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The energies and physical properties of three electron systems are studied us-

ing an Explicitly Correlated Gaussian basis optimized by the Stochastic Variational

Method. The stability of the system as a function of the nuclear charge is analyzed.

The role of the Coulomb and magnetic interactions in shaping the structure of these

systems is discussed. The accuracy of the energies are substantially improved for

high magnetic fields.

I. INTRODUCTION

The competition between the Coulomb (electron-electron repulsion, and electron-nuclear
attraction) and the magnetic field for different interaction strengths makes the atoms in
magnetic field a perfect laboratory to test and develop computational approaches [1–12].
In this paper we study the energy levels, wave functions and structures of three-electron
systems as a function of strength of the magnetic and the Coulomb interactions using an
accurate variational description.

The study of the effect of magnetic fields on energy levels and wave functions is strongly
motivated by the discovery of stars with strong magnetic fields [13–15]. These magnetic field
strengths range from the weaker fields of white dwarfs [16, 17] (≈ 107 G) through neutron
stars [18] (≈ 1012 G) all the way up to fields of 1014-1015 G observed in magnetars [19].
Under normal laboratory conditions the highest achievable magnetic field is around 105 G,
but in condensed matter systems the low effective mass and high dielectric constant can lead
to magnetic fields [20] that are, in effect, much stronger than that.

Many different approaches [21–29] have been used to study the effects of strong magnetic
fields on small atoms and ions, such as H, H−, He, Li, Be. The most popular approaches
include the Hartree-Fock method [1, 30–40], variational calculations with Gaussian [2, 3],
Hylleraas [4, 5], or Lagrange basis functions [6], Quantum Monte Carlo (QMC) [7, 8], finite
element calculations [9], or pseudospectral Hartree-Fock[10]. Analytical calculations have
also been proven to be valuable tools. It has been analytically predicted, for example, that
under very strong magnetic fields neutral atoms can bind with an additional electron [11, 12].
In particular, it was claimed that Helium, despite being a noble gas, was capable of forming
a stable negative ion under such conditions. Recent works based on computational methods
have verified this prediction of the He− ion [5, 41].

While many papers in the literature deal with two electron atoms, [2–4, 6–9] accurate
calculations for three or more electrons are rare. Computational studies of Li, as well as He−

and Be+ ions are mostly done by using methods based on some simplifying approximations
[5, 35, 36, 42–47], for example by using the Hartree-Fock method [1, 30–40] or methods that
restrict the core electrons [48, 49]. For three-electron atoms the configuration interaction
method with anisotropic Gaussian basis functions [1] and Hylleraas basis functions [4] seem
to give accurate results.

The effect of magnetic field on the energy levels of molecules has also been extensively
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studied [50–59]. High magnetic fields drastically change the binding energies, bond lengths
[59], and can lead to new bonding mechanisms [53]. Calculations for molecules very difficult,
because the separation of center of mass motion [60] is not trivial and the description of
nuclear and electronic structure is complicated. Recent works [50, 51, 54] using current
density functional theory [61] established a non-perturbative framework to calculate the
molecular properties in magnetic fields.

Approaches based on explicitly correlated wave functions [4, 6, 41] are likely to be re-
stricted to smaller atoms, with the only exception being the QMC method [7, 8, 62]. Be-
yond few-electron systems, besides the QMC method [7, 8], the Hartree-Fock [1, 30–40] and
the density functional theory (DFT) approach [63, 64] seem to be applicable. The DFT
approaches are particularly important because they can help the development of better ex-
change correlational functionals. A recent thorough review of different approaches can by
found in Ref. [65].

In this work we extend out previous accurate variational calculations [41] to study the
three-electron isoelectronic sequence, with Z = {1, 2, 3, 4}, in a strong uniform magnetic
field. Besides calculating the energy levels, we also analyze the change of the wave func-
tions and make comparisons between the different systems. All this is done within the
non-relativistic framework, neglecting any QED effects and assuming an infinitely massive
nucleus, as it is commonly done in the literature. The calculations employ a deformed Ex-
plicitly Correlated Gaussian (ECG) and the nonlinear parameters are optimized with the
stochastic variational method. Variational calculations using Explicitly Correlated Gaus-
sians proved to be extremely accurate in predicting binding energies and other properties
in few-particle systems including the stability domains [2, 66, 67]. The main advantage of
the ECG basis is that the matrix elements are analytically available and by increasing the
number of basis states the accuracy can be enhanced. In our previous paper [41] we have
shown that the deformed variant of this basis is flexible enough to give accurate results for
high magnetic fields.

II. FORMALISM

A. Hamiltonian and basis functions

The nonrelativistic Hamiltonian of a Coulombic few-particle system in magnetic field B,
oriented in the z direction is given by:

H = T + Vho + VNe + Vee +
B

2
(Lz + 2Sz), (1)

=
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Here T is the kinetic energy, Vho the harmonic oscillator potential, VNe the attraction
of the nucleus and Vee the electron repulsion, with Lz and Sz are respectively the angu-
lar momentum and total spin operators in the z direction, which correspond to conserved
quantities in the system.

We also define Vmag as the total contribution of the energy due to the magnetic field as:
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Vmag =

N
∑

i=1

B2

8
(x2

i + y2i ) +
B

2
(Lz + 2Sz). (3)

The variational method is used to calculate the energy of the system. As a trial function
we choose a deformed form of the correlated Gaussians (DCG) [2, 3]:

exp{−
1

2

N
∑

i,j=1

Aijρi · ρj −
1

2

N
∑

i,j=1

Bijzi · zj}, (4)

where the nonlinear parameters are different and independent in both the radial and vertical
direction.

The Hamiltonian does not commute with L2 but it has common eigenfunctions with Lz,
with corresponding eigenvalue M . The above form of the DCG belongs to M = 0. To allow
for M 6= 0 states we multiply the basis by

N
∏

i=1

ξmi
(ρi), (5)

where
ξm(ρ) = (x+ iy)m. (6)

Thus the spatial anti-symmetric variational trial function reads as

ΦM(r) = A{

(

N
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i=1

ξmi
(ρi)

)

exp{−
1

2

N
∑

i,j=1

Aijρi · ρj −
1

2

N
∑

i,j=1

Bijzi · zj}}, (7)

where M = m1 +m2 + ...+mN , and mi are integers. This function is coupled with the spin
function χSMS

to form the trial function. The nonlinear parameters are optimized with the
stochastic variational method [2, 3].

