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There is an increasing interest in the extraction and control of the interfering quantum pathway
amplitudes induced by control fields during laser-matter interactions. The Hamiltonian-encoding
and observable-decoding (HE-OD) technique has been introduced for extracting the amplitudes of
the pathways present in the dynamics and has recently been experimentally applied to the path-
way manipulation of atomic Rubidium. This paper theoretically explores various strategies for
manipulating pathway amplitudes in the context of a laser field interacting with a multilevel system
similar to atomic Rubidium for both narrowband and broadband ultrafast fields. In the perturba-
tion regime, two 2nd-order quantum pathways connecting the Rb states 55/ and 5D3,, dominate
the dynamics, namely 55;,,—+5P5/,—5D3,, (pathway 1) and 5S5;,,—+5P;/2—5D3/, (pathway 2).
For narrowband field control, the analysis is carried out in the time domain with the laser field
including only four narrowband-envelope sub-pulses centered at the resonant frequencies. When the
two pathways cooperate constructively, temporal oscillations appear in the ratio of the two pathway
amplitudes, and we conclude in this case that the period corresponds to the detuning between tran-
sitions 5S1/2 — 5P3/3 and 5P3/5 — 5D3/5. For broadband field control, the dynamics are treated in
the frequency domain with the laser field including both resonant and continuous non-resonant fre-
quency components. Various control strategies based on manipulating the phase of selected spectral
components are tested. Compared to the outcome from a transform limited pulse, a 5 step scheme
can increase the dynamic range of the ratio between the two pathway amplitudes by a factor of ~ 3.
A scheme that manipulates eight spectral blocks, in which the spectral boundaries depend on the
resonant frequencies, can increase the ratio by several orders of magnitude. Numerical simulations
show that further dividing the spectrum into hundreds of evenly spaced blocks does not significantly
enhance the pathway ratio over the eight block scheme. The quantum control of pathways investi-
gated in this work provides valuable insights on how to incorporate known information about the
structure of quantum systems for the effective reduction of quantum control complexity.

I. INTRODUCTION

The control of quantum dynamics during laser-matter interactions is a topic of fundamental importance that also
offers a wide range of potential applications. Many experimental and theoretical quantum control strategies have
been proposed [1-9] including open-loop control which directly applies model-based designs to the laboratory [10],
adaptive feedback control in which the control is measurement-guided [3, 11|, and real-time feedback control which
utilizes quantum measurement back-action on the system [12]. In the context of a multilevel quantum system, here
we consider an optimum control field as inducing transitions through intermediate states to transfer population
from an initial state to a target state. Each possible sequence of electronic transitions that reaches the target state
constitutes a quantum pathway whose importance in the overall dynamics is quantified by a complex number referred
to as a pathway amplitude [13]. In many laser experiments constructive and destructive interferences among quantum
pathways are responsible for the optimal control of an observable signal. Thus, the management of quantum pathways
is of fundamental importance for the outcome of quantum control experiments. The Hamiltonian-encoding-observable-
decoding (HE-OD) technique [13-20] is capable of extracting the pathway amplitudes via a sequence of encoding and
decoding operations. Recently, Rey-de-Castro et al. successfully performed such a demonstration in Rubidium
vapor, and the rapidly extracted pathway amplitudes permitted steering the quantum dynamics towards a specified
pathway with tailored broadband femtosecond pulses [19] obtained from an adaptive feedback control strategy. We
have previously theoretically investigated the pathway dynamics for narrowband laser pulses when the target state
population is maximized [21]. This paper presents a theoretical exploration of several pulse shaping strategies for
manipulating quantum pathways for both narrowband and broadband laser excitation.

