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Abstract

The extreme ultraviolet absorption spectrum of an atom is strongly modified in the presence

of a synchronized intense infrared field. In this work we demonstrate control of the absorption

properties of helium atoms dressed by an infrared pulse by changing the relative polarization of

the infrared and extreme ultraviolet fields. Light-induced features associated with the dressed 1s2s,

1s3s and 1s3d states, referred to as 2s+, 3s± and 3d± light induced states, are shown to be strongly

modified or even eliminated when the relative polarization is rotated. The experimental results

agree well with calculations based on the solution of the time-dependent Schrödinger equation using

a restricted excitation model that allows efficient treatment of the three dimensional problem. We

also present an analysis of the light induced states based on Floquet theory, which allows for

a simple explanation of their properties. Our results open a new route to creating controllable

superpositions of dipole allowed and non-dipole allowed states in atoms and molecules.
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The interaction of light with matter is one of the most fundamental processes occurring

in nature. Depending on the intensity of the electric field, different phenomena can occur

ranging from the Stark shift of energy levels (for low electric field intensity) up to pho-

toionization by tunneling (for intense electric fields). The few-femtosecond optical period of

visible and near infrared radiation (T0 = 2.66 fs for λ = 800 nm) indicates that fundamen-

tal modifications of the electronic structure, due to the interaction with the external field,

occur on a timescale of a few tens or hundreds of attoseconds [1, 2]. A recent example of

modifications on this timescale is the measurement of the time-dependent dipole induced

by a moderately strong infrared (IR) field [3]. Furthermore, a signature of the sub-cycle

Stark shifts induced by an intense IR field on the singly excited energy levels of helium was

measured in the transmitted spectrum of an isolated extreme ultraviolet (XUV) attosecond

pulse with varying delay between the two pulses [4]. This latter technique is usually named

attosecond transient absorption spectroscopy and it has been used to investigate femtosec-

ond and sub-cycle dynamics in noble gas atoms [5–11]. With this technique it has been

observed that the IR induces additional absorption features far from any transitions allowed

by single photon absorption [12, 13]. These features can be linked to laser-dressed states

and exhibit half cycle oscillations with changing delay between the IR and XUV fields.

Bound electronic wave packets in helium were previously investigated using photoelectron

spectroscopy [14–16]. However, the observation of the evolution of all bound components

requires intense IR fields (at least three IR-photons at λ=800 nm are required to eject

an electron from the 1s2p energy level in to the continuum), while transient absorption

spectroscopy allows one to investigate the dynamics of bound wave packet also for weak

(perturbing) IR fields.

In this work, we use attosecond transient absorption to investigate how the absorption of

IR-dressed states can be controlled by varying the relative polarization of the attosecond and

IR fields when they overlap in time. We demonstrate that control of the relative polarization

angle between the fields allows one to selectively excite particular groups of dressed states,

depending on the quantum numbers of the undressed states that are coupled by the IR field.

We present two sets of calculations that agree well with the experimental observations. One

is a numerical solution of the time-dependent Schrödinger equation which agrees well with

the experimental spectra over a wide frequency range. The other is a few level model based

on Floquet theory. A simple intuitive picture of the absorption can be gained by assuming
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that the attosecond XUV pulse creates a wave packet that is a superposition of IR-dressed

excited states. The experimental results are then understood by considering the matrix

elements of the relevant transitions between the undressed ground state and the manifold

of dressed excited states. This approximation is justified because the moderate IR intensity

in our experiment is too low to excite or ionize the atom, but it appears as a strong field to

electrons that are excited by the attosecond XUV pulse [12, 13].

I. EXPERIMENT

The experimental setup is shown schematically in Fig. 1. Few-cycle carrier-envelope

phase (CEP) stabilized IR pulses were split using a drilled mirror (DM). The duration of

the driving pulses was 5.2 fs, measured using a second harmonic FROG. The polarization

of the central part (transmitted through the hole of the DM) was modulated in time using

a delay plate (DP) and a quarter-wave plate (QWP) in order to allow the recollision of

a single electronic wave packet with the parent ion, thus ensuring generation of an XUV

continuum [17, 18]. The XUV radiation generated in the high-order harmonic generation

(HHG) cell was reflected on a beam separator (BSP), which transmitted the p-component of

the IR beam and efficiently reflected the XUV light, and by a toroidal mirror (TM1), which

refocused the XUV radiation in a 3-mm-thick helium gas cell. After the beam separator, a

200-nm-thick aluminum filter (F) filtered the co-propagating IR radiation and the low-order

harmonics. The spectral dispersion introduced by the birefringent plates (DP and QWP)

was pre-compensated using a chirped mirror set at the output of the hollow fiber compressor

(not shown).

