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Abstract

Positronium (Ps) collisions with molecular hydrogen are investigated theoretically. Elastic and

Ps ionization cross sections are calculated. For elastic scattering the pseudopotential method,

previously developed for rare-gas atoms, is applied. Ps ionization cross sections are calculated

using the binary-encounter approximation. The results agree with swarm measurements at low

collision energies and with beam measurements at higher energies. The total Ps-H2 cross section

when plotted as a function of collision velocity is close to the e−-H2 cross section at velocities above

the Ps ionization threshold confirming earlier observations [S. J. Brawley et al., Science 330, 789

(2010)]. However, below the threshold the two sets of cross sections are different because of the

different nature of the long-range interaction between the projectile and the target, the polarization

interaction in the case of e−-H2 collisions and the van der Waals interaction in the case of Ps-H2

collisions.

PACS numbers: 34.50.-s 36.10.Dr 82.30.Gg 34.80.-i
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I. INTRODUCTION

Positronium-atom and positronium-molecule collisions at low energies are mostly con-

trolled by the electron exchange between the Ps electron and the target, and by the van

der Waals interaction between the Ps and the target. Moreover, at energies above the Ps

ionization threshold (6.8 eV) the exchange interaction becomes dominant. This, to a large

extent, explains the recently discovered similarity [1–3] between e− and Ps cross sections at

intermediate energies when the cross section is plotted as a function of the projectile veloc-

ity. This similarity can also be explained, in a more direct way, within the framework of

the impulse approximation [4]. However, the impulse approximation breaks down below the

Ps ionization threshold, therefore, for a more accurate description of Ps scattering methods

that incorporate the Ps-target interaction are necessary [5].

Completely ab initio inclusion of electron exchange in Ps collisions with atoms and

molecules is a very challenging task, and has been accomplished only for simple targets like

the hydrogen atom [6, 7]. Therefore it is advantageous to develop a simplified method of

incorporating exchange in Ps collisions. A well-known method in electron collisions is based

on the use of a local exchange potential derived from the free-electron gas model called the

Hara Free Electron Gas Exchange (HFEGE) potential [8] and its modifications [9]. How-

ever, quite often the inclusion of this potential is not sufficient because this method does not

provide the correct nodal structure of the wavefunction of the scattered electron. To satisfy

the Pauli exclusion principle, the correct structure should guarantee the orthogonality of the

wavefunction of the scattered electron to all occupied target orbitals. Therefore quite often

the HFEGE potential is supplemented by the orthogonality constraints [10]. In many cases

this procedure significantly improves agreement with the exact static-exchange calculations.

For Ps-atom collisions the orthogonality condition was implemented by Biswas and Adhikari

[11, 12] in the form of an orthogonal exchange kernel similar to the exchange amplitude of

Ochkur [13] and Rudge [14]. Integration of the static-exchange and close-coupling equations

with these exchange kernels produce scattering cross sections for Ps collisions with rare-gas

atoms that are in good agreement with existing experiments.

The orthogonality constraint can be mocked by introducing an l-dependent repulsive

component in the effective potential for electron-atom or electron-molecule interaction [15].

The repulsive core makes the wavefunction of the scattered electron very small in the region
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where the occupied orbitals are significant, and therefore strongly reduces the overlap inte-

gral. This procedure reduces the actual scattering phase shift at low energies by a factor

of π times an integer and leads to a violation of the Levinson-Swan theorem [16], but does

not affect the cross sections at low energies. This approach leads to a description of the

electron-target interaction in terms of an l-dependent pseudopotential [15].

It is particularly convenient for description of Ps-atom scattering since the orthogonality

constraint is difficult to implement for the electron bound in Ps. The pseudopotential

approach was successfully used [5] for theoretical description of Ps-Ar and Ps-Kr collisions.

At higher energies, comparable to the energy of electronic excitation of the target, the

pseudopotential approach starts to fail. However, if the excitation cross sections are not

large, as in the case of the rare-gas atoms, the error might be not very significant. In the

present paper we use the pseudopotential method to calculate elastic scattering of Ps by the

hydrogen molecule. Since only one orbital, σg, is occupied in this case, we need to use the

repulsive core only in one symmetry. We supplement the elastic cross section calculations

by calculation of ionization of Ps in Ps-H2 collisions. As was shown in the atomic case

[4, 17], this is the major inelastic channel in Ps collisions, therefore the sum of elastic and

Ps ionization cross sections produces the total cross section with good accuracy. In the next

section we describe the basic theory, and then present the results of our calculations and

comparison with experiment. We note that since the discovery [1] of similarities between

electron and Ps scattering, it became customary to plot the Ps scattering cross sections, as

well as the electron cross sections, as functions of velocity rather than energy. We continue

this tradition in the present paper. Atomic units are used throughout.

