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Abstract

Plasma environment effects on atomic structure are analyzed using various atomic structure

codes. To monitor the effect of high free-electron density or low temperatures, Fermi-Dirac

and Maxwell-Boltzmann statistics are compared. After a discussion of the implementation of

the Fermi-Dirac approach within the ion-sphere model, several applications are considered. In

order to check the consistency of the modifications brought here to extant codes, calculations

have been performed using the CATS code in its Hartree-Fock or Hartree-Fock-Slater form and

the parametric potential code FAC. The ground-state energy shifts due to the plasma effects for

the six most ionized aluminum ions have been calculated using the FAC and CATS codes and

fairly agree. For the intercombination resonance line in Fe22+, the plasma effect within the

Uniform Electron Gas Model results in a positive shift that agrees with the MCDF value of Saha

et al. Last, the present model is compared to experimental data in titanium measured on the

terawatt ASTRA facility and provides values for electron temperature and density in agreement

with the MARIA code.
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I. INTRODUCTION

Many atomic structure codes are available to obtain an accurate description of energy

levels and transitions, employing such methods as Hartree-Fock, Dirac-Fock, or para-

metric potentials. However, these codes typically do not include plasma-environment

effects. These are often taken into account after the fact, within a kinetics (or collisional-

radiatve) code by way of energy shifts computed from various semi-classical formulas,

the most popular being that of Stewart and Pyatt [1]. To circumvent this limitation, we

have in earlier works [2–4] shown that plasma effects may be included in the Flexible

Atomic Code (FAC) [5] within the ion-sphere formalism (ISF). However, our previous

work relied only either on this code and on a direct integration of the Schrödinger radial

equation in the H-like case, and the comparison with the existing literature using ISF

was limited to ions with a single bound electron.

The goal of the present work is to generalize this approach in three directions. First,

our earlier work relied on a Maxwell-Boltzmann statistics to describe the free electrons,

which is not correct when their density is high or when their temperature is low. There-

fore we provide an analysis of the improvement brought by the use of Fermi-Dirac

statistics. Second, we have now included the plasma environment effect within the ISF

in the Los Alamos CATS (Cowan ATomic Structure) code [6, 7] based on Cowan’s

work [8]. It is instructive to compare results from FAC and CATS since they rely on

somewhat different hypotheses. FAC is a fully relativistic code based on the fit of free

parameters in the potential and on a local approximation of the exchange interaction

based on standard Dirac-Fock-Slater method. CATS relies on a semi-relativistic self-

consistent potential using a non-local Hartree-Fock (HF) or local Hartree-Fock-Slater

(HFS) description for exchange. Since we are using the semi-relativistic option in this

work, we will use the HFR acronym to denote the HF calculations. The last new aspect

of this paper is the presentation of comparisons of results obtained with FAC, CATS, and

other codes from the literature (MCDF, SOBOLEV/MARIA) for complex ions, while

in our previous work comparisons mostly dealt with the hydrogen-like case.
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The Debye-Hückel model [9, 10] is one of the most commonly used formalisms

to take into account the plasma effects in atomic structure calculations. However, the

validity of this approach is questionable, as mentioned, for example, by Nguyen et al.

[11] and Iglesias and Lee [12]. Indeed, the Debye-Hückel model is valid when the

correlation time of the ion is much longer than the lifetime of excited atomic states.

So this perturbative approach is, at best, limited to weakly coupled plasmas and is not

relevant for the modeling of high density plasmas considered in this work. If we set

aside the Debye-Hückel model, the first significant effort to account for the plasma

environment effect was made through Thomas-Fermi approach [13]. The next important

step is due to Rozsnyai [14], who computed energy levels and analyzed the equation of

state in a dense plasma using a relativistic Thomas-Fermi approach. Since then, several

approaches have been developed, which are mostly related to the Kohn-Sham density

functional theory.

