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Two-centre close-coupling calculations of positron-molecular hydrogen scattering
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A two-centre close-coupling method that includes positronium (Ps) formation channels has been
developed for positron scattering on molecular hydrogen. Calculations are performed within the
fixed-nuclei approximation. Results for the grand total, Ps-formation and direct ionization cross
sections are presented. In general, good agreement with experiment is seen in all the calculated
cross sections.

PACS numbers: 34.10.+x, 34.80.-i, 34.80.Lx, 34.80.Uv

I. INTRODUCTION

Molecular hydrogen is a natural starting point for both
theoretical and experimental studies of collisions with
molecular targets. Positron collisions with this target
have been studied extensively by various experimental
groups over the last 30 years [1–14]. Theoretical studies
of this scattering system are challenging because of the
complexities associated with the molecular structure and
its non-spherical nature. Rearrangement processes add
another degree of complexity to the problem. Until re-
cently theoretical studies [15–27] have been focused only
at certain energy regions. In addition, there are few the-
oretical studies which include the Ps-formation channels
explicitly. The first calculations of Ps-formation cross
section [15–17, 20] were obtained with the use of the first
Born approximation. Biswas et al. [21] used a coupled-
static model, which only included the ground states of H2

and Ps. This simple model is the only coupled-channel
calculation available to date. Comprehensive review of
the positron interactions with atoms and molecules has
been given by Surko et al. [28].

Effect of using realistic target wave functions and chan-
nel coupling on the Ps-formation cross section has not
yet been studied, and is our goal here using the conver-
gent close-coupling (CCC) method [29, 30]. The CCC
method has been successfully applied to electron-atom
(see Bray et al. [31] and references therein) and two-
centre positron-atom [30, 32–34] scattering problems. It
has also been applied to calculate antihydrogen forma-
tion [35, 36] in low-energy collisions of positronium (Ps)
and antiprotons. For positron scattering, the internal
consistency of the two-center method is a powerful mech-
anism for validating the computational results [37]. The
method has been extended to antiproton-atom collisions
as well [38, 39].

The recent single-centre CCC calculations of positron
scattering on molecular hydrogen by Zammit et al. [40]
and antiproton collisions with H2 by Abdurakhmanov
et al. [41, 42] have shown that the CCC formalism can
also be successfully applied to molecular targets. A lim-
itation of the single-center approach to positron scatter-
ing, however, is that Ps formation is not included explic-
itly, but rather via positive-energy atomic pseudostates

with large angular momenta. This works well at ener-
gies below the Ps-formation threshold, and at energies
above the ionization threshold with the limitation that
the direct ionization and Ps-formation channels are in-
separable. Furthermore, over the small energy range be-
tween the two thresholds it is formally invalid due to no
allowance for positron flux into Ps-formation channels.
The two-center approach, on the other hand, does ex-
plicitly include Ps-formation channels, and hence yields
Ps-formation as well as direct-ionization cross sections,
and is valid at all energies.

II. METHOD

In Figure 1 we present the coordinate system we use
for positron-H2 scattering, with the origin being at the
center of mass, i.e. at the midpoint between the two
protons. Vectors r0, r1, and r2 denote the positions of
the positron, electron 1 and electron 2, respectively. To
describe Ps-formation channels it is convenient to use
Jacobi coordinates (R,ρ), where R = (r0 + r1)/2 is the
position of the Ps center of mass (c.m.) relative to the
H2 origin, and ρ = r0 − r1 is the relative coordinate
of the positron and electron. We emphasize that since
there are two electrons which can form positronium, there
are two corresponding sets of Jacobi coordinates. When
necessary we will refer to them explicitly as (R1,ρ1, r2)
and (R2,ρ2, r1). Fig. 1 shows one of them, where Ps is
formed by electron 1. We consider H2 within the Born-
Oppenheimer approximation where the two protons are
considered to be at a fixed internuclear distance denoted
as d.