II. THEORETICAL MODEL FOR PS-H2 SCATTERING

A. Elastic scattering

The static contribution to the Ps-H2 interaction is zero, therefore only the exchange

potential contributes to Ps-H2 scattering in the static-exchange approximation.

The van der Waals interaction between Ps and H2, accounting for the long-range part of

electron correlation, can be written as

VW (R) = −C0 + C2P2(cosχ)

R6
{1− exp[−(R/Rc)

8]} (1)

3



where R is the position of the center of Ps relative to the center of H2, χ is the angle between

R and the internuclear axis, and Rc is a cut-off radius. The van der Waals coefficients C0

and C2 were calculated from the London formula [18] and the theoretical principal values of

the polarizability tensor for H2 [19], α‖ = 6.762 a.u., α⊥ = 4.506 a.u. These polarizabilities

are related to α0 and α2 entering the polarization potential

Vpol(r) = −α0 + α2P2(cos θ)

2r4

by the equations

α0 =
1

3
(α‖ + 2α⊥), α2 =

2

3
(α‖ − α⊥).

From here we obtain α0 = 5.258 a.u., α2 = 1.504 a.u., and from the London formula

C0 = 49.3 a.u., C2 = 14.1 a.u.

Although H2 is not, strictly speaking, a spherically symmetric target, the e−-H2 and

e+-H2 interactions can be described, with very good accuracy, in terms of a spherically-

symmetric potential. The accuracy is improved further when we treat Ps-H2 collisions.

The nonspherical parts of the exchange and the van der Waals potentials are relatively

small, therefore nondiagonal elements of the scattering matrix leading to l transitions are

insignificant.

In Fig. 1 we present the cross sections for Ps-H2 scattering calculated with the HFEGE

plus van der Waals potential and compare them with the same calculations where only

spherically-symmetric part of the both potentials is included. The results are very close.

When only the exchange potential is included the results are practically indistinguishable.

We should stress, though, that the only purpose of this calculation is to justify the validity

of the approximation of spherical symmetry. The cross sections in this calculation are

unphysical because they don’t incorporate the Pauli exclusion principle, and differ strongly

from the more accurate theory.

The approximation of spherical symmetry significantly simplifies the construction of the

pseudopotential for Ps scattering. In what follows we outline the version of the pseudopo-

tential used in the present calculations referring the reader for details to Ref. [5].

The e−-H2 exchange interaction is incorporated by the pseudopotential

V =
∑

lm

|lm〉vl(r)〈lm| (2)

4



0.0 0.2 0.4 0.6 0.8 1.0 1.2
0

20

40

60

80

100

 

 

cr
os

s 
se

ct
io

ns
 (1

0-1
6  c

m
2 )

Ps velocity (a.u.)

FIG. 1: (Color online) Elastic Ps-H2 cross sections calculated by combining HFEGE and van der

Waals potentials. Black solid line: only the spherically-symmetric part of the potential is included.

Red dashed line: the full anisotropic interaction is included.

where vl(r) is the spherically-symmetric exchange potential in the lth partial wave as a

function of the electron radial coordinate r relative to the center of H2, and |lm〉 is the

projector on the state with angular momentum l and its projection m. This potential can

be represented as an integral operator with the kernel

V (r, r′) =
1

r2
δ(r − r′)

∑

lm

vl(r)Y
∗
lm(r̂)Ylm(r̂

′), (3)

Averaging of this potential over the electron density distribution in Ps produces the following

kernel

V (R,R′) =
∑

lm

∫

1

r2
δ(r − r′)ul(r)Y

∗
lm(r̂)Ylm(r̂

′)|Φ(ρ)|2dρ (4)

where ρ is the relative e−-e+ coordinate, r = R + ρ/2 and r′ = R′ + ρ/2, and Φ(ρ) is the
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Ps wavefunction.