The annular beam reflected by the drilled mirror was delayed by a translation stage

positioned on a piezo actuator. The annular beam passed through a half-wave plate (HWP),

which rotated the polarization of the dressing pulse with respect to the polarization of the

XUV field. The HWP allowed one to continuously change the relative angle θ between the

polarizations of the attosecond radiation and the IR dressing pulse. The dispersion was

optimized to get the shortest pulses on the HHG arm for the generation of a single or a pair

of attosecond pulses. However, the different dispersion introduced by the two birefringent

plates on the HHG arm and by the half-wave plate on the dressing arm resulted in the non-

optimal compression of the dressing pulse, which is affected by a pedestal lasting about 60 fs.
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This low electric field component, however, does not influence the main conclusions that can

be drawn from the experimental data. The intensity of the IR pulse was changed by using a

variable aperture (AP). The XUV light and the dressing pulse were collinearly recombined

using a second drilled mirror (RM). The XUV light transmitted through the helium gas cell

was analyzed using a flat-field XUV spectrometer composed of a toroidal mirror (TM2) that

refocuses the XUV radiation and a concave grating (GR) with 600 lines/mm that disperses

the XUV components. The dispersed XUV light was finally collected onto a MCP coupled

to a phosphor screen and a CCD-camera.

We performed measurements with and without CEP-stabilization of the driving pulses,

without observing any remarkable difference in the delay-dependence of the helium absorp-

tion optical density. For CEP-stabilized pulses, a single attosecond pulse with a duration

of 370 as was characterized using the FROG-CRAB method [19]. In the case of CEP-

unstabilized pulses, the XUV radiation was emitted as either one or two attosecond pulses

[20, 21]. Since the emission of the attosecond bursts is linked to the IR field oscillations,

the phase coherence between the attosecond pulses and the oscillation of the dressing pulse

is maintained even without CEP stabilization. The measurements showed in the following

were obtained without CEP stabilization.

FIG. 1. (Color online) Experimental setup. DM: drilled mirror, DP: delay plate, QWP: quarter-

wave plate, HWP: half-wave plate, BSP: beam-separator, F: Filter, TM1/2: toroidal mirrors,

AP: aperture, RM: recombination mirror, GR: grating.

Figures 2a,b show the measured optical density for two different relative orientations of

the polarization axis of the two fields. The optical density OD(ω, τ) is shown as a function of

the frequency ω and of the relative delay τ and is given by: OD(ω, τ) = − log(S(ω, τ)/S0(ω))

where S(ω, τ) is the transmitted XUV spectra measured for the delay τ and S0(ω) is the XUV
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FIG. 2. (Color online) Optical densities as a function of the relative delay between the XUV and IR

pulses for parallel θ = 0◦ (a) and perpendicular θ = 90◦ (b) polarizations. Schematic representation

of the two-color excitation pathways leading to the single-photon forbidden transitions to the

unperturbed states 1s2s and 1s3d (solid lines), through the laser-dressed states 2s± (dashed lines)

and 3d± (dot-dashed lines) (c). Ip indicates the ionization potential.

spectrum measured without IR field. The step size between two consecutive experimental

points of the acquisition was 130 as and the zero of the delay axis was determined from

the maximum spatial interference of the dressing IR pulse and the IR pulse that drives the

harmonic radiation. We note that it is difficult to determine delay zero with more than few-

femtosecond precision, but that none of our conclusions depends on knowing the absolute

value of the delay (for a recent proposal on an accurate measurement of delay zero see
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ref. [22]). The IR dressing pulse arrives after the XUV pulse for negative delays.