Silberberg et al. showed how a resonant two-photon absorption (TPA) process can be divided into resonant and
non-resonant contributions [22]. Their experiments and supporting modelling demonstrated that the TPA yield in
atomic Rb can be greatly enhanced by applying a phase shift of 7/2 to a 4 nm spectral window centered on the
two-photon transition frequency. The mechanism of this 7/2 step phase shaping scheme is to induce constructive
interferences among the quantum pathways corresponding to photon pairs in the spectral region of 8 nm around the
resonant frequencies. In their work, the laser bandwidth was tuned such that the Rb system can be approximated by
a three-level system with only one 2nd-order pathway (55 /,—5P3/2—5D3/3) being considered. Stowe et al. adopted



a similar strategy (i.e., changing the phase of a spectral window) to achieve coherent control of atomic Rb, where the
contributions of both Rb pathways (55 /2—5P3/2—+5D3/5 and 551 jo—5P; j—+5D33) are considered due to much wider
bandwidth of the pulse [23]. Recently, Lee et al. have proposed another similar scheme to simultaneously control
the two pathways by manipulating the phase of eight spectral blocks for maximizing the constructive interference
between the two pathways [24]. However, only the total TPA signal corresponding to the final population transferred
to the Rb state 503/, was investigated in the above works, and the prospect of manipulating the pathway amplitudes
themselves was not discussed. Here we show how similar schemes can be applied to achieve detailed control over the
quantum pathway amplitudes.

The paper is organized as follows. Section II introduces models in the time and frequency domains for narrowband
and broadband field cases, respectively. Section III presents three pulse shaping schemes for manipulating quantum
pathway amplitudes. Compared with transform limited (TL) pulses, an implementation of the % step scheme of
Silberberg et al. can improve the amplitude ratio approximately by a factor of three, while schemes that manipulate
the phase of eight or more spectral blocks are much more effective at suppressing an undesired pathway. The pathway
amplitude control schemes proposed here are robust and straightforward, facilitating their prospective laboratory

applications. Concluding remarks are given in Section IV.

II. THEORETICAL BACKGROUND
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Figure 1: (Color online) Energy level diagram of atomic Rb. According to the selection rules, only transitions |1) — |2),
1) — |3), [2) — [4), |2) — |5) and |3) — [4) are dipole-allowed. In the laboratory, state |4) will decay to |O), and thus the
population of the target state |4) is proportional to the measured fluorescence emitted from |O). Similarly, in the simulations
described here the final population of state |4) is taken as the system’s output signal.
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In the dipole approximation, the Hamiltonian describing the interaction of atomic Rb with a laser field E(t) is of
the form H = Hy — pE(t), where Hy is the field-free Hamiltonian with eigenstates |I,,), p = 1,2,...,5 and p is the dipole
moment operator. The energy level structure and dipole-allowed couplings are shown in Fig. 1. In the basis {|/;)}, p
= 1,2,...,5, the matrices Hy and p are given by

ro o 0o 0 0
Ow 0 0 O
HQ = 0 0 w2 0 0 s
0 0 0 Wtot 0
L 0 0 0 0 Wtot

0 pi2 w3 0 O
iz 0 0 poq pos
o= |3 0 0 w3 O (1)
0 p24 pza 0 0
0 wes 0 0 O

where the energy of state |1) is set to zero, levels |[4) and |5) are degenerate, wior = w1 + w3 = wa + wg = 0.1171,



w1 = 0.05840, wy = 0.05731, 12 = 4.2275, p13 = 2.9931, oy = 1.0216, pos = 1.0238, and usq = 0.9 [25, 26]. Unless
otherwise noted, all the quantities in this paper are given in atomic units.
The dynamics in the Schrodinger representation are described by

AOG1) (1 ) ) @)

where tg is the initial time and U (¢,%() is the evolution operator. In the interaction representation the equation of
motion reduces to

Z,dUI(t, to)

7 =Vi()Ur(t, to) (3)

where

Vi(t) = —exp(iHot)uwE(t)exp(—iHyt),
and

Ur(t,to) = exp(iHot)U (¢, to)exp(—iHyto).