The Explicitly Correlated Gaussians are very popular in atomic physics and quantum
chemistry [2]. The main advantages of ECG bases are: (1) their matrix elements are analyt-
ically available for a general N-particle system (2) they are flexible enough to approximate
rapidly changing functions (3) the permutation symmetry can be easily imposed and (4)
one can make a simple transformation between single particle and relative coordinate sys-
tems. The basis parameters can be efficiently chosen by the stochastic variational method
[3]. The present basis is restricted to a single center and the calculations are limited to
a single nucleus. One can in principle generalize the approach for molecular calculations
using multi-center Gaussians [2], but due care has to be taken in treating the center of mass
motion [60].

B. Threshold energy

In order to determine the stability of the system, one has to calculate the accurate
threshold energies. This is done by calculating the energies of the two-electron isolectronic
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Quantum Numbers Single particle ν2S+1(M)π

M = 0 Sz = −1
2 1s22s 2(0)+

M = −1 Sz = −1
2 1s22p−1

2(−1)+

M = −1 Sz = −3
2 1s2s2p−1

4(−1)+

M = −3 Sz = −3
2 1s2p−13d−2

4(−3)+

TABLE I: Spin and angular momentum configurations considered in the present work. ν is the degree of excitation and π is
the parity of the state in the z direction. For all cases only the lowest degree of excitation with positive parity was considered.

series, in the appropriate configurations. For example, for He− the threshold is given by the
states of He that satisfy the following:

ET (M,Sz) = min
MHe,SHe

z

(

EHe
tot (M

He, SHe
z ) + Ee(Me, Se

z)
)

, (8)

where EHe
tot (M

He, SHe
z ) is the total energy of the He atom, and

Ee(Me, Se
z) = (Me + |Me|+ 2Se

z + 1)
B

2
, (9)

is the energy of a single electron in a magnetic field. The quantum numbers must satisfy

M = MHe +Me, Sz = SHe
z + Se

z . (10)

We consider only those states that satisfy conservation of orbital angular momentum and
spin, as given in (10), and calculate the threshold energy using (8). Once the threshold is
found the binding energy can be obtained from:

Eion = Etot −ET . (11)

The procedure is analogous for H−−/H−, Li/Li+, and Be+/Be++. The states with
orbital angular momentum and spin considered in the present work are shown in Table I.

C. Physical quantities

The following physical quantities are used to describe the properties of the system and
characterize the quality of the wave function:

The virial ratio, η, is defined as:

η = −2
〈Ψ |T |Ψ〉

〈Ψ |V |Ψ〉
, (12)

= −2
〈Ψ |T |Ψ〉

〈Ψ |Vee + VNe|Ψ〉 − 2 〈Ψ |Vho|Ψ〉
. (13)

Checking how close η is to the ideal value of 1 gives a useful measure of the quality of the
wave function [41].

The pair correlation function is defined as

Cee(r) =
2

N(N − 1)
〈Ψ|

N
∑

i<j

δ(ri − rj − r)|Ψ〉. (14)
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Using Cee(r), the radial part of the correlation function, the powers of interparticle distances
are given by

〈rkee〉 = 4π

∫

∞

0

rkCee(r)r
2dr, (15)

In a similar manner, the correlation function can be also defined for single particles, by
taking the distance from the origin instead:

CNe(r) =
1

N
〈Ψ|

N
∑

i=1

δ(ri − r)|Ψ〉. (16)

Using this correlation function, the square distances between the nucleus and electrons are
defined as

ρ2Ne = 2π

∫

∞

0

ρ2CNe(ρ)ρdρ (17)

and

z2Ne =

∫

∞

−∞

z2CNe(z)dz. (18)

Distances between particles in a bound system are small, and the particles are confined into
distances of a few atomic units. Loosely bound systems tend to be larger, up to a few tens
of atomic units, but still finite. In unbound systems the distances diverge.

Another quantity of interest is the quadrupole moment which is defined, as in Ref. [30]:

Qzz = 〈Ψ|

N
∑

i=1

2z2i − ρ2i |Ψ〉 = N(2zNe − ρNe). (19)

III. RESULTS AND DISCUSSION

We have calculated the energies of the three-electron isoelectronic series with nuclear
charge Z=1-4 for different values of strong magnetic fields for bound states with different
angular momentum and spin configurations. N=400 basis functions are used unless otherwise
noted.

To test the accuracy of our results we compare our calculation for the energies of low
lying states of the Li atom to Ref. [1], the most accurate results found in the literature.
The calculations presented in Ref. [1] are based on Hylleraas-type basis functions and are
expected to be very accurate for weak magnetic fields. For higher fields, the Hylleraas
description needs many high orbital momentum states and becomes computationally very
expensive.

Table II shows the present results and the energies predicted by the Hylleraas approach.
For low fields the two calculations are in complete agreement. In the free field case it is very
hard to compete with the accuracy of the Hylleraas approach. One has to use N=2000 basis
functions to reach accuracy up to 6 decimal places. For higher fields the Hylleraas basis
seems to be less accurate and our results improve the previous energies at the third decimal.
There is one case, the 2(−2)+ state with B=0.009, where our energy is significantly different
from that of Ref. [4]. As other energies in this magnetic field region agree perfectly, we
suspect that there might be a typo in Ref. [4].
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FIG. 1: Ground states energies for different values of magnetic field in He− (red), Li (green), Be+ (blue). The regions where
the ground state of the system makes a transition are marked.

Using our approach we have studied the low lying positive parity states shown in table I.
These states can be either ground states or lowest excited states depending on the strength
of the magnetic field. The evolution of the ground state as a function of the strength of
the magnetic field as predicted by our calculations is shown in Fig. 1. For Li and Be+ the
ground state is the 2(0)+ configuration for low, 2(−1)+ for intermediate and 4(−3)+ for very
high fields. The ground state of He− is the 2(−1)+ configuration for smaller values of B
[5, 41] rather than the 2(0)+ configuration which is not bound. However for higher values
the ground state of He− follows the same pattern as that of Li and Be+.

The ground state transition points for three-electron systems have been studied in several
papers [7, 8, 30, 39]. The calculation of the precise location of the ground to excited states
transition points requires very high accuracy for both states, and that is computationally
expensive. For the case of Li, the transition has been predicted at B = 2.153 a.u. [30]
and B = 2.19816 a.u. [7]. In the case of Be+, the crossover was estimated to take place at
around B = 4.501 a.u. in Ref. [36] and B = 4.55328 a.u. [7].