We are interested in relatively low-energy positron col-
lisions, where Ps formation is significant, and therefore
we can neglect the relativistic and spin-orbit interactions.
For this case the scattering wave function Ψ must satisfy
the Schrödinger equation

(H − E)Ψ(r0, r1, r2,d) = 0, (1)

where E is the total energy and H is the total Hamilto-
nian of the system. The Hamiltonian of the e+-H2 system
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can be written as
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is the free Hamiltonian of the three particles, while Ve
and Vp are the electron-nucleus and positron-nucleus po-
tentials, respectively.
In this work, following the CCC approach [30], we ex-

plicitly include Ps-formation channels with the use of a
two-centre expansion technique. This is done by expand-
ing the total scattering wavefunction Ψ of the collision
system in terms of the target (H2) and positronium (Ps)
states in the following way [30]:

Ψ ≈
Nα∑

α=1

Fα(r0)ψα(r1, r2,d)

+

Nβ∑

β=1

{Gβ(R1)ψβ(ρ1)φion(r2,d)

+Gβ(R2)ψβ(ρ2)φion(r1,d)}, (3)

where the first term corresponds to expansion in terms of
the target wavefunctions ψα with expansion coefficients
being Fα, while the second term corresponds to expan-
sion in terms of the positronium states ψβ with coeffi-
cients Gβ . Nα and Nβ are the number of target states
and Ps states, respectively. Indices α and β are used to
denote a full set of quantum numbers for the target and
Ps, respectively. Basis states may contain both eigen-
and pseudo-states of both the target and Ps depending
on the choice. The second term allows for both active
electrons to form positronium. The residual ion of H+

2

is described by φion, and we consider it to be only in its
ground state.
Substituting expansion (3) into Eq. (1) we obtain a set

of momentum-space coupled-channel equations for the
transition matrix elements [30] (for brevity we make the
d-dependence implicit)

Tγ′γ(kγ′ ,kγ) =Vγ′γ(kγ′ ,kγ) +

Nα+Nβ∑

γ′′

∫
dkγ′′

(2π)3

× Vγ′γ′′(kγ′ ,kγ′′)Gγ′′(k2γ′′)Tγ′′γ(kγ′′ ,kγ),

(4)

where γ = {α, β} and kγ is the momentum of the free
particle relative to the c.m. of the bound subsystem in
channel γ. The effective two-body free Green’s functions
Gγ′′(k2γ′′) are defined as:

Gα′′(k2α′′ ) =(E + i0− k2α′′/2− ǫα′′)−1, (5)

Gβ′′(k2β′′ ) =(E + ǫion + i0− k2β′′/4− ǫβ′′)−1, (6)

for the target and Ps channels, respectively. It describes
the free relative motion of particle γ′′ and bound pair
γ′′ with binding energy ǫγ′′ . Where ǫion is the binding
energy of the H+

2 residual ion.
The transition matrix elements Vγ′γ′′(kγ′ ,kγ′′) are de-

fined as:

Vα′α(kα′ ,kα) = 〈kα′ |〈ψα′ |Uα′α|ψα〉|kα〉,
Vβ′β(kβ′ ,kβ) = 〈kβ′ |〈ψβ′φion|Uβ′β |ψβφion〉|kβ〉,
Vβα(kβ ,kα) = 〈kβ |〈ψβφion|Uβα|ψα〉|kα〉, (7)

where

Uα′α =Vp(r0,d)−
1

|r0 − r1|
− 1

|r0 − r2|
,

Uβ′β =Vp(r0,d) + Ve(r1,d) +
1

|r1 − r2|
− 1

|r0 − r2|
,

Uβα =Uαβ = H − E (8)

are the corresponding channel potential operators.
After performing a partial-wave expansion of the in-

coming and outgoing particles’ plane waves |kγ〉, Eq. (4)
is solved for each total angular-momentum projection K,
spin S, and parity Π. The partial-wave expansion is per-
formed for Vγ′γ(kγ′ ,kγ) (and for Tγ′γ(kγ′ ,kγ)) according
to

Vγ′γ(kγ′ ,kγ) =
∑

L′,M ′,L,M,K

YL′M ′ (k̂γ′)