In the ion-sphere model, the ion is enclosed in a spherically symmetric cell that con-

tains the exact number of electrons to ensure neutrality. Such models define an electron-

density distribution that obeys self-consistency equations or a simpler hypothesis such

as uniform density. In its simplest form, assuming exact cancellation of the free-electron

and other-ion densities beyond the Wigner-Seitz sphere, the ion-sphere model has been

extensively used (see Refs. [14–20], to quote just a few) to obtain energy levels and

transition rates of ions in plasmas. In other variants, the ion is immersed in an infi-

nite polarizable medium, also called jellium. Asymptotically, the positive and negative

charges cancel out each other to form a neutral background. The high-temperature limit

of such models is the popular Debye-Hückel theory [9, 21, 22]. A recent approach of

this type is the Variational Average Atom in Quantum Plasma by Blenski and Piron

[23, 24].

This manuscript is organized as follows: In section II we briefly recall the basic

equations of the ion-sphere model with an emphasis on the Fermi-Dirac approach. In

section III we present the numerical implementation of the TF approach in the HFS
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and HFR paths of the CATS code. In section IV we compare energies obtained with a

Thomas-Fermi approach using the Maxwell-Boltzmann and Fermi-Dirac distributions.

In the same part we present three comparisons on several ions. Firstly, we compare FAC

and CATS results for aluminum-ion ground state. Then we compare our results with an

independent calculation using the uniform electron gas model (UEGM) with a MCDF

code [18]. The last ion studied is He-like titanium, for which a published experiment

[25] exhibits a plasma density effect on the He-α line. We end this manuscript with

concluding remarks.

Atomic units are used throughout.

II. ION-SPHERE MODEL

The general category of ion-sphere models includes models that assume a neutral

cell containing a central ion surrounded by its environment. Moreover, one assumes that

the free-electron density exactly cancels the ion density beyond the ion-sphere radius.

In this approach the plasma potential is calculated using the Poisson equation. The

difference between the various ion-sphere models lies in the way the density of free

electrons is determined. We present here the Thomas-Fermi (TF) approach using a

Fermi-Dirac distribution.

A. Thomas-Fermi approaches

The Thomas-Fermi model has been discussed in a series of papers [3, 11, 13, 17,

26, 27]. We briefly recall the main equations of the ion-sphere model. The neutrality

assumed inside the ion-sphere sphere with radius R0 is defined by

4πR3
0Ne/3 = Zf , (1)
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where Ne is the average free-electron density and Zf the number of free electrons. The

free-electron density outside of the sphere is

ne(r) = 0 for r ≥ R0. (2)

In order to comply with the definition of the average electron density Ne, one imposes

the condition

4π

∫ R0

0

dr r2ne(r) = Zf . (3)

In the CATS and FAC codes, the free-electron density ne(r) can follow three distribu-

tions: a uniform density, the Maxwell-Boltzmann or the Fermi-Dirac distribution. The

case of a uniform density and Maxwell-Boltzmann distribution have been discussed in

[2, 3] only for FAC. In the following subsection we present the implementation of the

Fermi-Dirac distribution in CATS and FAC.

B. Fermi-Dirac distribution

If the free electrons are degenerate, the use of the Fermi-Dirac distribution is prefer-

able. In that case the free-electron density is

ne(r) =
1

π2

∫

∞

p0(r)

dp
p2

e

(

p2

2
+V (r)−µ

)

/kTe + 1
, (4)

where µ is the chemical potential, p0(r) = (−2V (r))1/2 in the case of an attractive

potential, and V (r) is

V (r) =











−Z
r + Vee(r) + Vpl(r) + Vrelat(r) r ≤ R0

0 r > R0,
(5)

where Vee accounts for all interactions between bound electrons, including nucleus

screening by bound electrons and the exchange interaction. The term Vrelat represents

the relativistic corrections, we note that this term is absent from the FAC code since it is

a fully relativistic code. The difference between the Maxwell-Boltzmann approach and
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Fermi-Dirac distribution lies in the presence of the chemical potential µ. This parameter

is determined by the neutrality condition.