Our calculation is in good agreement with these predictions (see Fig. 1). To illustrate
the capability of our approach to predict accurate transition points, we have calculated the
energies of the 4(−3)+ state for magnetic field strengths where the transition to the 2(−1)+

state takes place, according to Ref. [7] and have compared it to their predictions for different
Z. As Table III shows, the calculated energies using the present method are more negative
than those found in Ref. [7], but the general agreement is good.

At the transition points the total energies of the two configurations become equal. How-
ever, the structure of the two states can be very different. This is illustrated for He− in Fig.
2.

In the following, we discuss the bound state properties of the three-electron systems. We
have only found bound states for the He, Li+ and Be++ nuclei. For H−− we have considered
the cases shown in table I and carefully optimized the basis functions to explore possible
bound states. No bound state was found, and it seems highly unlikely that a single positive
charge can support a bound three-electron state in a magnetic field.
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2(0)+ 2(−1)+ 2(−2)+

B Energy Ref[4] Energy Ref[4] Energy Ref[4]

0 -7.478 060 320 -7.478 060 323 -7.410 156 508 -7.410 156 524 -7.335 523 535 -7.335 523 537

0.001 -7.478 558 8 -7.478 558 8(1) -7.411 153 7 -7.411 153 9(2) -7.336 509 7 -7.336 500 7(2)

0.0018 -7.478 955 4 -7.478 955 5(2) -7.411 947 5 -7.411 9475(1) -7.338 189 4 -7.338 189 4(1)

0.009 -7.482 436 5 -7.482 436 7(2) -7.418 932 0 -7.418 9321(2) -7.347 954 1 -7.348 185 6(1)

0.01 -7.482 907 5 -7.482 907 6(1) -7.419 879 5 -7.419 879 5(1) -7.349 208 9 -7.348 823 7(1)

0.018 -7.486 566 1 -7.486 566 8(3) -7.427 265 4 -7.427 2656(2) -7.349 501 5 -7.358 501 7(1)

0.02 -7.487 450 5 -7.487 451 9(2) -7.429 059 0 -7.429 059 0(1) -7.360 614 0 -7.360 448 1(2)

0.2 -7.529 806 2 -7.529 807 (1) -7.538 656 3 -7.538 654 8(4) -7.458 826 2 -7.458 823 8(1)

0.4 -7.531 275 5 -7.531 188 7(2) -7.610 167 0 -7.610 130 7(2) -7.510 686 6 -7.510 607 6(2)

0.5 -7.523 946 2 -7.523 918 (6) -7.637 0223 7 -7.636 927 4(3) -7.528 106 1 -7.528 018 7(1)

0.54 -7.520 090 0 -7.520 016 (1) -7.646 547 4 -7.646 491 6(1) -7.533 948 3 -7.533 850 (1)

0.6 -7.513 531 7 -7.513 400 (2) -7.659 690 7 -7.659 533 (3) -7.541 677 5 -7.541 506 (3)

0.7 -7.501 000 4 -7.500 958 (7) -7.678 861 1 -7.678 598 (3) -7.552 080 7 -7.551 717 (2)

0.9 -7.471 717 4 -7.471 460 (2) -7.708 359 3 -7.707 760 (1) -7.564 823 8

1 -7.455 437 7 -7.454 284 (1) -7.719 225 9 -7.718 357 (4) -7.567 629 82 -7.566 400 (1)

TABLE II: The energies for Li in various configurations calculated in the present work and compared to the values in Ref[4].
The standard uncertainty is shown in parentheses where applicable. Our calculations are converged up to the six decimal

places.

Z βz Energy

Present work Ref [7]

3 0.12212 -7.69806 -7.6905(3)

4 0.14229 -15.07530 -15.067(6)

5 0.15510 -24.94961 -24.9386(9)

6 0.16404 -37.32606 -37.309(2)

7 0.17059 -52.20168 -52.184(2)

8 0.17556 -69.56932 -69.551(2)

9 0.17947 -89.44020 -89.418(4)

10 0.18266 -111.81031 -111.783(4)

TABLE III: Energies at the transition points from 2(−1)+ to the high magnetic field ground state 4(−3)+. Here the
parameter βz = B

2Z2 is used, just as defined in Ref.[7].

1. The 2(0)+ (M = 0, Sz = −1
2) configuration

For Z ≤ 4 only the Li atom and the Be+ ion are bound. The threshold energy is defined
by the energy of the Li+ and Be++ ions with M = 0, Sz = 0 for all values of the magnetic
field. The calculated energies are presented in Table IV for Li and in Table V for Be+. The
behavior of the energy as a function of the magnetic field is shown in Fig. 3. The total
energy of Li in this configuration has a local minimum, as previously reported in Ref.[30] at
B = 0.304 a.u. A similar minimum for Be+ is around B = 0.8 a.u., and general behavior of
the two curves is rather similar. The binding energies of these states are shown in Fig. 3.
The binding energies first start to increase with the magnetic field, but at a certain maximum
point this trend changes leading to a local minima after which the binding increases again.
The minimum values for binding energy are located around B = 2 a.u. for Li and B = 4 a.u.
for Be+. The shape of the binding energy curve is determined by the difference between the
total energy of the three-electron and the total energy of the two-electron system, therefore
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FIG. 2: Density contour plots of He− at the transition point. Neighboring lines differs from each other by factor of e. (a)
M = −1,Sz = −

1
2
near the transition point, for B = 0.70416 a.u. (b) M = −3,Sz = −

3
2
near the transition point, for

B = 0.70416 a.u.

these curves have more complicated structure than the three-electron energy curve (see Fig.
3). The maximum values of binding energies were found around B = 0.4 a.u. for Li and
B = 1.2 a.u. for Be+. It is important to point out that the systems undergo significant
structural changes near those regions. In the interval 0.24 a.u. < B < 0.4 a.u. Li becomes
more elongated along the z direction and then changes back to being a less prolate shape as
seen in Fig. 3 (see also the quadrupole moments for Li and Be+ in Table VI). For the case
of Be+ a similar expansion is observed in the same figure for Z2

Ne but around the interval
0.8 a.u. < B < 4 a.u.