The integral (4) can be represented in a form convenient for calculations by going into a

coordinate system with the polar axis parallel to the vector s = R′ −R. We present now

the final result referring the reader for details to [5]:

V (R,R′) =
1

2πs

∑

l l′

(2l + 1)(2l′ + 1)Pl′(cos θR)

∫ ∞

0

Pl

(

1− s2

2r2

)

Pl′

(

− s

2r

)

Fl′(r, R)vl(r)dr,

(5)

where

cos θR =
R′ cosΘ−R

s
,

Θ is the angle between R and R′, and Fl(r, R) are coefficients in the expansion

e−2|r−R| =

∞
∑

l′=0

Fl′(r, R)(2l′ + 1)Pl′(cos θrR),

which can be expressed in terms of the modified spherical Bessel and Hankel functions.

The kernel (5) can be expanded in spherical harmonics

V (R,R′) =
1

RR′

∞
∑

L=0

2L+ 1

4π
VL(R,R′)PL(cosΘ),

Substitution of this kernel and the spherically-symmetric part of the van der Waals potential

into the Schrödinger equation, we obtain the following partial radial equation

1

2m

d2fL
dR2

+

[

E − V̄W (R)− L(L+ 1)

2mR2

]

fL(R)−
∫

VL(R,R′)fL(R
′)dR′ = 0, (6)

where m = 2 a.u. is the Ps mass, V̄W (R) is the spherically-symmetric part of the van der

Waals potential, and fL(R) is the radial part of the Ps center-of-mass wave function for the

orbital angular momentum L.

B. Calculation of the pseudopotential

The partial potentials vl(r) in Eq. (2) are all identical to the modified HFEGE potential

except the case l = 0. To mock the orthogonality constraint to the occupied σg orbital, we

use a potential with the repulsive core in the form similar to that used in Ref. [5]

v0(r) =
B

r3
e−βr.
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The fitting parameters B and β are chosen to reproduce the s-wave static-exchange scattering

phase shifts for e−-H2 scattering. Specifically, we choose the static-exchange potential for

the e−-H2 interaction in the form

V (r) = Vst(r) + v0(r)

where Vst(r) is the spherically-symmetric part of the static e−-H2 interaction. One of the best

fits was obtained for B = 5.919 a.u., β = 0.2439 a.u. The exact and fitted scattering phase

shifts are presented in Fig. 2. Due to known deficiencies of the repulsive core pseudopoten-

tials [15], they cannot reproduce ab initio phase shifts in a broad energy range. Considering

this, the fit looks rather good. We tried slightly different forms of the pseudopotentials, and

found that the uncertainty in fitting does not affect the Ps-H2 cross sections.

The modified HFEGE potential is energy dependent, therefore, before using it for Ps-H2

scattering, we average it over the electron velocity distribution in Ps. For the calculation of

the static potential for Ps-H2 scattering, the HFEGE potential should be averaged further

over the electron density distribution in the position space. This approach might be not quite

consistent from the point of view of fundamental quantum mechanics as the two averages are

not correlated. It seems that an average with a correlated distribution in the phase space, like

the Wigner distribution [20], should be more appropriate. However, the velocity dependence

of the HFEGE potential is very weak, therefore the inclusion of correlations between position

and velocity into the averaging procedure, does not change results noticeably. in Fig. 3 we

present the exchange potential for several electron velocities and for several Ps velocities

obtained from the averaging of the electron potential over the electron velocity distribution

in Ps for a given Ps velocity, The potential does not change very much after averaging.

Additional checks with the Wigner distribution function for the ground-state Ps [21] show

that in the present case correlated and uncorrelated average leads practically to the same

results.

C. Impulse approximation for elastic scattering

The impulse approximation works at higher energies well above the Ps ionization thresh-

old. It appears to be useful in normalizing the pseudopotential calculations because of the

uncertainty in the choice of the cut-off parameter Rc in the van der Waals potential. As

7



0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
-2.5

-2.0

-1.5

-1.0

-0.5

0.0

 

 

sc
at

te
rin

g 
ph

as
e 

sh
ift

 (r
ad

)

electron velocity (a.u.)

e--H2

FIG. 2: (Color online) s-wave static-exchange phase shifts for e
−-H2 scattering. Black solid line:

ab initio calculations with the HFEGE exchange potential. Red dashed line: pseudopotential

calculations.

in Ref. [5], we attempted to choose Rc by requiring that the pseudopotential calculations

merge with the impulse-approximation results at higher velocity (energy).

As in the pseudopotential calculations, we use the approximation of spherical symmetry.