In the perturbation regime, under sufficiently low laser power, the two second order pathways in Fig.1, [1)—|2)—|4)
(pathway 1) and |1)—|3)—|4) (pathway 2), dominate the transfer of population from the initial state |1) to the target
state |4). The amplitudes of pathways 1 and 2 are respectively given below by the two lowest-order Dyson expansion
terms of Uy(t, —oo) with ¢y = —oo

T
U1 (T): — /L12/L24 / eiMStQE(tQ)

X ftz lwltlE tl)dtldtg, (4&)
Us (T)=—p13pt34 f etz B(ty)

x ['2 et B(ty)dtydts (4b)

The final amplitudes after the pulse is over, U;(T) and Ux(T) for T — oo, can be calculated from the frequency
domain field F(w) as [22]

Ur (T — oo)=papiza[—7E (w1) E (w3)

T E(W)E (wa —
Lo / (W) E (w41 — w) dw), (5a)
w1 — W
Us (T — oo)=papza[~mE (w2) E (wa)
i [ el o

where g is the Cauchy principal value, and wy; = w1 + w3 = wa + w4, which corresponds to the energy difference
between states [4) and |1). The output signal here is taken as the total transition probability from the initial state
[1) to the target state |4) after the pulse and is given by

Py = [(4|Ur (T,0)| 1)]* = [Uy(T) + Us(T)|5-_, . (6)

III. PATHWAY CONTROL STRATEGIES

The pathway dynamics may be manipulated by changing the phases and amplitudes of the various frequency
components in the control field F(w), as implied by Egs. (5a) and (5b). In this section we investigate pathway control



strategies using both narrowband and broadband controls. In the narrowband control cases, the field consists of a
discrete sum of a few narrow-band resonant spectral components, and the quantum state is propagated according
to Eq. (3) for several laser intensities varying from weak to strong. In the broadband control cases, non-resonant
frequencies are also considered in the control field which corresponds to an ultrafast laser field with a continuous
spectrum. The quantum dynamics are more complex in the latter cases, and Eq. (5) in the frequency domain is
utilized to treat the dynamics perturbatively.

A. Narrowband field cases

In the narrowband regime, the laser field is written in the time domain with a Gaussian envelope :

4

E(t) = exp(—(t — t12)*/A?) x Z Ay, cos(wit + ¢r)
k=1

where the target time T is taken to be large enough to ensure that the entire pulse interacts with the system before the
population transfer signal is recorded, t; /; lies at the center of the pulse’s time span, and A = 1/ vIn2 ps. Thus, the
field corresponds to a pulse with a temporal full width at half maximum (FWHM) of 2 ps. In our simulations, eight
parameters (A, Aa, As, A4, ©1, v2, ©3, @4) are optimized to maximize the population transfer Py; = |(4 |U (T, 0)| 1>|2
from the initial state |1) to the target state |4) at the final time T'. A genetic algorithm (GA) is employed to search
for fields that optimally manipulate the quantum pathways.

The focus here is on manipulating the ratio between the two pathway amplitudes, since in the laboratory it is more
feasible to measure the pathway ratio instead of their absolute individual values [19]. For the conditions specified in
Sec. II in the weak field regime, U; and U, have a similar magnitude under an optimal laser field for maximizing total
population transfer [21]. When the two pathways cooperate to achieve maximum population transfer, one important
observed feature is the appearance of temporal oscillations in the ratio |U;/Us| [21]. The temporal dependence
of the ratio |Uj (t) /Uz (t)| can be extracted in the laboratory by combining HE-OD with a laser pulse truncation
procedure [20]. An experimentally observed oscillation of the ratio with a period of ~500 fs was found under the
conditions of broadband control. A similar oscillation feature was also identified by an analytical treatment with a
narrow-bandwidth rectangular control pulse [21], even though the control field was qualitatively different from the
experimental broadband laser pulse [20]. Here we will show that a similar oscillation appears when considering a
more realistic Gaussian envelope in the control field. As shown in Fig. 2, when the upper limit of the four spectral
amplitudes is set as 2.5 x 107, the ratio oscillates with a period ~ 500fs. In the following, this behavior will be
assessed within an analytical model considering the envelope of the laser field. In the rotating wave approximation,
we have

Up(t) = —tzzs s [0 ciosteeqp(—(ty — t15)/A?)
X Age~ i at2tea) [12 cirtiopp( (1 — ty 5)2/A?)
XApe—i(wpt1+50p)dt1dt2