The energies become positive as B increases because 〈Vmag〉 becomes positive, and the
kinetic energy gets substantially larger as illustrated in Tables VII and VIII. This is due to
the increase of harmonic oscillator contribution, 〈Vho〉. For small fields the largest contri-
bution to the total energy comes from the electron-nuclear attraction. The kinetic energy,
〈T 〉, however, eventually becomes greater in magnitude than 〈VNe〉, becoming the dominant
term of the Hamiltonian for larger fields.

2. The 2(−1)+ (M = −1, Sz = −1
2) configuration

The total energies for He−, Li and Be+ are plotted in Fig. 4 and presented in Tables IV,V
IX. The corresponding binding energies (see Fig. 4) are calculated by using the threshold
energy belonging to the 1(0)+ state of He atom and Li+ and Be++ ions for all magnetic
fields. The 2(−1)+ state was found to be bound for Li and Be+ for all values of B, and but
the He− ion is only bound for certain B field intensities.

The 2(−1)+ configuration has a local minimum in total energy for Li and Be+ (Fig. 4).
However, there is no minimum observed for He−; it’s total energy is monotonously increasing.
This shows that the minimum in the energy curves of Li and Be+ is due to the competition
between the attractive nuclear Coulomb potential and the magnetic interaction. In the Li
atom and the Be+ ion the magnetic field forces the electron closer to the nucleus and that
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Li 2(0)+ 2(−1)+ 4(−3)+ 4(−1)+

B Present Previous Present Previous Present Previous Present Previous

0 -7.478060 -7.478060323 [4] -7.410157 -7.410 156 524 [4] -5.142788 -5.142319 [1] -5.368001 -5.358 88 [30]

-7.4777957 [68] -7.4097907 [68] -5.083 79 [30] -5.366705 [1]

-7477766 [1] -7.407126 [1] -5.142319 [1]

-7.4763360 [49] -7.408803 [49]

-7.432 75 [30] -7.365 09 [30]

0.001 -7.478559 -7.478 558 8(1) [4] -7.411154 -7.411 153 9(2) [4] -5.145754 -5.145464 [1] -5.369998 -5.360 88 [30]

-7.478032 [1] -7.408174 [1] -5.086 79[30] -5.368015 [1]

-5.145464 [1]

0.0018 -7.478955 -7.478 955 5(2) [4] -7.411948 -7.411 947 5(1) [4]

0.009 -7.482437 -7.482 436 7(2) [4] -7.418932 -7.418 932 1(2) [4]

0.01 -7.482907 -7.482 907 6(1) [4] -7.419787 -7.419 879 5(1) [4] -5.169195 -5.112 68 [30] -5.387821 -5.378 71 [30]

-7.482888 [1] -7.416994 [1] -5.169111 [1] -5.385841 [1]

0.018 -7.486566 -7.486 566 8(3) [4] -7.427265 -7.427 265 6(2) [4]

0.02 -7.487450 -7.4874519(2) [4] -7.429059 -7.429 059 0(1) [4] -5.191562 -5.139 60 [30] -5.407287 -5.398 17 [30]

-7.44214 [30] -7.4856398 [49]

-7.490983 [1]

0.1 -7.514011 -7.5140478(4) [4] -7.487304 -7.4873396(3) [4] -5.341001 -5.321 40 [30] -5.550708 -5.321 40 [30]

-7.5137817 [68] -7.4869343 [68] -5.341030 [1] -5.550268 [1]

-7.517154 [1] -7.484773 [1]

-7.5122102 [49] -7.4858382 [49]

0.16 -7.525201 -7.519899 -5.453736 -5.645657

0.2 -7.529806 -7.529807(1) [4] -7.538656 -7.5386548(4) [4] -5.525281 -5.511 51 [30] -5.704017 -5.694 51 [30]

-7.533495 [1] -7.536032 [1] 5.524939 [1] -5.703511 [1]

-7.5278376 [49] -7.5366925 [49]

0.24 -7.532503 -7.532562(2) [4] -7.555389 -7.5554917(1) [4] -5.593680 -5.759018

-7.5322949 [68] -7.5549851 [68]

0.4 -7.531276 -7.531 188 7(2) [4] -7.610167 -7.610 130 7(2) [4] -5.842165 -5.953098

0.5 -7.523946 -7.523918(6) [4] -7.637022 -7.6369274(3) [4] -5.982239 -5.970 52 [30] -6.058881 -6.047 87 [30]

-7.5235946 [68] -7.6362483 [68] -5.982253 [1] -6.058463 [1]

-7.528055 [1] -7.634547 [1]

-7.5216127 [49] -7.6341245 [49]

-7.477 41 [30] -7.587 90 [30]

0.54 -7.520090 -7.520 016 (1) [4] -7.646547 -7.646 491 6(1) [4]

0.6 -7.513532 -7.513 400 (2) [4] -7.659691 -7.659 533 (3) [4]

0.7 -7.501000 -7.500 958 (7) [4] -7.678861 -7.678 598 (3) [4]

0.8 -7.486909 -7.694877 -6.358064 -6.333199

0.9 -7.471717 -7.425 04 [30] -7.708359 -7.707760(1) [4] -6.472200 -6.460 61 [30] -6.415307 -6.401 75 [30]

-7.471460(2) [4] -7.707054 [68]

-7.4710527 [68]

1 -7.455438 -7.458550 [1] -7.719226 -7.718357(4) [4] -6.582402 -6.570 81 [30] -6.494473 -6.480 29 [30]

-7.454284(1) [4] -7.716679 [1] -6.582361 [1] -6.494196 [1]

-7.4529046 [49] -7.7151944 [49]

-7.408 79 [30] -7.66653 [30]

1.2 -7.419998 -7.734021 -6.792757 -6.646298

1.5 -7.360140 -7.741348 -7.086491 -6.863210

1.6 -7.338404 -7.740137 -7.179497 -6.933452

2 -7.242189 -7.19621 [30] -7.719430 -7.662 46 [30] -7.532720 -7.520 03 [30] -7.206104 -7.188 89 [30]

-7.244919 [1] -7.715709 [1] -7.530125 [1] -7.206026 [1]

4 -6.566910 -7.328330 -8.989213 -8.397667

5 -6.133931 -6.08811 [30] -7.005519 -7.002346 [1] -9.592108 -9.591769 [1] -8.905753 -8.905985 [1]