The version of the impulse approximation used in the present paper is similar to that used

in Refs. [4, 22], but with a modification related to the on-shell reduction of electron and

positron scattering amplitudes. We start with the electron contribution to the Ps scattering

amplitude in the form

f(q) =

∫

g∗f(Q)f−(v
′′

,v′)gi(Q+ q)dQ (7)

where gi(Q), gf(Q) are initial and final Ps wavefunctions in the momentum space, q is the

momentum transfer, and f− is the electron elastic scattering amplitude as a function of the
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FIG. 3: Local exchange potential for the e
−-H2 interaction. Panel (a): potentials for different

electron velocities (from bottom to top), v = 0.05, 0.2, 0.50, 1.0, and 2.0 a.u. Panel (b): Potential

averaged over the electron velocity distribution in Ps for the same Ps velocities as electron velocities

in panel (a).

initial velocity v′ and the final velocity v
′′

,

v′ = v0 −Q+
q

2
, v

′′

= v0 −Q− q

2
(8)

where v0 is the Ps initial velocity. A similar expression holds for the positron contribution.

The problem with the electron scattering amplitude entering Eq. (7) is that it is off the

energy shell since |v′| 6= |v′′|. The on-shell reduction of Starrett et al [22], also used in Ref.

[4], assumes that the amplitude is a function of the effective velocity v = max(v′, v
′′

) and

momentum transfer q linked to the electron scattering angle θsc by q = 2v sin(θsc/2). In the

present application we found that this version of the on-shell reduction might overestimate
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the contribution of the small scattering angles, therefore we chose

v =
v′ + v

′′

2

with the same relation between θsc, q and v. Although generally different versions of the on-

shell reduction can lead to significantly different results for the Ps scattering amplitude, at

higher energies they converge and that serves our major purpose of normalization at higher

energies.

D. Binary-encounter approximation for ionization

The impulse approximation can be applied to Ps ionization in its collision with atoms

and molecules. There are two difficulties with these calculations. One is related to the

aforementioned ambiguity of the on-shell reduction of the electron and positron scattering

amplitudes. The other difficulty is computational. In order to avoid lengthy calculations,

Starrett et al [22] used an additional “peaking approximation” assuming that the Ps wave-

function in the momentum space varies much faster than the scattering amplitude. In fact

one can avoid both difficulties by using a simpler approach based on the binary-encounter

approximation [23, 24] which employs the differential cross sections for electron and positron

scattering, instead of scattering amplitudes.

Consider the process

B + Ps → B + e+ + e−

where B is a neutral target. The ionization probability due to e− −B collisions is [23]

Pion = NB〈|v − vB|
∫

∆E>I

dσ〉 (9)

where vB is the relative collision velocity, v is the electron velocity relative to the Ps center-

of-mass, dσ is the differential cross section for e− −B elastic scattering, and the integration

is restricted by the angles which result in the energy transfer to electron ∆E greater than

the Ps ionization potential I = 6.8 eV. The averaging is over the e− velocity distribution in

Ps. A similar expression can be written for the e+ contribution. (Interference is neglected).

Dividing Eq.(9) by the incident flux of particles B, we obtain the total ionization cross

section

σion =
1

vB
〈|v− vB|

∫

∆E>I

dσ〉. (10)
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In the LAB frame where B is at rest, as a result of scattering, the electron velocity changes

from u = v−vB to u′, |u′| = |u|. The change of the electron kinetic energy in the Ps frame

is

∆E =
1

2
[(u′ + vB)

2 − (u+ vB)
2] = vB · (u′ − u).

If we direct vB along the z axis and introduce spherical angles (θ, φ) and (θ′, φ′) for the

vectors u and u′, we obtain

∆E = vBu(cos θ
′ − cos θ).

For the ionization process, integration over θ′ is subject to the restriction

I < ∆E < v2B

where the upper limit follows from the Ps kinetic energy in the LAB frame consistent with

the threshold velocity for the ionization process, v2B > I. These constraints correspond to

the region in the (θ, θ′) plane defined by

cos θ +
I

vBu
< cos θ′ < cos θ +

vB
u
. (11)

The differential cross section for e− − B scattering is, assuming that B is spherically

symmetric
dσ

dΩ
=

∑

ll′

(2l + 1)(2l′ + 1)f ∗
l′flPl′(cos θs)Pl(cos θs)

where θs is the scattering angle in the LAB system, i.e. the angle between u and u′, and fl

is the partial scattering amplitude

fl =
1− e2iδl(u)

2iu
.