At large negative delays (τ = −120 fs), the optical density is characterized by features cor-

responding to the singly excited 1snp states of helium. For large positive delays (τ ≥ 40 fs),

when all of the IR pulse arrives before the XUV pulse, the IR is too weak to excite the atom

out of its ground state in the absence of the XUV, and the resonance line widths are there-

fore extremely narrow compared to the spectrometer resolution (∆E ≃ 30 meV), and only

partially visible. For negative delays, the IR field (I ≃ 1012 W/cm2) can ionize the populated

excited states, leading to a reduction of the lifetime and, therefore, to an increase of the

linewidth. Around the time overlap −80fs < t < 10fs, the optical density presents a complex

structure characterized by absorption lines that have been attributed to the absorption of

XUV light by laser-dressed states, which result from the interaction between the atom and

the intense IR field [12, 13]. We note also that the bandwidth of the laser-dressed states

increases as the delay moves closer to zero, as less and less of the IR pulse arrives after the

initial XUV excitation. In this picture, which we discuss in detail below, the dipole forbidden

excited states such as the 1sns and 1snd levels can be populated via a two-photon process

involving the absorption of an XUV photon and the absorption (through the ns− and nd−

dressed states) or emission (through the ns+ and nd+ dressed states) of an IR photon (as

shown in Fig. 2c). The energies of the one-IR-photon laser-dressed states relevant for this

work are reported in Table I. In the case of parallel polarizations shown in Fig. 2a and

Fig. 3a,c, the absorption via the dressed states ns± is visible below (2s−, 3s−, 2s+, 4s−,

3s+) and above (4s+, 5s+, 6s+) the ionization threshold of helium. The laser-dressed state

3d− is also clearly visible. The absorption of the laser-dressed states ns± is characterized

by IR half-cycle oscillations, which are the results of the interference of the two pathways

leading to the population of dipole forbidden states ns as shown in Fig. 2c and discussed

in detail below. These observations are consistent with previously reported experimental

results [6, 7, 12, 13].

For the perpendicular case (Fig. 2b and Fig. 3b,d), the features corresponding to the ns±

dressed states disappear, while the absorption line corresponding to the 3d− state is still

visible. In particular, the prominent 2s+ and the weaker 2s− lines have disappeared, and

the continuum part of the spectrum is characterized by a uniform absorption without any

additional time-dependent structure. The small offset between the measured (≃ 21.75 eV)

and the expected (≃ 21.61 eV) energy of the 3d− state can be attributed to a cycle-averaged
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TABLE I. Energy levels of singly excited, one-photon dressed states of helium for the IR-photon

energy h̄ω = 1.46 eV (λ = 850 nm)

Energy Level Dressed States Energy [eV]

1s2s [20.62 eV] 2s− 19.16

2s+ 22.08

1s3s [22.92 eV] 3s− 21.46

3s+ 24.38

1s3d [23.07 eV] 3d− 21.61

3d+ 24.53

1s4s [23.67 eV] 4s− 22.21

4s+ 25.13

1s5s [24.01 eV] 5s− 22.55

5s+ 25.47

1s6s [24.19 eV] 6s− 22.73

6s+ 25.65

ponderomotive shift of the energy level. When the two polarizations are oriented at 45◦, an

intermediate situation between the parallel and perpendicular cases is realized (not shown).

In this condition the absorption associated to the ns± dressed states is weaker than in the

parallel case, resulting in a reduced visibility of the half-cycle oscillations.

In the remainder of this paper two analysis of the experimental data are presented. The

first is a numerical solution of the time-dependent Schrödinger equation (TDSE) in the

single active electron (SAE) approximation. The second is an interpretation in terms of the

dressed states of the excited atom in the IR laser field.

II. THEORY

A. Restricted Excitation Model

In this section the time-dependent Schrödinger equation (TDSE) is solved numerically

to study the effects of changing the laser polarization on transient absorption. To simplify

the calculations we use a restricted excitation model (REM) [23]. In the REM the wave
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FIG. 3. (Color online) Optical density as a function of the relative delay between the XUV and IR

pulses in the energy ranges 23.5-25.5 eV (a,b) and 20.5-22.5 eV (c,d) for parallel θ = 0◦ (a,c) and

perpendicular θ = 90◦ polarizations (b,d). The dashed lines indicate (from the lowest energy) the

expected energies of the ns± dressed states 3s−, 2s+, and 4s− (c,d) and 3s+ and 4s+ (a,b); the

dash-dotted lines indicate the expected energy of the 3d− (c,d) and 3d+ dressed state (a,b).

function is partitioned into “ground state” and “excited state” pieces. The weak attosecond

XUV pulse is assumed only to excite amplitude out of the ground state and the IR pulse

is assumed to act only on the excited/continuum portion of the wave function. This is

consistent with the idea that while the IR field is too weak to excite the atom, once the

system is excited the IR field acts in a non-perturbative manner. When the XUV and IR

fields have parallel polarizations, solving the time-dependent Schrödinger equation (TDSE)

in the single active electron (SAE) approximation [24] is reduced to a two dimensional

problem due to cylindrical symmetry. For non-collinear polarizations, however, solving the

TDSE becomes a true three-dimensional problem. The REM allows us to avoid the extra

work involved in the increased dimensionality.