-6.136918 [1] -6.942 30 [30] -9.576 94 [30] -8.889 81 [30]

10 -3.404618 -3.35777 [30] -4.687628 -4.617 77 [30] -11.957598 -11.939 02 [30] -10.925795 -10.910 59 [30]

-3.406556 [1] -4.684076 [1] -11.957294 [1] -10.925976 [1]

20 3.441799 3.49120 [30] 1.625407 1.705 65 [30] -15.186392 -15.162 60 [30] -13.709466 -13.694 20 [30]

40 19.241172 16.740670 -19.457466 -17.405439

50 27.634711 27.6916 [30] 24.875829 24.979 42 [30] -21.086742 -21.0505[30] -18.818393 -18.8012 [30]

60 36.221250 33.236274 -22.519774 -20.061769

80 53.795996 50.424092 -24.979924 -22.196659

100 71.741025 71.807 [30] 68.041685 68.1735 [30] -27.065453 -27.0192 [30] -24.006455 -23.987 [30]

TABLE IV: The energies for Li for the present work and some previous ones from other works are shown. When applicable
the standard uncertainty is shown in parenthesis. Our calculations are converged up to the six decimal places.
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Be+ M = 0 z = −

1
2

M = −1 z = −

1
2

M = −3, Sz = −

3
2

M = −1 Sz = −

3
2

B Present Previous Present Previous Present Previous Present Previous

0 -14.32472 -14.3247 [35] -14.17927 -14.17608 [42] -9.43565 -9.4156 [35] -10.06663 -10.0650 [35]

0.001 -14.32523 -14.3251[35] -14.18026 14.1751 [35] -9.43864 -9.4185 [35] -10.06863 -10.0655 [35]

0.01 -14.32966 -14.3296 [35] -14.18920 14.1841[35] -9.46508 -9.4452 [35] -10.08656 -10.0827 [35]

0.02 -14.33450 - -14.19898 - -9.49354 - -10.10633 -

0.1 -14.36936 -14.3694 [35] -14.27232 14.2672 [35] -9.70137 -9.6888 [35] -10.25911 -10.2575 [35]

0.16 -14.39120 - -14.32195 - -9.84398 - -10.36754 -

0.2 -14.40387 -14.4038 [35] -14.35276 -14.34926 [42] -9.93417 -9.9243 [35] -10.43703 -10.4353 [35]

0.24 -14.41515 - -14.38196 - -10.02097 - -10.50440 -

0.4 -14.44815 -14.44641 [42] -14.48546 - -10.34197 - -10.75466 -

0.5 -14.46058 -14.4606 [35] -14.54155 14.5358 [35] -10.52597 -10.5188 [35] -10.89747 -10.8918 [35]

0.8 -14.47164 - -14.68180 - -11.02510 - -11.27766 -

0.825 -14.47118 - -14.69178 - -11.06384 - -11.30667 -

0.85 -14.47052 - -14.70195 - -11.10223 - -11.33533 -

0.875 -14.46971 - -14.71174 - -11.14031 - -11.36366 -

0.9 -14.46873 - -14.72135 - -11.17799 - -11.39166 -

1 -14.46333 -14.4630 [35] -14.75795 -14.75295 [42] -11.32565 -11.3203 [35] -11.50059 -11.4967 [35]

1.2 -14.44657 - -14.82352 - -11.60733 - -11.70565 -

1.5 -14.41037 - -14.90558 - -12.00218 - -11.98811 -

1.6 -14.39610 - -14.92917 - -12.12764 - -12.07702 -

2 -14.33123 -14.3300 [35] -15.00694 15.0000 [35] -12.60455 -12.6002 [35] -12.41340 -12.4090 [35]

4 -13.88655 -13.88455 [42] -15.10915 - -14.59956 - -13.86701 -

5 -13.59866 -13.5971 [35] -15.02875 15.0184 [35] -15.44204 -15.4367 [35] -14.51655 -14.5106 [35]

10 -11.62510 -11.6231 [35] -13.82293 -13.80892 [42] -18.83615 -18.8283 [35] -17.24524 -17.2291 [35]

20 -6.08322 -6.08121[42] -9.28941 -9.27043 [42] -23.63118 - -21.20083 -

40 7.76380 - 3.23746 - -30.13352 - -26.60687 -

50 15.37269 15.4261 [36] 10.34234 10.42836 [36] -32.64727 32.61959 [36] -28.70079 -

60 23.25698 - 17.78248 - -34.86928 - -30.55231 -

80 39.60523 - 33.36648 - -38.70313 - -33.74752 -

100 56.49203 56.5516 [36] 49.60389 49.7082 [36] -41.97236 41.93414 [36] -36.47142 -

TABLE V: The energies for Be+. Our calculations are converged up to the five decimal places.

decreases the energy up to a certain B value. In the He− ion the Z=2 charge is not strong
enough to produce the same effect.

The He− in this configuration is not bound without a magnetic field, and according to the
present calculation a minimal field strength B = 0.062(6) a.u. is needed for bound He− ion.
This is a slight improvement over the previous works [5, 41]. Determining a more accurate
value is possible but computationally expensive.

The boundness of the He− ion can be explained by the magnetic (〈Vmag〉) contribution
to the energy, which is plotted for He− and Li as a function of B in Fig. 5. This figure also
shows the curves for He and Li+ in 11(0)+, which define the threshold energies. As the figure
shows, the contribution of the magnetic field, 〈Vmag〉, is negative for the three-electron case,
and this supports bound systems. The system is naturally bound for all values of magnetic
field for Li (and Be+) where the nuclear Coulomb contribution is enough to bind the electron
even without a magnetic field. For He−, this additional 〈Vmag〉 becomes strong enough to
make the system bound for larger B values.