= g AL AU (), (7a)

Up (t) = —tuspss 570 1 clonteeqp(—(ty — t1/2)/ A?)
x Age~(watatea) fio e terp(—(ty — t1/2)%/ A?)
XApe_i(wptl-i_sap)dtldtQ

= —tasas 50 A AUS (#) v

with



Ué{f”(t) = fioo entzerp(—(ty — t1/2)2/A2)6’i(‘”¢1’52+“"1)dtg
to
X / ei‘“mtlexp(—(tl —t1/2)2/A2)

ngi(wptl+@p)dt1

Assuming that all amplitudes (Ax) have approximately the same magnitude, then the following results can be
derived by keeping only the largest (U3 and U3}) and second largest terms (U3, U3, U and UZY)

Uy (t) ~ — “”4“24 (A1 AU + Ay A U + A3 A U3

Us (t) ~ — ’“34“34 (A AsUZE + Ay AU + Ay AsUZY)

where

T (enp)’ e (otge)
ol =g = [ e [ .

— —o0

Since for the narrowband field considered here the detunings w,, = w, — wy are much larger than the bandwidth
1/A (e.g., ws1 > 1/A) , then we have that

(t=t172)"

. 2
13 —je T argiwnT T _(f*f1/2) i
Uy ~ e AT Tt (9)
11 )
w3z — W1 0o
2
(=t
13 Zfi;o e~ AT eilvites) gy
U31 ~ ’ (10)
w3 — W1
2
(=t
i o
1 Wy — w3 ’
2
(t*t1/2) Py
N L T t—t
—je A2 elwasT 7( 1/2) e
U%‘w e Az g 2ilv2tes) gy
Wyq — W3 — 00

Due to the fact that wy — w3 > ws — w1, the second largest terms of Us (t) (UZ and UZ{) have much smaller
magnitude than those of Uy () (U} and U33), which leads to

Ui () prizpios (A1 AzULS + Ay AU} + A3 A USP)
Us (t) paspsa (Ao AgUSE + Ay AsUE + A A3U3Y)
pazpios (A1AsULS + AL ALV + A3 A U3Y)
paspiza Az AyUZE
,uu,u24A1A3 ei(tp2+<ﬂ4*<ﬂ1*<ﬂ3)
pzpzaAa Ay
ALY (A1 AW UL + A3 AL V53 (11)
psptza As Ay VAL

From Eqs. (8-11), we can see that the ratio |Uy (t) /U (t)| has a period ~ 27/ (w3 — w1)~ 500fs. This behavior is

also evident in Fig. 2. This analysis is in agreement with the conclusions drawn in our previous work [21] where a

rectangular pulse envelope was employed. Thus, under narrowband excitation, oscillations in the pathway ratio can
be explained as a result of the detunings between the transition frequencies.
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Figure 2: (Color online) The amplitude ratio |U; /Uz| computed with Eq. (7) (black solid line) and Eq. (11) (red dashed line).

B. Broadband field cases

The analysis above reveals features of the control mechanism in the narrowband regime. On the other hand,
laboratory quantum control fields are often broadband (e.g., as in ultrafast laser control), including both resonant
and continuous non-resonant frequencies. The dynamics of the controlled system under broadband excitation will
generally be more complex than in narrowband field control. In this section, a broadband field with weak intensity is
applied to control the same quantum system. In this case, as will become apparent below, working in the frequency
domain is more suitable for revealing the control mechanism. The laser field in the frequency domain is assumed to
be:

E(w) = Ey x exp(—(w — wp)?/A?%) x )

where the pulse’s central wavelength Ao = 2mc¢/wy and FWHM are 782 nm and 45 nm, respectively. These field
parameters were chosen to approach the experimental conditions in Ref. [24]. In our simulations, Fjy is taken to be
0.0006 (a.u.), well within the perturbative regime, and only the phase ¢ (w) is adjusted in the optimizations.

The frequency domain is divided into evenly spaced blocks of spectral width d. Bellow, in both the eight-block
scheme and multi-block scheme A, the phases of the blocks (wreson — %, Wreson + %) centered at the resonant frequen-
cies wreson are fixed to zero.