× VKSΠ
γ′L′M ′,γLM(kγ′ , kγ)Y

∗

LM (k̂γ), (9)

where YLM (k̂γ) are the spherical harmonics of unit vec-

tor k̂γ . Quantum numbers L and L′ are the angular
momenta of the free particles in channels γ and γ′, and
M and M ′ are their projections, respectively. Note that
the total angular momentum projection is K =M+m =
M ′ +m′ (we set d to be the axis of quantization in all
channels). Here m and m′ are the angular momentum
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FIG. 1. (Color online) Coordinate system for e+-H2 collision.
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projections of the target molecule or Ps in channels γ and
γ′. The effective potentials in partial waves are given by

VKSΠ
γ′L′M ′,γLM(kγ′ , kγ) =δK,M+m

∫∫
dk̂γ′dk̂γY

∗

L′M ′(k̂γ′)

× Vγ′γ(kγ′ ,kγ)YLM (k̂γ). (10)

Expansion (9) transforms equation (4) into

T KSΠ
γ′L′M ′,γLM(kγ′ , kγ) =VKSΠ

γ′L′M ′,γLM (kγ′ , kγ)

+

Nα+Nβ∑

γ′′

∑

L′′

∫
dkγ′′

(2π)3
k2γ′′

× VKSΠ
γ′L′M ′,γL′′M ′′(kγ′ , kγ′′)

×Gγ′′(k2γ′′)

× T KSΠ
γ′′L′′M ′′,γLM(kγ′′ , kγ), (11)

where L′′ is the angular momentum of the free particle
in channel γ′′.
In the present work we only use a few Ps eigenstates so

as to take advantage of their analytical form. The target
states are obtained by diagonalizing the H2 Hamiltonian
in a set of antisymmetrized two-electron configurations,
built from Laguerre one-electron orbitals, for each tar-
get symmetry characterized by the projection of orbital
angular momentum mT , parity πT , and spin sT . This
results in a set of square-integrable negative and pos-
itive energy pseudostates. With increasing of the ba-
sis sizes, the negative-energy states converge towards the
true eigenstates, while the positive energy pseudostates
become increasingly dense in energy, and effectively rep-
resent the target continuum. To calculate H2 states, we
adopt the fixed-nuclei approximation and perform cal-
culations at the ground-state equilibrium internuclei dis-
tance, which is d = 1.4 a0. Note that when d is set to 0
one should obtain the He results. We used this test for
both structure and scattering calculations. Details of H2

structure calculations can be found in [40].
The derivation of the rearrangement matrix elements

are similar to the He case. However, algebra is some-
what more difficult because of nuclear separation and
target orientation dependency. Another difference is that
partial wave expansion is done over the total angular mo-
mentum projectionK. By choosing the z-axis to be along
the d ( body-frame) we can write the electron interaction
with the nuclei as

Ve(r,d) = − 1

|r − d/2| −
1

|r + d/2|

=
√
4π

∞∑

λ=0

(1 + (−1)λ)
√
2λ+ 1

rλ<

rλ+1
>

Yλ0(r̂),

(12)

where r> = max{r, d/2}. It is possible to transform the
obtained results with this choice of z-axis to any given
orientation of the molecule.

For simplicity, we consider only the spherical part of
the nuclear potential when calculating the rearrangement
matrix elements:

Vp(r0,d) =
1

|r0 − d/2| +
1

|r0 + d/2| ≈
2

r>
(13)

where now r> = max{r0, d/2}. Then the momentum
space representation of the above positron-nucleus po-
tential can be shown to be

V̄p(p) =
4π2sin(dp)

dp3
. (14)

With these we further follow the procedure used for
positron-He calculations [33].
For positron scattering from the ground state of H2

only states with zero total spin are required and so
S = 1/2. T -matrix elements are used to obtain body-

frame scattering amplitudes f
(B)
fi , which are then trans-

formed to lab-frame scattering amplitudes f
(L)
fi via rota-

tion by Euler angles. Orientationally-independent cross
sections are calculated by averaging over all rotations of
the molecule [43]. An orientationally averaged analytic
Born subtraction method [43] is employed for H2 direct
transition channels to reduce the number of partial waves
requiring explicit solution.