The quadrupole moments of the systems in the 2(−1)+ configuration are compared in Fig.
4 and in Table VI. The weakly bound He− ion has a prolate shape and becomes gradually
more spherical as the magnetic field increases. The Li and Be+ have oblate shapes at low
magnetic fields and change to prolate shapes after the magnetic field becomes strong enough.
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B He− Li Be+

2(−1)+ 4(−3)+ 4(−1)+ 2(0)+ 2(−1)+ 4(−3)+ 4(−1)+ 2(0)+ 2(−1)+ 4(−3)+ 4(−1)+

0 - - -48.16 0.00 -10.81 -217.96 -4.49 0.00 -2.67 -31.03 -1.72

0.001 - - -48.70 0.00 -10.79 -217.10 -4.49 0.00 -2.67 -31.05 -1.72

0.01 - - -36.38 0.02 -10.70 -170.37 -4.48 0.00 -2.67 -30.18 -1.72

0.02 - 108.31 -26.66 0.09 -10.41 -124.50 -4.45 0.00 -2.67 -28.00 -1.72

0.1 1,038.67 -22.19 -0.50 1.59 -6.49 -25.48 -3.73 0.08 -2.53 -13.69 -1.66

0.16 411.16 -9.76 8.82 2.94 -4.49 -15.59 -2.92 0.20 -2.35 -10.59 -1.57

0.2 248.97 -5.68 14.41 3.79 -3.61 -12.68 -2.36 0.30 -2.22 -9.32 -1.49

0.24 164.92 -3.09 20.38 4.58 -2.94 -10.74 -1.82 0.40 -2.08 -8.34 -1.41

0.4 53.34 1.70 65.25 7.47 -1.42 -6.47 0.10 0.86 -1.61 -5.89 -1.02

0.5 34.76 2.87 161.95 9.11 -0.94 -5.04 1.14 1.16 -1.38 -4.96 -0.77

0.8 15.41 4.06 - 13.59 -0.23 -2.72 3.91 2.00 -0.90 -3.29 -0.03

0.825 14.68 4.09 - 13.91 -0.19 -2.60 4.13 2.06 -0.87 -3.19 0.02

0.85 14.01 4.16 - 14.24 -0.16 -2.49 4.35 2.13 -0.84 -3.10 0.08

0.875 13.53 4.19 - 14.53 -0.13 -2.38 4.57 2.20 -0.82 -3.01 0.14

0.9 13.01 4.20 - 14.86 -0.10 -2.28 4.79 2.26 -0.79 -2.93 0.19

1 11.21 4.27 - 15.98 -0.01 -1.91 5.65 2.52 -0.70 -2.63 0.41

1.2 9.00 4.29 - 17.87 0.13 -1.37 7.34 3.03 -0.55 -2.16 0.83

1.5 7.07 4.26 - 19.84 0.26 -0.83 9.68 3.75 -0.39 -1.66 1.42

1.6 6.63 4.19 - 20.34 0.29 -0.70 10.39 3.98 -0.35 -1.53 1.61

2 5.46 4.07 - 21.63 0.37 -0.31 12.78 4.82 -0.23 -1.13 2.34

4 3.50 3.44 - 22.87 0.51 0.38 17.65 7.00 0.03 -0.30 4.99

5 3.12 3.21 - 22.71 0.53 0.49 18.33 7.34 0.09 -0.14 5.64

10 2.31 2.59 - 21.56 0.54 0.63 19.04 7.45 0.19 0.16 6.52

20 1.75 2.05 - 20.14 0.49 0.61 18.60 6.96 0.22 0.26 6.43

40 1.35 1.58 - 18.61 0.42 0.53 17.72 6.34 0.21 0.27 6.04

50 1.24 1.47 - 18.15 0.39 0.50 17.39 6.16 0.21 0.26 5.89

60 1.16 1.36 - 17.77 0.37 0.47 17.15 6.00 0.20 0.25 5.77

80 1.04 1.23 - 17.24 0.34 0.43 16.70 5.75 0.19 0.24 5.58

100 0.95 1.12 - 16.77 0.31 0.39 16.44 5.57 0.18 0.23 5.43

120 0.88 1.05 - 16.32 0.30 0.37 16.09 5.44 0.17 0.21 5.31

140 0.81 0.98 - 16.06 0.28 0.35 15.94 5.32 0.16 0.20 5.20

200 - 0.80 - - 0.14 - 15.65 5.05 0.14 - 4.98

300 - 0.70 - - 0.12 - 15.12 4.84 0.12 - 4.73

400 - 0.62 - - 0.11 - 15.11 - 0.11 - 4.61

500 - 0.56 - - 0.10 - 14.90 - 0.10 - 4.54

600 - 0.52 - - 0.10 - 15.05 - 0.10 - 4.49

700 - 0.42 - - 0.09 - 18.05 - 0.09 - 4.47

800 - 0.47 - - 0.09 - 17.60 - 0.09 - 4.30

900 - 0.08 - - - 0.08 - 4.37

TABLE VI: Quadrupole moments Qzz for the different systems and configurations

3. The 4(−1)+ (M = −1, Sz = −3
2) configuration

The total energies for this case are presented in Tables IV,V IX and plotted in Fig. 6.
Both Li and Be+ are stable in this configuration for all tested B fields. The He− ion is stable
in the B = [0, 0.63] a.u. region but it becomes unbound beyond that value [41, 46].

The threshold energies are the energies of the He atom, the Li+ and Be++ ions in states
2(0)+ or 2(−1)+, depending on the intensity of the B field. In the case of the He atom,
the 2(0)+ configuration has more negative energy for B ≤ 0.02 a.u.. At some point within
the interval (0.02, 0.10] the energy of 2(−1)+ becomes more negative than that of 2(0)+.
Therefore it becomes the threshold for larger B fields. For Li+ the situation is similar
but the interval is (0.16, 0.20], while for Be++ it is (0.24, 0.40]. From the calculation it
can be seen that a higher nuclear charge implies that the threshold changes at a higher B
field. Note that, unlike in the previous cases, the 11(0)+ configuration is not a threshold
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B 〈T 〉 〈Vee〉 〈VNe〉 〈Vho/B〉 〈Vmag/B〉 Etot