1. % Step Scheme

As mentioned above, Silberberg et al. [22] proposed a § step scheme to increase the two-photon absorption (TPA)
rate, in which a phase shift of § was applied to a spectral window with a width equal to the frequency difference of
the two resonant transitions and centered at half the energy gap between the initial and target states. Pathways 1
and 2 can each be seen as a separate TPA process. Therefore, the 3 step scheme is a natural choice to maximize them
separately: the spectral window with a phase shift of /2 is applied to the pulse, and its width is set to be |ws — w1| to
maximize the amplitude of pathway 1 (|U;|) and similarly|ws — ws| in order to maximize the amplitude of pathway 2
(|Ua|), respectively. Figure 3 shows that, when the window is centered at “2£<3 the amplitudes of pathways 1 (bottom
panel) and 2 (top panel) both achieve their maxima, with the ratio |U; /Uz| and |Us/U;| approximately to be 7.9908
and 1.3816, respectively. Compared with the corresponding values (|Uy/Us| = 2.0744; |U2 /U, | = 1/2.0744 = 0.4821)

s

for TL pulses, the 5 step scheme can increase the ratio between the two pathway amplitudes approximately by a

factor of three. The 7 step scheme implemented here only maximizes the individual pathway amplitudes and does

not consider the interference between the two pathways, which may further improve the pathway ratios |U;/Us| or
[U2/Un].
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Figure 3: (Color online) In the § step scheme, the spectral window is scanned over the pulse’s spectrum. Here the spectral

window widths are taken to be |ws — w2| (top panel) and |ws — w1 |(bottom panel), respectively.
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Figure 4: (Color online) In the eight-block scheme, the pulse’s spectrum is divided into eight blocks, with the seven boundaries
w2, We = kwk1++1w2 , Wi, T Wy, Wre = w1 + w3 — we and wa [24], where k = %. The spectral blocks are labelled with an
integer index j = 1,2, - - , 8 with increasing frequency. The contributing terms of Uy (T — 00) + Us (T — o0), U1 (T — oc) and
Us (T — o0) are drawn in the complex plane in the top panel. Here U, = U} + U?. For a TL pulse, the non-resonant terms
of UL., U2, and Uy, can all be decomposed into four parts (A, B, C and D), with each part integrated in two paired spectral
blocks, as shown in Egs. (13), (14) and (15), respectively. For example, A corresponds to blocks 1 and 8. The signs of a (w),
b(w) and a (w) + b (w) given in the bottom panel. It can be seen that a (w) + b (w) in the neighboring blocks changes to the
opposite sign when w < weot/2. The conditions to maximize |U1|, |[Uz| and |Ur 4+ Uz| can be easily extracted: Case I, p1 = -3
and p2 = @3 = @4 = 3 for |U1| maximization; Case II, o1 = w2 = 3 = —% and o4 = § for |Uz| maximization. Case III,
01 =3 =75 and p2 = ps = =% for |U; + Uz| maximization [24].

2. Eight-Block Scheme

As mentioned above, Lee et al. [24] proposed an eight-block scheme to increase the total TPA yield of atomic
Rubidium. In their work, the laser’s spectrum is divided into eight blocks corresponding to the sign-shifted non-
resonant terms in Eq. (5). The eight-block scheme is applied here to investigate the quantum pathway manipulation
in Rubidium. In this scheme, the phases at the resonant frequencies, wy, ws, w3 and wy, are fixed to zero, and the
amplitudes of pathways 1 and 2 are given by:



Objective functions
U1 |(Case 1) ||Uz|(Case IT)[[Us + Us|(Case TII) | 72— (Case 1V) | 72— (Case V)
0.50737 0.50897 0.5077m 0.14097 0.88637
0.5073m —0.4911xw —0.49231 0.1894~ —0.2997m
0.5073m —0.4911xw 0.5077m 0.57331 —0.05037
—0.49277 —0.49117 —0.49237 —0.49347 0.14767
1.958 x 107°]5.209 x 10~° 1.933 x 107° 1.938 x 10~° 5.654 x 10~ 13
7.700 x 10~%[7.708 x 10~° 5.567 x 10°° 1.543 x 10~ 12 6.748 x 107°
1.966 x 107 °[1.292 x 10 ° 2.489 x 10°° 1.938 x 10 ° 6.748 x 10°°

Table I: The optimization results under different objective functions. Here cons. = 10™% is introduced to avoid a singular result.
The first four rows correspond to the four phases @1, w2, w3 and @a, respectively, while the last three rows denote the values
of |U1], |Uz| and |U; + Us|, respectively.