III. RESULTS

In the present work we calculate various cross sections
for e+−H2 scattering using the two-center CCC method.
The direct ionization cross section is obtained by simply
summing the individual cross sections for excitation to
the positive-energy pseudostates of the target. The di-
rect ionization combined with Ps-formation cross sections
give the total electron-loss cross sections, which can also
be calculated by the single centre CCC approach, but
only above the ionization threshold. Combination of the
total electron-loss, excitation and elastic scattering cross
sections give the grand total cross section.
Generally, resulting cross sections should be checked

for the convergence by increasing the basis sizes for both
target and Ps centres. However, calculation of rearrange-
ment matrix elements for positron-H2 scattering are com-
putationally very expensive. Therefore in this work we
use a complete set of states only in the target space and
restrict Ps to a few low-lying eigenstates. This type of
calculation is an initial test of the method, which should
still give reasonably accurate Ps-formation cross sections.
This is because in the low energy region, where most of
the experimental data is available, the main contribution
to Ps formation comes from the ground and the lowest
lying excited states of Ps. In addition, we don’t con-
sider the elastic scattering region below the Ps-formation
threshold which was very accurately calculated by the
single-centre CCC method [40].
To simplify scattering calculations we make three ap-

proximations. First, we assume that the H+
2 ion remains
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in its ground state in the Ps-formation channels. Sec-
ond, we neglect electron exchange between Ps and the
residual H+

2 ion. These two approximations have previ-
ously been used in calculations of positron scattering on
helium [33] and magnesium [32], yielding good results.
Lastly, we consider only the spherical part of the nuclear
potential when calculating the rearrangement matrix el-
ements. However, it is difficult to estimate the quality of
this approximation and we have to rely on agreement of
the final result with experiment.
To test convergence of the results we performed calcu-

lations with three different basis sizes. The correspond-
ing results are denoted as CCC(Nlmax

, NPs), where for
l ≤ lmax, N − l one-electron orbitals will be used in gen-
erating the H2 target structure, and NPs is the number
of Ps-eigenstates. For example, the CCC(142,3) calcula-
tion utilizes 14 s, 13 p and 12 d-orbitals, which generates
139 H2 states. It also includes the three 1s, 2s, and 2p
Ps-states.
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FIG. 2. (Color online) The grand total cross section (GTCS)
for e+−H2 scattering calculated with different basis sizes. The
single centre CCC(108,0) results of Zammit et al. [40] are only
valid above the direct ionization threshold indicated by the
vertical line.

Fig. 2 shows the grand total cross section (GTCS)
for e+−H2 scattering calculated with different bases.
We have also presented the single-centre CCC re-
sults [40]. Comparison between the CCC(121,1) and the
CCC(141,1) calculations shows the level of convergence
with regards to Nmax. In the remaining figures we con-
centrate on effects of including more Ps-states and H2

states with larger angular momentum and keep Nmax

fixed at 14. It can be seen that the results CCC(141,1)
and CCC(141,3) are close to each other indicating that
having three Ps states is sufficient to take into account
Ps-formation channels within reasonable accuracy, how-
ever, both results are below the single centre CCC re-
sults at higher energies. With additional 12 d-orbitals in-
cluded in H2 we obtained cross sections converging to the
single-centre CCC results above the ionization threshold.
This shows that CCC(142,3) contains enough target and

Ps states to give convergent GTCS. It is worth noting
that the two-centre method can achieve convergence at a
much faster rate compared to the single centre method.
The single centre calculations of Zammit et al. [40] con-
tain 556 target states with orbital angular momenta up
to eight. In this work, the two centre CCC(142,3) con-
tains only three Ps eigenstates and 139 target states with
maximum orbital angular momenta equal to 2. As has
been discussed before [30, 33], the reason for the slow
convergence in the single-centre method is the absence
of explicit boundary conditions for Ps-formation chan-
nels. By including higher angular momenta orbitals,
a single-centre method can indirectly take into account
Ps-formation channels via excitations to positive energy
pseudostates with high angular momenta. However, at
energies just above the ionization threshold convergence
requires large Nlmax

. Outside this region the agreement
between the single- and two-center approaches is excel-
lent.
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FIG. 3. (Color online) The grand total cross section for
(GTCS) e

+
−H2. Experimental data are due to Machacek

et al. [14], Hoffman et al. [1],Charlton et al. [2], Karwasz et al.
[12] and Zecca et al. [13]). The single centre results are due
to Zammit et al. [40]. The present calculations are described
in the text.