0 7.478 2.198 -17.154 -7.478

0.001 7.478 2.198 -17.154 0.002 -0.498 -7.479

0.01 7.478 2.199 -17.155 0.015 -0.485 -7.483

0.02 7.479 2.200 -17.156 0.030 -0.470 -7.487

0.1 7.503 2.225 -17.205 0.130 -0.370 -7.514

0.16 7.531 2.251 -17.257 0.180 -0.320 -7.525

0.2 7.552 2.268 -17.291 0.205 -0.295 -7.530

0.24 7.574 2.284 -17.325 0.225 -0.275 -7.533

0.4 7.663 2.334 -17.439 0.277 -0.223 -7.531

0.5 7.716 2.354 -17.492 0.295 -0.205 -7.524

0.8 7.863 2.378 -17.586 0.324 -0.176 -7.487

0.825 7.874 2.379 -17.591 0.325 -0.175 -7.483

0.85 7.885 2.379 -17.596 0.327 -0.173 -7.479

0.875 7.897 2.379 -17.601 0.328 -0.172 -7.476

0.9 7.909 2.380 -17.606 0.329 -0.171 -7.472

1 7.956 2.379 -17.624 0.334 -0.166 -7.455

1.2 8.053 2.379 -17.663 0.343 -0.157 -7.420

1.5 8.213 2.382 -17.739 0.356 -0.144 -7.360

1.6 8.270 2.384 -17.770 0.361 -0.139 -7.338

2 8.516 2.400 -17.917 0.379 -0.121 -7.242

4 10.001 2.543 -18.923 0.453 -0.047 -6.567

5 10.819 2.621 -19.469 0.479 -0.021 -6.134

10 15.088 2.971 -22.025 0.556 0.056 -3.405

20 23.664 3.491 -26.082 0.618 0.118 3.442

40 40.398 4.203 -31.907 0.664 0.164 19.241

50 48.615 4.477 -34.208 0.675 0.175 27.635

60 56.763 4.719 -36.258 0.683 0.183 36.221

80 72.910 5.134 -39.817 0.695 0.195 53.796

100 88.909 5.486 -42.872 0.702 0.202 71.741

TABLE VII: Energy contribution of different terms of the Hamiltonian for the 2(0)+ (M = 0 Sz = −
1
2
) configuration of Li.

because conservation of angular momentum forbids the transition to that state within the
nonrelativistic framework (see Eq. 10).

The binding energy for He−, Li and Be+ is shown in Fig. 6. For all three systems a
maximum and a minimum can be observed. In case of Li and Be+ the binding energy keeps
increasing at high fields. Further details can be seen by comparison of the electron-nucleus
distance, z2Ne. The maximum binding energy seems to take place near the point where the
elongation in z starts increasing, as shown in the Fig. 6. This is similar to the cases described
in the previous section.

For Li and Be+ the minimum binding energy happens to be near the point where z2Ne
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B 〈T 〉 〈Vee〉 〈VNe〉 〈Vho/B〉 〈Vmag/B〉 Etot

0 14.325 3.246 -31.895 -14.325

0.001 14.324 3.246 -31.894 0.001 -0.499 -14.325

0.01 14.324 3.246 -31.895 0.005 -0.495 -14.330

0.02 14.324 3.246 -31.895 0.011 -0.489 -14.334

0.1 14.335 3.252 -31.911 0.053 -0.447 -14.369

0.16 14.350 3.260 -31.934 0.082 -0.418 -14.391

0.2 14.363 3.267 -31.954 0.101 -0.399 -14.404

0.24 14.379 3.275 -31.977 0.117 -0.383 -14.415

0.4 14.455 3.311 -32.084 0.173 -0.327 -14.448

0.5 14.511 3.335 -32.157 0.201 -0.299 -14.461

0.8 14.690 3.399 -32.367 0.258 -0.242 -14.472

0.825 14.702 3.403 -32.379 0.261 -0.239 -14.471

0.85 14.717 3.408 -32.394 0.265 -0.235 -14.471

0.875 14.733 3.412 -32.411 0.268 -0.232 -14.470

0.9 14.748 3.417 -32.427 0.271 -0.229 -14.469

1 14.807 3.433 -32.485 0.283 -0.217 -14.463

1.2 14.925 3.460 -32.591 0.301 -0.199 -14.447

1.5 15.092 3.488 -32.718 0.319 -0.181 -14.410

1.6 15.146 3.495 -32.754 0.324 -0.176 -14.396

2 15.354 3.512 -32.871 0.338 -0.162 -14.331

4 16.485 3.561 -33.465 0.383 -0.117 -13.887

5 17.163 3.607 -33.890 0.404 -0.096 -13.599

10 21.116 3.901 -36.472 0.483 -0.017 -11.625

20 29.700 4.435 -41.425 0.560 0.060 -6.083

40 46.872 5.217 -49.204 0.622 0.122 7.764

50 55.330 5.526 -52.386 0.638 0.138 15.373

60 63.717 5.799 -55.251 0.650 0.150 23.257

80 80.309 6.271 -60.281 0.666 0.166 39.605

100 96.722 6.674 -64.642 0.677 0.177 56.492

TABLE VIII: Energy contribution of different terms of the Hamiltonian for the 2(0)+ (M = 0 Sz = −
1
2
) configuration of Be+.

is maximum and the systems become less tightly bound. At the same time, the He− ion
becomes unbound as this region is approached.

For low fields He−, Li and Be+ have oblate shapes, although the magnitude of the
quadrupole moment of the Li and the Be+ is much smaller than that of He−. By increasing
the magnetic field the shape of these systems becomes prolate forming needle-like structures
in high magnetic field.
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B 2(−1)+ 4(−3)+ 4(−1)+

0 -2.17799

0.001 -2.17999

0.01 -2.19675

0.02 -2.19486 -2.21359

0.1 -2.90195 -2.28616 -2.31516

0.16 -2.89955 -2.35633 -2.37213

0.2 -2.89745 -2.39957 -2.40571

0.24 -2.89495 -2.44063 -2.43711

0.4 -2.88081 -2.58980 -2.55322

0.5 -2.86844 -2.67456 -2.62430

0.8 -2.81491 -2.90426

0.825 -2.80935 -2.92208

0.85 -2.80366 -2.93975

0.875 -2.79785 -2.95722

0.9 -2.79187 -2.97460

1 -2.76647 -3.04235

1.2 -2.70918 -3.17123

1.5 -2.60862 -3.35047

1.6 -2.57169 -3.40693

2 -2.40919 -3.61936

4 -1.35729 -4.46404

5 -0.73685 -4.80152

10 2.82088 -6.08238

20 10.92288 -7.76693

40 28.47898 -9.93814

50 37.55970 -10.75595

60 46.75611 -11.47044

80 65.38648 -12.69037

100 84.23329 -13.71707

TABLE IX: The energies for the bound states of He−.Our calculations are converged up to the five decimal places.

4. The 4(−3)+ (M = −3, Sz = −3
2) configuration

The energies for this configuration are shown in Fig. 7 and presented in Tables IV,V IX.

This state is fully spin polarized and eventually becomes the ground state at higher B
fields for He−, Li and Be+, as shown in Fig. 1.