The REM starts from the TDSE for an atom in two light fields,

i
∂

∂t
Ψ(t) = [HA +HL(t) +HX(t)] Ψ(t), (1)

where HA is the atomic Hamiltonian in the SAE approximation, HL(t) is the interaction

with the IR laser field, and HX(t) is the interaction with the XUV field. We use atomic units

throughout. The XUV field has a central frequency ωX and its interaction can be written
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as

HX(t) = H+
X(t)e

−iωX t +H−

X(t)e
iωX t. (2)

In the REM the total time-dependent wave function is

Ψ(t) = e−iE0tψ0 + e−i∆tψ̃(t), (3)

where E0 and ψ0 are the ground state energy and wave function respectively, and ∆ =

E0+ωX is the detuning from threshold. The full wave function is thus split into two pieces,

a ground state portion that oscillates at a frequency set by E0, and an “excited” portion

that has been formed via one photon absorption and oscillates at approximately ∆.

Substituting Eq. (2) and (3) into Eq. (1), yields an equation for the time evolution of

ψ̃(t) which is equivalent to solving the full TDSE:

i
∂

∂t
ψ̃(t) =

[
eiωX tHL(t) +H+

X(t) + e2iωX tH−

X(t)
]
ψ0

+ [HA +HL(t) +HX(t)−∆] ψ̃(t). (4)

In light of the experimental conditions, i.e., the modest IR intensity and the high XUV

frequency, we can make the following approximations: (i) the two rapidly varying terms

that multiply ψ0 are dropped while the more slowly varying term H+
X(t) is retained, and

(ii) the term HX(t) that acts on ψ̃(t) is dropped because the IR laser couples the excited

states strongly while the XUV field does not. With these approximations we obtain the

REM equation for the wave packet ψ̃(t):

i
∂

∂t
ψ̃(t) = H+

X(t)ψ0 + [HA +HL(t)−∆] ψ̃(t) (5)

This is an inhomogeneous equation where the term H+
X(t)ψ0 acts as a time-dependent source

function. This makes it convenient to deal with two light fields of different polarization

directions.

We take both light fields to be linearly polarized and adopt the dipole approximation.

The laser-atom interactions are HL(t) = EL(t)uL · r and H+
X(t) = E+

X(t)uX · r, where uL

and uX are the polarization directions of the laser and XUV fields, EL(t) is the full IR laser

field and E+
X(t) is the complex time-dependent XUV field envelope. We define a source wave

function ψs = (uX · r) ψ0 and further rewrite the first term on the right-hand side of Eq.

(5) as E+
X(t)ψs. A short time step δt is taken by calculating

ψ̃(t+ δt) = e−i(HA+HL−∆)δt
(
ψ̃(t)− i δt E+

X(t)ψs

)
. (6)
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At every time step where the XUV field is non-zero it adds a small amount to the excited

wave packet. This source term has a distribution over the magnetic quantum number m

that the laser field (polarized along the z axis) then preserves during the time evolution

from t to t + δt. This allows us to expand ψ̃(t) on a spherical harmonic basis with a fixed

number of m states and solve Eq. (5) for each m separately using the methods discussed in

detail in [24].

In the following we consider the case of a helium atom interacting with either parallel

or perpendicular polarizations of the pump and probe fields, since within the REM other

angles are just linear combinations of these two cases. In the parallel case both fields are

polarized in z direction, thus the source wave function is

ψs = zψ0 =
1√
3
rR0(r)Y

0
1 , (7)

where R0 is the helium ground state radial wave function in the SAE and Y 0
1 is a spherical

harmonic. In this case the XUV field adds amplitude to the l = 1, m = 0 component of ψ̃(t)

at every time step. The IR field couples this to all other l states with m = 0 during the time

evolution. In the orthogonal case, the XUV field is polarized in x direction and the source

wave function is calculated as

ψs = xψ0 = − 1√
6
rR0

(
Y 1
1 − Y −1

1

)
. (8)