Assuming a change of variable p ≡ (2kTex)
1/2, the density becomes

ne(r) =
4√
π

(

kTe

2π

)3/2 ∫ ∞

x0

dx
x1/2

ex−x0−µ/kTe + 1
, (6)

where x0 = −V (r)/kTe. Finally, we can write equation (6) as

ne(r) = 2λ−3
th F1/2

(

−V (r)

kTe

+
µ

kTe

,−V (r)

kTe

)

. (7)

The function F1/2(x, y) is called the incomplete Fermi-Dirac integral and λth is the De

Broglie thermal wavelength defined by

λth =

(

2π

kTe

)1/2

. (8)

The last equation required to obtain the plasma potential and the electron density is the

Poisson equation, which can be written in integral form as

Vpl(r) = 4π

(

1

r

∫ r

0

ds s2ne(s) +

∫ R0

r

ds s ne(s)

)

. (9)

Two iterative loops have to be done in this case: one to obtain the chemical potential µ,

which is an internal loop, and the other one (external loop) to obtain the correct density

due to the sphere neutrality. The numerical procedure is detailed in subsection III B.

III. ATOMIC STRUCTURE CALCULATIONS INCLUDING THE PLASMA POTEN-

TIAL

We present in this section the modifications that were made in the CATS and FAC

codes, which in their standard versions do not take into account the plasma environ-

ment. Using the modified form of these codes, we obtain energy levels, wave-functions

and radiative rates that take into account the plasma environment within the ion-sphere

model.
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A. Implementation of plasma density effects in CATS and FAC

The CATS code is used to generate solutions of the Schrödinger equation with rel-

ativistic corrections. Since the plasma potential is spherically symmetric, it is only

necessary to modify the radial equation:

d2Rn,l

d2r
+ 2

(

En,l − V (r)− l (l + 1)

2r2

)

Rn,l = 0, (10)

where n is the principal quantum number, l the orbital quantum number, En,l is the

energy eigenvalue and Rn,l the radial wave-function. The total potential acting on the

electron is

V (r) = −Z

r
+ Vpl + Vee + Vrelat. (11)

We note that the CATS code does not report the orbital binding energy as the actual

eigenvalue of equation (10). Instead, the binding energies are calculated by constructing

the appropriately averaged value of the kinetic, nuclear and electron-electron terms (see

for example, equation (6.13) of Cowan [8]). The goal of this procedure is to obtain

more accurate energies when the local-exchange (HFS) approximation is used. When

the non-local (HFR) approach is used, this procedure reproduces the eigenvalues from

equation (10).

We have to mention an important point concerning the asymptotic behavior for the

active electron. The expected asymptotic charge experienced by an active electron

should be (Z−Nb+1) when the plasma effects are not considered. However, when deal-

ing with the local-exchange approximation employed in the HFS method, the asymp-

totic behavior is (Z −Nb). In the ion-sphere approach the active electron experiences a

(Z −Nb + 1 + Zf) = 1 charge outside the ion sphere, which is not consistent with the

HFS method. To solve this problem, the Latter tail cut off [8, 28] is applied only to the

HFS potential, rather than to the sum of the HFS and the plasma potentials.

Concerning FAC, the implementation of the Fermi-Dirac approach is similar to that

described above for the HFS method.
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B. Plasma potential with a Fermi-Dirac distribution of free electrons

To start the first iteration, we use a uniform density distribution of free electrons and

deduce the plasma potential; this iteration produces the UEGM potential denoted by

V (0). For the first guess of the chemical potential, labeled µ(0), we use the value of an

ideal gas at high temperature, i.e.

µ(0) = kTe log

(

3Zfλ
3
th

8πR3
0

)

. (12)

We recall that an internal and external loop are necessary. We denote the external loop

with the index i and the internal loop with the index k . The internal loop is used to

calculate the chemical potential µ(i, k) and the external loop for the density n
(i)
e (r).

To determine the next ith value of µ, we use a Newton iterative method. We calculate

the free charge Z i,k
f for iteration (i, k) according to

8πλ
−3

th

∫ R0

0

dr r2F1/2

(

−V (i)(r)

kTe
+

µ(i, k)

kTe
,−V (i)(r)

kTe

)

= Z i,k
f . (13)

We suppose at the next iteration on k, the value Z i,k+1
f that we obtain is the exact free

charge Zf , i.e.

