hazzard, and A. M. Rey, Mol.

Phys. 111, 1908 (2013).
[17] D. Peter, N. Y. Yao, N. Lang, S. D. Huber, M. D. Lukin,
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[70] A. González-Tudela, C. L. Hung, D. E. Chang, J. I. Cirac,
and H. J. Kimble, arXiv:1407.7336 [quant-ph] (2014).

[71] M. Barkeshli, N. Y. Yao, and C. R. Laumann,
arXiv:1407.7034 [cond-mat.str-el] (2014).

[72] J. A. Kjäll and J. E. Moore, Phys. Rev. B 85, 235137
(2012).

[73] N. Goldman, J. Beugnon, and F. Gerbier, Phys. Rev.
Lett. 108, 255303 (2012).
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