Uy (T — o0) = Url—i—UiT
= —mp2p2E (w1) E (ws)
+ipap240 / a(w)dw, (12a)
Us (T — o0) = UT2+U,2W
= —mp3pzaE (wo) E (wy)
Fip3/349 / b (w) dw (12b)
with
o (w) = E(w) E (wn —w)7 b(w) = E (w)E (wy —w)

W, —w Wy — W

Here U} and U2 correspond, respectively, to the resonant terms in Eqs. (12a) and (12b), while U}, and U2, refer,
respectively, to the non-resonant integral terms in Egs. (12a) and (12b). As shown in Fig. 4, the integral kernel of
Upnr, 1€, a(w) + b (w), changes to the opposite sign for TL pulses in the neighboring blocks when w < wyot/2. If the
eight blocks are labelled as j = 1,2,---,8, then the non-resonant terms will only depend on the sum of phase pairs
©j + p9—; with ¢; being the phase for the jth block:

Uy, = iﬂ12ﬂ24[</1|a(w)|do.)—/8|a(w)|dw) ciler1+es)
i </2|a(”)|d“—/7la(w)|dw) Jilpaten)
" </|a(w)|d“—/la(w)|dw) Jilpstoo)
(/'“ |d°’+/|a |dw) iloetes)]

ellertes) 4 Ul ei(p2ter)

Ul

+U$r,ce i(stes) 4 U717,T,De (w4+sas), (13)



Us, = iu13u34[</1|b(w)ldw_/8|b(w)|dw) o)
_ (/2|b(w)|dw+/7|b(w)|dw) Jileaten
([l [pa)etee

</|b |d‘*’+/|b |dw) ilorten)]

= U2 ellertes) 4 U2 eilp2tor)

+U12zr,Ce i(pates) | UﬁT,De““’”“""’) (14)

Here U}, are U2, are dependent only on the first four phases because the last four phases may be set to zero without
loss of generality. When all the phases are set to zero (i.e., for a TL pulse controlling the dynamics), Uﬁn o and Ufm M
(M = A, B,C, D) are defined as the resulting non-resonant contributions integrated in two paired blocks for pathways
1 and 2, respectively. For instance, U}m 4 s integrated in blocks 1 and 8.

Thus, the summation of the non-resonant terms is

Unr = Upr + Uy,
= ilnzpas [ o)l do —prapas [ Ja ()] de
+u13u34/1|b(w)|dw—u13u34/8|b(w)|dw)ei(“’1+“"8)
—i(u13u34/2Ib(w)ldw+u13u34/7|b(w)|dw
—u12u24/2|a(w)|dw+u12u24/7|a(w)|dw)ei(“"2+“’7)
+i(M12M24/3|G(W)|dW—M12M24/6|a(w)|dw
—u13u34/3|b(w)|dw—u13u34/6|b(w)|dw)ei(“’3+“"6)
—i(u13u34/4Ib(w)ldw+u13u34/5|b(w)|dw

— 12424 / |a (w)| dw — p12pt24 / la ()] dw)ei(@4+<p5)
4 5

= Uy aco1198) L U peile2ten)

+Umycei(“’3+“’6) + Unr,Dei(“p”%) (15)