The threshold for this state is similar to that of the 4(−1)+ configuration, corresponding
to configurations 2(0)+ and 2(−1)+ of the two-electron systems, as explained before. The
He− 4(−3)+ is not stable below B = 0.02 a.u., but for stronger fields it does becomes stable
and it is the ground state at higher fields.
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B 〈T 〉 〈Vee〉 〈VNe〉 〈Vho/B〉 〈Vmag/B〉 Etot

0.160 2.329 0.587 -4.943 0.943 -2.057 -2.356

0.200 2.384 0.632 -5.011 0.974 -2.026 -2.400

0.240 2.439 0.674 -5.074 0.999 -2.001 -2.441

0.400 2.664 0.811 -5.290 1.062 -1.938 -2.590

0.500 2.807 0.881 -5.406 1.088 -1.912 -2.675

0.800 3.244 1.051 -5.712 1.142 -1.858 -2.904

0.825 3.281 1.063 -5.736 1.145 -1.855 -2.922

0.850 3.318 1.075 -5.759 1.148 -1.852 -2.940

0.875 3.355 1.086 -5.782 1.152 -1.848 -2.957

0.900 3.393 1.098 -5.805 1.155 -1.845 -2.975

1.000 3.543 1.143 -5.895 1.167 -1.833 -3.042

1.200 3.848 1.224 -6.068 1.188 -1.812 -3.171

1.500 4.312 1.331 -6.314 1.214 -1.786 -3.350

1.600 4.468 1.364 -6.393 1.221 -1.779 -3.407

2.000 5.100 1.484 -6.697 1.247 -1.753 -3.619

TABLE X: Energy contribution of different terms of the Hamiltonian for the 4(−3)+ (M = −3 Sz = −
3
2
) configuration of

He−.

Tables X and XI show the energy contributions for Li and He−. Note that 〈VNe〉 is
always more negative for the 2(−1)+ configuration than for the 4(−3)+ case (see VII and
XI). On the other hand 〈Vmag〉 is always more negative for the 4(−3)+ case since its fully
spin polarized. The electron repulsion tends to be less significant for 4(−3)+ than 2(−1)+,
for all three-electron systems. This shows that having a higher angular momentum allows a
reduction of the electron repulsion, while simultaneously decreasing the Coulombic attraction
due to the larger distances. For large magnetic fields having larger angular momenta is
energetically favored since it allows for the alignment of the magnetic moments with the
external field, giving a more negative 〈Vmag〉. This eventually leads to crossover and the
4(−3)+ state becomes the ground state. Comparing Tables X and XI one sees that due to
the difference in nuclear charge the contribution of 〈VNe〉 is much larger for Li than for He−,
which also induces larger kinetic energy for Li. At the same time the magnetic contribution
is comparable in the two systems, and the strong magnetic contribution supports the bound
state of the He− ion.

Fig. 7 shows the quadrupole moment and z2 for this configuration. The behavior of the
quadrupole moment for Li and Be+ is similar to the results shown in Ref.[30]. The system
has an oblate shape at small magnetic fields and gradually becomes more spherical for high
fields. The change in shape is more noticeable for He−, which is also oblate for low fields
but becomes prolate at around B=0.5 a.u and then changes back to spherical for high fields.

IV. SUMMARY

The energies and the structures of three-electron systems (He−,Li, and Be+) have been
calculated using deformed Explicitly Correlated Gaussian basis representation. The basis
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B 〈T 〉 〈Vee〉 〈VNe〉 〈Vho/B〉 〈Vmag/B〉 Etot

0 5.143 0.595 -10.880 0.000 0.000 -5.143

0.001 5.143 0.594 -10.880 0.036 -2.964 -5.146

0.01 5.148 0.605 -10.896 0.293 -2.707 -5.169

0.02 5.158 0.624 -10.922 0.449 -2.551 -5.192

0.1 5.205 0.800 -11.101 0.550 -2.450 -5.341

0.16 5.254 0.884 -11.205 0.585 -2.415 -5.454

0.2 5.300 0.923 -11.273 0.626 -2.374 -5.525

0.24 5.351 0.957 -11.341 0.664 -2.336 -5.594

0.4 5.571 1.077 -11.600 0.775 -2.225 -5.842

0.5 5.715 1.143 -11.751 0.822 -2.178 -5.982

0.8 6.157 1.313 -12.161 0.917 -2.083 -6.358

0.825 6.194 1.325 -12.192 0.922 -2.078 -6.387

0.85 6.232 1.338 -12.224 0.928 -2.072 -6.416

0.875 6.269 1.350 -12.255 0.934 -2.066 -6.444

0.9 6.306 1.362 -12.286 0.939 -2.061 -6.472

1 6.456 1.409 -12.406 0.958 -2.042 -6.582

1.2 6.758 1.497 -12.635 0.991 -2.009 -6.793

1.5 7.214 1.614 -12.957 1.029 -1.971 -7.086

1.6 7.368 1.650 -13.060 1.039 -1.961 -7.179

2 7.987 1.782 -13.453 1.076 -1.924 -7.533

4 11.172 2.282 -15.172 1.182 -1.818 -8.989

5 12.795 2.477 -15.932 1.214 -1.786 -9.592

10 20.961 3.218 -19.138 1.300 -1.700 -11.958

20 37.143 4.216 -23.864 1.366 -1.634 -15.186

40 68.938 5.547 -30.438 1.412 -1.588 -19.457

50 84.667 6.060 -33.011 1.424 -1.576 -21.087

60 100.328 6.516 -35.299 1.432 -1.568 -22.520

80 131.487 7.302 -39.266 1.444 -1.556 -24.980

100 162.489 7.972 -42.661 1.451 -1.549 -27.065

TABLE XI: Energy contribution of different terms of the Hamiltonian for the 4(−3)+ (M = −3 Sz = −
3
2
) configuration of Li.

functions had different parameters in the z direction and the xy plane following the symme-
try of the magnetic Hamiltonian. This flexibility allows better accuracy than other methods
using spherical basis states. The basis parameters were optimized by the Stochastic Varia-
tional Method which provides an efficient and simple way to reach highly accurate ground
state energies. The stability of the system as a function of the nuclear charge and magnetic
field was analyzed, pointing out the similarities and the differences in the properties of these
systems. The approach presented in this paper can be extended to larger systems and work
on 4 and 5 electron systems is underway.
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