According to Eq. (10), this expression should be multiplied by |v−vB| = u, integrated over

scattering angles and averaged over the velocity distribution of e− in the ground-state Ps

given by
1

4π
|g1s(v2)|2 =

1

4π

32

π(v2 + 1)4
.

For this 5-dim integration we choose the integration variables θ, φ, θ′, φ′, u. Using the addi-

tion theorem for spherical harmonics and writing

Ylm(û) = Θlm(cos θ)
eimφ

√
2π

,
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where Θlm(cos θ) are normalized associated Legendre functions, we can perform integration

over azimuthal angles φ and φ′ with the result

σion =
4π

vB

∫ ∞

I/2vB

duu3

∫ 1−I/vBu

−1

d(cos θ)|g1s(u2 + v2B + 2uvB cos θ)|2

∑

ll′m

f ∗
l′(u)fl(u)Θl′m(cos θ)Θlm(cos θ)

∫ cos θ+vB/u

cos θ+I/vBu

d(cos θ′)Θlm(cos θ
′)Θl′m(cos θ

′). (12)

Integration limits follow from the restrictions (11).

E. Calculation of e− and e
+ potentials and scattering phase shifts

In order to employ the impulse and binary encounter approximations described above

we need to calculate elastic scattering phase shifts δl(u) for e
−-H2 and e+-H2 collisions. A

common method used in describing these processes is to expand the interaction potential in

Legendre polynomials [25]

V (r) =
∑

λ

Vλ(r)Pλ(cos θ), (13)

where θ is the angle describing the electron(positron) position in the BODY frame, relative to

the molecular axis. For e−-H2 scattering the interaction potential consists of a sum of static,

exchange and polarization potentials and for e+-H2 scattering just static and polarization

potentials.

For e−-H2 we have used the static, exchange and polarization potentials used by Gibson

and Morrison [26]. The static potential is calculated from the ground state H2 electronic

charge density determined by using the wave function of Fraga and Ransil [27]. For e−-H2

scattering this static potential is attractive while for e+-H2 it is repulsive.

Within the HFEGE model the local exchange potential can also be calculated using the

ground state H2 electronic charge density. As mentioned above we use a modified form

of this potential called the Tuned Free Electron Gas Exchange(TFEGE) potential that has

been shown to give good agreement with exact static-exchange calculations for H2 [9]. In the

TFEGE model the ionization potential of H2 is considered to be an adjustable parameter.

By tuning this parameter to 0.071 a.u. instead of the experimental value of 0.564 a.u good

agreement with exact static-exchange calculations is obtained for incident electron energies

in the range 0-13.6 eV.
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For e−-H2 scattering the ab initio polarization potential of Henry and Lane [28] is used.

For e+-H2 we have used a spherically symmetric potential of the form

Vpol(r) = − α0

2r4
[1− exp(−(r/rc)

6)]. (14)

We have chosen the value of the cutoff radius to be rc = 1.9 a.u., so that the elastic cross

section exhibits a sharp rise as the positron velocity goes to zero and has a magnitude of

nearly 1 x 10−16 cm2 in the energy range 3-7 eV. This agrees with experimental measurements

of the e+-H2 cross section in this energy range, e.g. [29].

If we take the z axis to be along the direction of the molecular axis, we can write the set

of coupled equations for the radial wave function of the scattered particle [25]

[

d2

dr2
− l(l + 1)

r2
− 2〈lm|V |lm〉 + k2

]

ulm(r) = 2
∑

l′m′

〈lm|V |l′m′〉. (15)

Assuming that the off diagonal matrix elements are small and can be neglected so that

the right hand side vanishes we obtain the radial equation

[

d2

dr2
− l(l + 1)

r2
− 2〈l0|V |l0〉+ k2

]

ulm(r) = 0. (16)

Retaining only the first two non-zero terms in the expansion (13) the matrix elements can

be written

〈l0|V |l0〉 = V0(r) +
l(l + 1)

(2l + 1)(2l + 3)
V2(r) (17)

Solution of (16) leads to diagonal S-matrix elements in the BODY frame. By making a

rotation to the LAB frame [25] we can determine phase shifts for various molecular orien-

tations. We have calculated phase shifts for several orientations and estimated the average

over molecular orientation numerically. In all cases the averaged cross sections are very

close to cross sections calculated by using only the spherically symmetric term. There-

fore we have used phase shifts(up to lmax = 6) determined by solving equation (16), with

〈l0|V |l0〉 = V0(r), for use in the impulse and binary encounter approximations described

above.
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FIG. 4: e−-H2 and e
+-H2 scattering phase shifts calculated with the local exchange and polarization

potentials.