In this case the XUV field adds amplitude to the l = 1, m = ±1 components of ψ̃(t), and

the IR field couples this to other allowed l states but preserves m = ±1 during the time

step. Note that the l = 0 states are never populated in the orthogonal case. Following

these considerations, the excited wave packet is expanded in a mixed radial grid-spherical

harmonic basis as

ψ̃(r, θ, φ, t) =
m=+1∑

m=−1

∑

l

R̃m
l (r, t)Y

m
l (θ, φ) (9)

After solving the TDSE the transient absorption spectrum can be described at the single

atom level by a frequency-dependent response function [24]:

S̃(ω) = 2 Im
[
d̃(ω)Ẽ∗

X(ω)
]
, (10)

where d̃(ω) and ẼX(ω) are the Fourier transforms of the dipole moment d(t) and the XUV

field EX(t) respectively. We apply a finite time window of 65 fs to the dipole moment before

Fourier transforming, exactly as done in ref. [12]. Because we are only concerned with the
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dipole oscillation in the frequency range around ωX , the dipole moment can be calculated

for parallel polarizations as

d(t) = e−iωXt < ψ0|z|ψ̃(t) > +c.c. (11)

=
1√
3
e−iωX t

∫
drR0 r R̃

0
1(t) + c.c.,

and for perpendicular polarizations as

d(t) = e−iωX t < ψ0|x|ψ̃(t) > +c.c (12)

= − 1√
6
e−iωX t

∫
drR0 r

(
R̃1

1(t)− R̃−1
1 (t)

)
+ c.c.

Because of the fixed phase relationship between the m = +1 and m = −1 components of

the wave function we need only calculate the m = 1 component and multiply its dipole

contribution by two.

For the detailed simulations we use a laser field of the form EL(t) = E0 cos2(πt/TL) sin(ωLt)

where E0 is the IR field strength and the pulse lasts from t = −TL/2 to t = +TL/2, and

E+
X(t) = E0 cos

2[π(t − τ)/TX ] is the time-dependent envelope of the XUV pulse. The time

delay between the two pulses is τ . The central peak of the 5 cycle full width at half maximum

(FWHM) IR pulse is 800 nm and the peak intensity is 3×1012 W/cm2. The XUV pulse has

a central frequency of 25 eV, a peak intensity of 1× 1011 W/cm2 and a FWHM duration of

300 as.

The results of the simulations are shown in Fig. 4a,b for the parallel and perpendicular

case, respectively. We concentrate on the three absorption features between the field free

1s2p and 1s3p states (21.1 to 23.0 eV) that are visible when the two pulses overlap in time

(delays between -10 and +10 fs) and the XUV and IR polarizations are parallel. These are

the 3s−, 2s+ and 3d− dressed states [12] discussed in connection with the experimental data

shown in Fig. 3. As in the experiment, the highest and lowest of these three features, corre-

sponding to 2s+ and 3s− dressed states disappear when the polarizations are perpendicular.

The absorption line at 21.9 eV, corresponding to the 3d− dressed state is, however, visible

for both polarizations. The absorption features above the ionization energy are greatly di-

minished in the calculations, in agreement with the experimental findings. The simulations,

therefore, reproduce all main features observed in the experimental data. We turn now to

a discussion of these results based on a simple Floquet picture of XUV absorption in the

overlap region of the delay scan.
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FIG. 4. (Color online) Calculated single atom helium response (Eq. 10) as a function of the

relative delay between the XUV and IR pulses for parallel θ = 0◦ (a) and perpendicular θ = 90◦(b)

polarizations.

B. Floquet picture

In order to gain a simple physical picture of the differences observed for parallel and

perpendicular polarizations, it is useful to consider the Floquet representation of the helium

system dressed by the IR field and interacting with the XUV pulse. In this description,

the state describing the atom is considered as a coherent superposition of laser-dressed

states, which can be ordered as a function of the number of IR photons involved. The main

approximation that we employ is again the idea that the ground state is not affected by

the IR laser and so the transient absorption measurement probes transitions between the

undressed ground state and the manifold of excited states dressed by the IR field. We can

then consider the matrix element between the ground state and the excited-dressed states in

order to evidence differences between the absorption in the parallel and perpendicular case.

Before discussing the more complicated case of the full helium atom, we first consider a
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FIG. 5. (Color online) Calculated single atom response (Eq. 10) for the three level helium atom.