8πλ
−3

th

∫ R0

0

dr r2F1/2

(

−V (i)(r)

kTe
+

µ(i, k + 1)

kTe
,−V (i)(r)

kTe

)

= Zf . (14)

To obtain the expression for µ(i, k+1), we assume that the variation of F1/2 (x, y) can

be approximated by the first-order discretization

F1/2 (xk+1, y)− F1/2 (xk, y) = (xk+1 − xk)
∂

∂x
F1/2 (x, y)

∣

∣

∣

x=xk

. (15)

Therefore, we obtain the new chemical potential µ(i, k+1) via the following expression:

(µ(i, k + 1)− µ(i, k))

∫ R0

0

dr r2
∂

∂x
F1/2

(

−V (i)(r)

kTe
+

µ(i, k)

kTe
,−V (i)(r)

kTe

)

=
kTeλ

3
th

8π

(

Zf − Z i,k
f

)

.

(16)
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The partial derivative of the Fermi-Dirac integral can be calculated by

∂

∂x
Fj (x, y) =

1

Γ (j + 1)

yj

ey−x + 1
+ Fj−1 (x, y) . (17)

For the computation of the Fermi-Dirac integral, we use the algorithm developed by

Goano [29]. The internal loop has converged when the required accuracy |µ(i, k + 1)− µ(i, k)| <
ǫ is reached. The default value of ǫ is 10−12. Once the chemical potential is obtained,

the process to obtain the density ne(r) and the potential V
(i)

pl (r) is

V (i)(r) = −Z

r
+ Vee(r) + Vrelat(r) + V

(i)
pl (r), (18)

n(i)
e (r) = 2λ−3

th F1/2

(

−V (i)(r)

kTe
+

µ(i, k + 1)

kTe
,−V (i)(r)

kTe

)

. (19)

Zf = 4π

∫ R0

0

dr r2n(i)
e (r), (20)

V
(i+1)

pl (r) = 4π

(

1

r

∫ r

0

ds s2n(i)
e (s) +

∫ R0

r

ds s n(i)
e (s)

)

, (21)

where µ(i, k + 1) is the converged value of the chemical potential at the i-th step of

the outer iteration. The convergence is controlled by monitoring the variation of the

density on the ion-sphere sphere |n(i)
e (R0) − n

(i−1)
e (R0)|, ending the iterations when

this difference falls below a given tolerance ε. We found that ε = 10−8 in atomic

units produced the self-consistent potential with a fair accuracy, and that the procedure

converged in most cases in less than 12 iterations. This part of the procedure is identical

to the one presented previously for the case of a Maxwell-Boltzmann distribution [3].

We point out that in the CATS and FAC codes the ion-sphere radius R0 does not

typically correspond to a specific point on the integration mesh. In the appendix A we

show that a linear interpolation is sufficient to adress this issue.
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IV. RESULTS

A. Maxwell-Boltzmann vs Fermi-Dirac

The difference between Maxwell-Boltzmann and Fermi-Dirac statistics is illustrated

in Figure 1, where we have plotted the numerical results for the plasma potential for the

case of H-like neon at 1 eV and Ne = 1024 cm−3. In this case, the degeneracy factor

γ = Neλ
3
th is 331 and the plasma coupling parameter [30] is Γ = 1115.9, making the

free electrons degenerate and resulting in curves that do not overlap.

0.001 0.01 0.1 1
r/ R

0

4

5

6

7

8

V
p

l(r)  (a
.u

.)

Fermi-Dirac
Maxwell-Boltzmann

FIG. 1. Influence of different free-electron distributions on the self-consistent plasma potential

for H-like neon at Te = 1 eV and Ne = 10
24 cm−3. The electron distance to the nucleus, r, is

expressed in units of the ion-sphere radius R0 = 2.438 a0. The potential is obtained from CATS

using the HFS path.