III. RESULTS AND DISCUSSION

A. e
−-H2 and e

+-H2 scattering

In Fig. 4 we present the e− and e+ phase shifts used in the present paper for calculation

of elastic scattering in the impulse approximation and for calculation of ionization cross

sections. The cross sections calculated with them agree very well with more sophisticated

calculations [26] at low energies and with recommended values [30] derived from combined

experimental and theoretical data at higher energies.

We also used the static-exchange s-wave phase shift for e−-H2 scattering in order to

construct the v0(r) part of the pseudopotential. They were presented in Fig. 2.
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B. Ps-H2 scattering
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FIG. 5: (Color online) Ps-H2 scattering phase shifts calculated with the account of the van der

Waals potential (black solid lines) and without it (red dashed lines).

In Fig. 5 we present the phase shifts for Ps-H2 scattering calculated with and without the

account of the van der Waals interaction. The cut-off radius for the van der Waals potential

was chosen as Rc = 2.5 a.u. As shown in Fig. 6, this choice leads to the the pseudopotential

cross sections which are somewhat higher than the results of the impulse approximation in

the velocity range between 0.8 and 1.8 a.u., but both curves start to merge at v = 2 a.u.

The increase of the cut-off radius Rc for the van der Waals potential up to 3.5 a.u. did not

lead to a better agreement between the two sets of data. This appears to be different from

the results of Ps-Kr calculations [5] where the two curves merge already at v = 1.5 a.u., but

is consistent with the results for Ps-Ar scattering.
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Like in the case of rare-gas atoms, the van der Waals interaction changes significantly

the s-wave behavior at low energies and decreases the elastic scattering cross section. The

calculated scattering length for Ps-H2 scattering is 0.64 a.u. and 2.06 a.u. with and without

the account of the van der Waals interaction respectively. The positive sign of the scattering

length is the indication of the dominance of the Pauli repulsion, like in the case of rare gas

atoms. The low-energy behavior of the phase shifts follows the threshold laws discussed in

Ref. [5].
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FIG. 6: (Color online) Ps-H2 elastic scattering cross sections calculated with the account of the

van der Waals potential (black solid lines) and without it (red dashed lines). Dotted line: impulse

approximation.

In Fig. 7 we present the elastic, ionization and total cross sections for Ps-H2 scattering

and compare them with the elastic and total cross sections for e−−H2 scattering. Previous

calculations for rare-gas atoms [4, 17] showed that the excitation of Ps is negligible compared
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to the processes of elastic scattering and ionization, therefore excitation cross sections were

not calculated and were not included in the total in the present work. We compare the

Ps-H2 theory with two experiments: the beam experiment of Garner et al [31] measures

the total cross section, and the low-energy experiment of Skalsey et al [32, 33] extracts the

momentum transfer cross section from the rate of Ps thermalization in a hydrogen gas.

The momentum transfer cross sections are very close to the elastic cross sections at low

energies where the measurements were made. Overall, our calculations describe very well

the absolute magnitude of the measured total cross section and its dependence on velocity

(energy) at velocity below 1.5 a.u. (about E = 60 eV). At higher velocities the disagreement

might be caused by the failure of the pseudopotential method [15]. This can be seen from

the phase shifts shown in Fig. 5: the s phase shift starts to increase at v > 1.7 a.u. whereas,

to be consistent with the Levinson-Swan theorem [16], it should continue to decrease. On

the other hand, the s-wave contribution at high velocities is relatively small.

As in the case of rare gas atoms, the Ps-H2 cross section approaches the e−-H2 cross section

plotted as a function of electron velocity at velocities above the Ps ionization threshold.

Below this threshold the Ps-H2 cross section is significantly lower because of the different

nature of the long-range interaction: polarization interaction in e−-H2 scattering and the

van der Waals interaction in Ps-H2 scattering.