On the left are shown the positions of the dressed states |α, n〉 where α is either 2s or 2p depending

on the state in zero field. The white dots show states that have a non-zero transition moment to

the 1s ground state.

simple model for the feature we have labeled as the 2s+ light induced state. We simplify

the helium atom to a three state system consisting of the ground 1s2 state and the 1s2s

and 1s2p excited states. The energies and dipole couplings are the same as in the SAE

calculations. We use the same laser parameters as in the full simulation above, except that

we move the central wavelength of the XUV to the 1s2 − 1s2p energy to better highlight

the light-induced features. The result of a full solution of the three-level TDSE is shown

in Fig. 5. The absorption features appear near the 1s2p energy and also at energies that

are approximately one IR photon away from the 1s2s state and two photons away from the

1s2p state. There are also visible half cycle oscillations as in the experiment and the full

TDSE simulations. We now discuss how the three level model can be explained in terms of

Floquet states. We use the same notation as [25] where laser-dressed photo absorption in

helium was analyzed in terms of Floquet theory.

In the three level model, the Floquet states that describe the dressed excited states

are built from products of the 1s2p or 1s2s states with an integer number of photons.

Diagonalizing the two state plus laser field Floquet Hamiltonian [26] for a constant IR

intensity yields time-independent states |φα,n〉, where the α label refers to the state in zero
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field and is either 1s2s or 1s2p in our model, and n is the index for photon numbers involved.

Each atomic state α gives rise to a “ladder” of states with energies ǫα+nω. Note that in the

Floquet picture ω always refers to the laser frequency ωL. These energies are shown on the

left hand side of Fig. 5 and are calculated using the same peak intensity as the calculations

shown in Fig. 4. The Floquet energies ǫα are close to the field free 1s2s and 1s2p energies

in this case because of the large detuning (∼ 1 eV) of the 1s2p− 1s2s energy from ω. For

smaller detunings the Floquet energies can differ substantially.

As discussed in [25] the Floquet ladder states can be used to construct time-dependent

Floquet states |Ψα(t, τ)〉 that can then be used to describe the time-evolution of the system.

Because they are not coupled by the IR field, the time evolution of a Floquet state following

excitation at t = 0 is given by

|Ψα(t, τ)〉 = e−iǫαt
∑

n

e−inω(t+τ)|φα,n〉, (13)

where we have accounted for the delay τ between the XUV pulse and the IR field by adding

a phase e−inωτ to each of the ladder states.

Using the time-dependent Floquet states |Ψα〉 as a basis, the time-dependent dipole

moment can be calculated as follows. If we ignore the XUV pulse duration, the initial excited

state wave function is proportional to µ̂X |ψ0〉 where µ̂X = uX · r is the dipole operator of

the XUV field and |ψ0〉 is the ground state. This can be expressed as a superposition of the

Floquet states at t = 0:

|Ψ(t = 0, τ)〉 =
∑

α

Cτ
α |Ψα(t = 0, τ)〉, (14)

where Cτ
α is the dipole transition element from the ground state to the different Floquet

states,

Cτ
α = 〈Ψα(t = 0, τ)|µ̂X |ψ0〉

=
∑

m

eimωτ 〈φα,m|µ̂X |ψ0〉. (15)

Once the excited state wave function has been decomposed at t = 0 into dressed states, it

can be found at any time t > 0 using Eq. 13:

|Ψ(t, τ)〉 =
∑

α

Cτ
α |Ψα(t, τ)〉. (16)

This expression is equivalent to what is called ψ̃(t) in Eq. 3. Using it to construct the time

dependent dipole as in Eq. 11 gives
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d(t, τ) =
∑

α,m,n

e−i(ǫα+mω−E0)tei(n−m)ωτ 〈φα,n|µ̂X |ψ0〉〈ψ0|µ̂X |φα,m〉+ c.c., (17)

where E0 is again the ground state energy. This equation, valid for short XUV pulse exci-

tation of a system strongly coupled by an IR field, is the main result of this section. It can

explain many of the general features in the delay dependent absorption spectrum when the

pulses overlap.

To begin with, Eq. 17 shows that the dipole moment oscillates at frequencies ǫα+mω−E0,

which means there can be absorption at those frequencies if they are present in the XUV

spectrum, and if the corresponding dressed state has a non-zero transition moment to the

ground state. Due to parity conservation, the XUV pulse can only populate every other

state in each Floquet ladder, and in Fig. 5 we have put a white dot on the states in each

ladder that have a non-zero transition moment to the ground state. The absorption is also

modulated as a function of delay at frequency (n−m)ωτ . Since parity considerations dictate

that m − n must be an even number we expect to see oscillations in the absorption as a

function of delay with a period of T0/2, T0/4, etc., with the half cycle (2ω) oscillations being

the strongest.