Here Upr s (M = A,B,C, D) is just the sum of Uy, 5, and U2, ;. Within each parenthesis in Egs. (13-15), the
first term is dormnant 1ead1ng to the conditions deplcted in the dlagram at the top panel of Fig. 4. In the numerical
simulations, a finite difference-based gradient method is employed to seek an optimal control for five cases with
different objectives. For consistency, the same fitness functions were tried in all the control strategies considered here,
the results in Table I show that the magnitude of the desired pathway is the same as its maximal value in the first
two fitnesses (i.e., fitness equal to |Uy| or |Us|), while the amplitude of the other pathway is suppressed by several
orders of magnitude. For example, the amplitudes of pathway 2 are respectively 6.748 x 1076 and 7.708 x 109 in
cases V and II, while those of pathway 1 are 5.654 x 10~'2 and 1.958 x 1072, respectively. Compared with a TL pulse,
the pathway ratio (|Uy|/ |Uz| or |Usz|/|Ui| ) is improved approximately by a factor of 107. Therefore, the eight-block
scheme can effectively manipulate quantum control pathways by changing only four phase variables ¢1, @2, 3 and
4, a situation that may be ideal for laboratory applications.
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.. . Control Schemes
Objective functions % Step Scheme Eight-block Scheme Multi-block Scheme A Multi-block Scheme B

|Un | 1.533 x 102, 1.918 x 106 | 1.958 x 10~°, 7.700 x 10~8 | 2.237 x 10~°, 2.787 x 10~% | 1.994 x 10~°, 2.038 x 10~6

|Us| 4.685 x 1070, 6.473 x 1076 5.209 x 10~%, 7.708 x 10~6 | 4.966 x 10~%, 7.857 x 10~6 | 4.658 x 10~%, 7.140 x 10~°

U1+ s 1.933 x 1072, 5.567 x 106 | 2.156 x 10~°, 6.321 x 106 | 1.913 x 102, 5.617 x 10~6

(2.489 x 107°) (2.788 x 1075) (2.474 x 107°)

‘Uz“i’ﬁ 1.938 x 1072, 1.543 x 107 12(1.948 x 10?, 3.265 x 10~ 13|1.689 x 1075, 6.666 x 10~ 13
‘Uﬂ‘ﬁﬁ 5.654 x 10713, 6.748 x 1076]1.426 x 10712, 6.947 x 10~6|1.055 x 10~11, 4.806 x 10~

Table II: The optimization results with different shaping schemes for broadband control fields under different objective functions.
Here the symbols A, B mean that the phases at the resonant frequencies w1, w2, ws, wa are fixed to zero or not, respectively,
and cons. = 107%. The two numbers from left to right in each box correspond to |Ui| and |Us|, respectively. In the third row,
values in the parentheses are the corresponding sum pathway amplitude |Ur + Us|.

8. Multi-block Scheme

The analysis above shows that the eight-block scheme is already quite effective at manipulating the pathway
amplitude ratios. Here we will apply optimization schemes in which additional freedom is permitted to tailor the
shape of laser pulses by dividing the spectrum into hundreds of evenly spaced blocks, as in recent pathway control
experiments [19]. In our simulations, the spectral phases and amplitudes are taken to be zero everywhere except for
the interval from 721 nm to 852 nm. The spectral bandwidth is divided into 640 evenly spaced blocks, and objective
functionals are optimized by adjusting the phase of the 640 blocks. Two sub-schemes are considered. In multi-block
scheme A the phases at the resonant frequencies (w1, wa, ws, wy) are always fixed to zero during the optimization as
in the eight-block scheme, taking into account the considerations discussed in Refs. [22, 24]. On the other hand, in
multi-block scheme B the phases at the resonant frequencies (w1, wa, ws, wy) are the same as the phases of the blocks
they belong to, and are thus adjusted during the optimization process, which is also a common control procedure
[19, 20]. The same finite difference-based gradient method is employed here for the numerical optimizations as well
as the same five fitness functions in Table I are employed to assess the capability of the multi-block scheme for
manipulating the quantum pathways. The results are shown in Table II. The sets of pathway amplitudes obtained
by these schemes are very similar to those from the eight-block scheme, as seen in Table II. As mentioned above, the
only difference between multi-block schemes A and B is whether or not the phases at the resonant frequencies wq, ws,
w3, wy are fixed to zero, with scheme A having the same condition that the phases at the four resonant frequencies
are zero as the eight-block scheme. Accordingly, in our simulations, the phases of the blocks (wreson — g, Wreson + g)
centered at the resonant frequencies wyeson are fixed to zero, and the resonant block widths (d) are narrower than
the widths of the neighboring blocks. The sampling of the block boundaries in the simulations leads effectively to a
situation in which there are actually four more phase variables in the spectral regions around the resonant frequencies
in scheme A, because it permits the phases at the four resonant frequencies to differ from neighboring regions in the
same spectral block. Therefore, scheme A has effectively a higher spectral resolution near the resonant frequencies
which may explain why it performs better than scheme B. Compared with the eight-block scheme, multi-block scheme
A has more phase control variables and thus gives larger amplitudes. The pathway amplitudes obtained by the multi-
block scheme B are generally smaller than those corresponding to the eight-block scheme, which may be due to the
amplitudes being much more sensitive to the phases closer to the resonant frequencies. Additionally, more freedom is
available when the phases near the resonant frequencies have a higher spectral resolution, which can be achieved in
many ways (e.g., Kumar et al. have shown high spectral resolution for control of the population amongst very close
levels [27]). Thus, our results indicate that the eight-block scheme is an acceptable choice for manipulating the two
quantum pathways, with mutli-block scheme A only modestly improving the pathway amplitude ratio (approximately
by 10%).