In Fig. 3 we compare our results with the available
experimental data for GTCS. As was mentioned earlier
we are concentrating only on the energy range above the
Ps-formation threshold. Starting from the threshold the
two-centre results agree very well with the experimen-
tal data. Above 30 eV the single-centre and two-centre
results are almost indistinguishable. This is an impor-
tant demonstration of internal consistency of the CCC
approach to such collisions. It is far from trivial because
the explicit Ps-formation component can be quite large.
Fig. 4 presents the Ps-formation cross sections, which

in the region near the maximum are as much as 50% of
the GTCS. Our results obtained with different bases are
compared with the experimental data of Zhou et al. [10],
Fromme et al. [6] and Machacek et al. [14]. CCC(141,1)
underestimates experimental measurements. Adding two
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more Ps states brings the Ps-formation cross section up
to agree better with the experimental data. When d-
orbitals are added to the H2 basis the maximum of the
Ps-formation cross section drops by about 10%. There
is generally good agreement between different sets of ex-
perimental data. However, our results underestimate ex-
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FIG. 4. (Color online) The Ps-formation cross section in
e
+
−H2 collisions. Experimental data are due to Zhou et al.

[10], Fromme et al. [6] and Machacek et al. [14]. The present
calculations are described in the text. Coupled static model
calculations of Biswas et al. [20] are also shown.

perimental cross sections above 50 eV. We suspect that
at these energies there will be a substantial contribution
from Ps-formation in higher excited states, which is miss-
ing from the present calculations.
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FIG. 5. (Color online) The total direct ionization cross sec-
tions for e
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−H2 collisions. Experimental data are due to
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The theoretical results are described in the text.

In Fig. 5 we compare our results for the direct total
ionization cross section (TICS) with the available exper-
imental data. The experimental data of Fromme et al. [6]
and Knudsen et al. [7] are in agreement with each other

but differ from measurements of Jacobsen et al. [9] be-
tween 30 and 100 eV. CCC(142,3) is in better agreement
with the measurements of Jacobsen et al. [9]. CCC(141,1)
and CCC(141,3) underestimate both sets of experimental
data. As far as we are aware the present results are the
first theoretical calculations for this process.
The total electron-loss cross section is given in Fig. 6.

In the two-centre method they are calculated as a sum
of TICS and Ps-formation cross sections. In the single-
centre formalism it is just a sum of all cross sections
for excitations to positive-energy pseudo-states. Perfect
internal consistency would require agreement here be-
tween the two methods above the ionization threshold.
In practice this is impossible near the threshold because
we would require a massive basis expansion in the single
center approach which should behave like a step-function:
zero below threshold and all of Ps-formation immediately
after. Also, at energies above 30 eV the lack of higher
Ps states in the two-center approach explains the visible
discrepancy. CCC(142,3) results are in reasonable agree-
ment with experimental data up to 30 eV. Above 30 eV
they underestimate both the experimental data and the
single-centre results.
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FIG. 6. (Color online) The total electron-loss cross section
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IV. CONCLUSION

In conclusion, we have developed a two-centre close-
coupling approach to e+-H2 scattering including Ps-
formation channels and presented orientation-averaged
results for the grand total, Ps-formation, direct ioniza-
tion and total electron loss cross sections. All channels
have been treated within the fixed-nuclei approximation.
In addition, three approximations have been used to fa-
cilitate the calculations of the Ps-formation channels. We
assumed that the residual H+

2 ion remained in its ground
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state in the Ps-formation channels and neglected elec-
tron exchange between Ps and the residual H+

2 ion. We
also considered only the spherical part of the nuclear po-
tential when calculating the rearrangement matrix ele-
ments. While the first 2 approximations are believed to
be reliable, it is difficult to estimate the impact of the
third one. However, the obtained results are generally in
good agreement with experimental data, indicating that,
in particular, the spherical part is the main contributor
to the nuclear potential. In the future, we plan to re-
move some of the aforementioned approximations. Due
to time-consuming calculations of the rearrangement am-
plitudes we have included only a few low-lying eigenstates

for the Ps centre. We plan to investigate more efficient
ways of calculating Ps-formation matrix elements in or-
der to be able to include Ps pseudostates as well. We also
aim to apply the method to other diatomic molecules.
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