The light-induced states we have referred to as 2s+ and 2s− are seen to be simply the

|2s,±1〉 dressed states. The amplitude of the light-induced features in d(t, τ) depend on

the IR field through the matrix elements 〈φα,n|µ̂X |ψ0〉, and they obviously last only until

the IR field ends and the ladders collapse to the field free states. This explains why these

features are broadened at positive delays. We note that absorption at the |2p,−2〉 energy
can be seen for negative delays where the XUV and IR pulses do not overlap. In this case the

dressed state is populated by the turn on of the IR pulse when 2p population is redistributed

over the 2p dressed states. In our experiment the XUV bandwidth does not extend to this

frequency, but this feature has been observed previously [13].

From Eq. 17 it can be seen that the 2ω oscillations in the light-induced features are a

direct indication of the sub-cycle duration of the XUV pulse. That is, the broad bandwidth

of the XUV pulse coherently populates multiple states in each Floquet ladder so that the

phases accumulated on those states can interfere and give delay dependent oscillations in the

absorption spectrum. This conclusion is unchanged if one considers a short train of XUV

pulses that are individually sub-cycle in duration, provided they are separated by T0/2. If
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we do not ignore the XUV pulse duration, as we have been, then Eq. 17 can be generalized

by convoluting it with the XUV envelope

d(t, τ) =
∫
d(t, τ ′)EX(τ ′)dτ ′, (18)

and it can be easily shown that the delay dependent oscillations are strongly suppressed if

the XUV pulse duration is longer than T0/2.

The three level model can be extended to include more atomic states in the basis, leading

to more Floquet ladders. The most important couplings for the 1s2s, 1s3s and 1s3d states

are to the 1s2p and 1s3p states. The n = ±1 sideband of these dark states will be visible in

the absorption spectrum near an energy ǫα±ω if the XUV bandwidth overlaps their position.

Because the IR pulse is always along the z axis the dipole interaction HL(t) = EL(t)z couples
states with ∆m = 0 only. This means that the Floquet states created by the IR field can

be sorted into manifolds labeled by m. Since the ground state retains its ℓ = 0, m = 0

character simple dipole selection rules dictate that the XUV interaction H+
X will only couple

the ground state to dressed states that have some ℓ = 1, m = 0 component when the XUV

field is polarized parallel to the IR field, and will only couple the ground state to dressed

states with some amount of ℓ = 1, m = ±1 character when it is polarized orthogonal to the

IR field. The transition element (Eq. 15) between the ground 1s state and a dressed state,

Cτ
α = E+

X < Ψα(r, t = 0, τ)|uX · r|ψ1s(r) > (19)

reduces to the sum over contributions whose angular part can be expressed as:

< Y m
l |z|Y 0

0 > ∝ δl,1δm,0 parall. case

< Y m
l |x|Y 0

0 > ∝ δl,1[δm,−1 − δm,1] perp. case (20)

Thus we expect that, beginning with parallel XUV and IR polarizations, the m = 0 dressed

states will disappear from the absorption spectrum as the polarization is rotated, while

m = ±1 states will begin to appear. In the extreme cases, only m = 0 states appear for

parallel polarization, and only m = ±1 states appear for perpendicular polarization. This

is consistent with the experiment results: the 2s+ light induced state with only m = 0

character is strongest for parallel polarizations and vanishes for perpendicular polarization,

while the 3d− state with both m = 0 and m = ±1 character persists in both parallel and

perpendicular cases.
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III. CONCLUSIONS

In conclusion, we have investigated the polarization dependence of the absorption lines

of excited states of helium dressed by an IR pulse. The experimental data evidence a clear

difference in the absorption features of ns± and nd± dressed state between the parallel and

perpendicular polarization cases. The different behavior is confirmed by TDSE simulations

and can be interpreted in terms of the angular part of the integral contributing to the

dressing of the excited states by the IR field. These observations indicate that the IR field

can be used to create a coherent superposition of states (ground state 1s2 and 1s3d state

for example) characterized by a non-uniform population of m−quantum number states. In

the time domain, this superposition corresponds to a charge dynamics of few hundreds of

attosecond (due to the energy spacing between the ground and excited states) characterized

by a symmetry that can be controlled by the polarization of the IR field.
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