The four resonant frequencies have to be precisely known in the eight-block scheme and multi-block scheme A,
which is not necessary in multi-block scheme B. In other words, additional information about the controlled system
(e.g., the resonant frequencies) is used to design the first two schemes, which may explain why they perform better
than mutli-block scheme B. On the other hand, the multi-block scheme B is more generally applicable in a practical
context, especially when little information is known about the quantum system under study.
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IV. CONCLUSIONS AND DISCUSSIONS

The quantum control of pathway amplitudes in atomic Rubidium was theoretically investigated with a five-level
model. Population was driven from the initial state 551, to the target state 5D3/, through the two lowest-order
available pathways: 551 /5—+5P3/,—5D3/5 (pathway 1), and 5S;/,—5P; /—5D3/, (pathway 2). By using a smooth
field envelope along with non-resonant frequencies, the control fields in this work are more realistic than in a previous
study [21]. For a narrowband control field with either Gaussian or rectangular envelopes, the observed oscillation
period of the ratio between the two pathway amplitudes in the weak field regime corresponds to the detuning between
transitions 551, — 5P;/2 and 5P3/5 — 5D3/5, which reflects the cooperation between the two pathways in order
to maximize the population transfer. Furthermore, our analysis regarding the quantitative relationship between
the oscillation parameters (i.e., the oscillation period and average value of |U;/Us|) and their relation to the system
Hamiltonian indicates that HE-OD data could be employed for Hamiltonian identification [21]. For broadband control
fields the pathway amplitudes are treated in the frequency domain. Several control schemes, namely a 5 step scheme,
an eight-block scheme and two multi-block schemes, are employed to manipulate the pathway dynamics. From the
results of our simulations, the 7 step scheme proposed by Silberberg [22] can increase the ratio between the two
pathway amplitudes (|U1|/|Uz| or |Usa|/|U1]) approximately by a factor of three (without directly controlling the
interference between the two pathway amplitudes), while the other three schemes can increase the ratio by several
orders of magnitude. The overall analysis indicates that the eight-block scheme with only four phase parameters
is a practical choice for pathway manipulation in this five-level model due to its simplicity and effectiveness. The
system investigated in this work has two intermediate states, corresponding to two 2nd-order pathways, whereas the
procedures outlined here can be generalized to treat quantum systems involving more 2nd-order pathways in the
low power regime when there are no higher order pathways present. In the high power regime, the simple linear
relationship between the pathway amplitudes and €% (i.e., ¢ is a spectral block’s phase) would be invalid because the
dynamics are now described by a larger set of (higher order) terms in the Dyson expansion. In this latter case the
multi-block scheme provides a more effective choice.
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