This comparison basically confirms previous conclusions [3] for Ps-H2 collisions based

on experimental results for Ps-H2 and e−-H2 scattering. However, some new interesting

conclusions can be drawn from the high-velocity region. Although the calculated Ps-H2 cross

section is close to the total e−-H2 cross section in this region, it is somewhat lower than the

experimental results and decreases much faster. (Experimental points give an essentially flat

dependence in the velocity range between 1.5 and 2 a.u.). At higher velocities the difference

between the elastic and total e−-H2 (about 2 × 10−16 cm2) cross section becomes essential.

This difference is mainly due to the H2 ionization (about 1×10−16 cm2 at v = 2 a.u. [34]) and

excitation. The calculated total Ps-H2 cross sections agree much better with the total e−-H2

cross sections than with the elastic, although there is no known theoretical justification for

this - the general proof [4] of equivalence between Ps-A and e− −A cross section was given

for a structureless target A, and it is not clear why the ionization and excitation processes in

e−-H2 collisions should contribute to the total Ps-H2 scattering. In addition, the calculated

total Ps-H2 cross section decays faster at high velocities than the total e−-H2 cross section.
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FIG. 7: (Color online) Ps-H2 and e
−-H2 scattering cross sections. Solid line: elastic Ps-H2 cross

section. Dotted line: Ps ionization cross section. Black dashed line: total Ps-H2 cross section. Red

dashed line: present e−-H2 elastic cross sections. Error bars: measurements of Skalsey et al [32, 33]

(low velocities) and Garner et al [31] (v = 0.6 a.u. and above). Blue triangles: recommended

elastic e
−-H2 cross sections [30]; red open circles: recommended total e−-H2 cross sections [30]

(below v = 1 a.u. they are the same as those given by triangles).

This might be due to the failure of the pseudopotential model at higher energies.

A few calculations of the Ps-H2 collisions were done in the past. Biswas and Adhikari

[35, 36] used model exchange potential similar to that developed for Ps-He and Ps-H colli-

sions [11] to calculate Ps-H2 scattering by the coupled-channel method and the Born approx-

imation with exchange. The elastic scattering calculations were done in the frozen-target

approximation meaning that the van der Waals interaction was not effectively included there.

The most recent calculations [36] give the results for total cross sections comparable to ours.
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However, the composition of this cross section is different from the present. Their total

cross section is dominated by Ps ionization and excitation, whereas the elastic cross section

is substantially smaller than ours. In contrast, our total cross section is dominated by elastic

scattering for energies up to 60 eV. The present ionization cross sections are comparable to

those of Biswas and Adhikari, although the latter are about a factor of two higher than

the present. In addition, Biswas and Adhikari found a significant contribution of excitation

of Ps(n) states for the principal quantum number up to n = 6, whereas our previous cal-

culations [4] for rare gas atoms and those of Blackwood et al [17] found these excitations

completely negligible. Perhaps the Born approximation, which typically gives large results,

caused an overestimation of Ps excitation and ionization in Ref. [36]

Earlier perturbative calculations of Comi et al [37] produced very large elastic cross

sections approaching 170× 10−16 cm2 at low energies. This is not surprising, particularly in

view of Fig. 1. The elastic cross section is very sensitive to the exchange and van der Waals

interactions, and their correct inclusion is crucial. The perturbative approach used in Ref.

[37] is certainly not adequate.

IV. CONCLUSION

The pseudopotential method developed earlier for Ps scattering from rare-gas atoms,

works well also for Ps-H2 scattering. It also matches reasonably well the results of the

impulse approximation at higher velocities (energies). For the Ps ionization cross section we

have developed a method based on the binary-encounter approach which avoids ambiguities

of the impulse approximation related to the on-shell reduction of electron and positron

scattering amplitudes.

Like in the case of rare-gas atoms, the total Ps scattering cross section plotted as a func-

tion of Ps velocity is close to e− scattering cross section above the Ps ionization threshold.

At lower velocities the e−-H2 and Ps-H2 cross sections are different because of the different

nature of the long-range interaction between the projectile and the target, the polarization

interaction in the former case and the van der Waals interaction in the latter.

Our calculated total cross sections agree with the swarm measurements at low collision

energies and with beam measurements at higher energies. However, there is a noticeable

difference with the experiment with regard to behavior of the total cross section at higher
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velocities: whereas the calculated cross sections continue to decrease with the velocity, the

measured cross sections demonstrate essentially flat behavior.

Because of near-spherically-symmetric electron charge distribution in H2 the approxima-

tion of the spherically-symmetric potential works quite well for this target. However, for

more complicated molecules the methods used in this paper should be extended to potentials

with no spherical symmetry.
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