The plasma potential with the Fermi-Dirac distribution is weaker than the Maxwell-

Boltzmann one. Taking into account the Pauli principle reduces the free-electron con-

centration for r ≃ 0 and therefore the screening of the nuclear potential. Accordingly
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Temperature Maxwell-Boltzmann Fermi-Dirac

1 eV 193.85 185.58

100 eV 167.72 167.39

1000 eV 154.31 154.31

TABLE I. Energy shift in eV for the 1s level of H-like neon at an average electron density of

Ne = 10
24 cm−3 from CATS (HFS).

one must recall that the TF model, which accounts for such polarization of the free elec-

trons, leads to a stronger plasma effect than the UEGM. We can draw an analogy with

the theory of atomic structure, which deals only with bound electrons. In this latter case,

the Pauli principle is taken into account through the exchange interaction, for which the

contribution to the average energy of a configuration is negative. Therefore, it seems

reasonable to expect the same influence when Fermi-Dirac statistics is used.

We provide a comparison of shifted energies for H-like aluminium calculated with

the CATS HFS option in Table I; the HFR results are identical (not shown). We clearly

see in this table that the binding energies decrease less with temperature when the Fermi-

Dirac distribution is used, compared to the Maxwell-Boltzmann distribution. As ex-

plained above, this behavior is a consequence of the free-electron degeneracy.

B. Results on energies

In a previous article [2], the energy shift due to the plasma effect given by FAC has

been verified for H-like ions using an analytical formula. When dealing with more than

one bound electron, further numerical comparison is desirable. Therefore, to check the

results of our calculations we offer a comparison between FAC and CATS (both HFS

and HFR results).
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Ground states Binding energy shift in eV Relative difference in %

FAC CATS(HFS) CATS(HFR) FAC vs HFS FAC vs HFR

1s2 193.330 193.286 193.299 0.025 0.016

1s22s1 173.975 173.895 173.885 0.046 0.052

1s22s2 160.869 160.727 160.744 0.088 0.077

1s22s22p1 148.427 148.460 148.661 0.022 0.158

1s22s22p2 134.120 134.193 134.338 0.055 0.16

TABLE II. Shift of the binding energies due to the plasma potential of Al ground state ions at

an average electron density of Ne = 10
24 cm−3 and a temperature kTe = 100 eV with a Fermi-

Dirac distribution. The plasma potential shifts the energies upward. Therefore the binding

energies are reduced by the plasma effect.

1. Aluminum ions

The most relevant comparison is between FAC and CATS using the HFS approxi-

mation because both rely on a local potential for the exchange interaction. In Table II,

we provide the energy shift of the binding energies for different ground states of the

aluminum ions. As we can observe, the results between all the codes are satisfying, es-

pecially between FAC and CATS (HFS). The relative error is very small and reaches the

numerical precision of the codes (a maximum of 5 digits for energies). As expected, the

agreement between FAC and CATS (HFR) is not as good as the CATS (HFS) when in-

creasing the number of bound electrons. This is because the local-exchange approxima-

tion is becoming less valid with an increase in the number of bound electrons. However,

the agreement is still very good.

As a completely independent check, we also compare our calculations of He-like

aluminium with the work of Sil et al. [20]. In their paper, they present configuration-

average energies for transitions of the type 1s2 − 1snp using the UEGM. The main

difference with the present work is that they require the wave-function to be zero at
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the ion-sphere radius. In Table III, we compare the shift of those transition energies

obtained from FAC and CATS (HFR), using the UEGM, with their relativistic results.

We note that CATS is not a fully relativistic code, but the HFR option includes the

lowest-order relativistic corrections [8]. Futhermore, for aluminum we do not expect

a strong relativistic effect. We can estimate that the relativistic corrections are of the

order of Z2α2 (∼ 1/100 for Al ions). The agreement of the plasma shift is good at a

density of Ne = 1023 cm−3 between FAC and CATS. However, the agreement between

our codes (FAC and CATS) and Sil et al. is not as good, especially for the 1s2 − 1s2p

transition. It is difficult to find an explanation for this behavior. We do not believe that

the difference in the choice of boundary condition has any influence on this specific

transition. Indeed, at a given density, the higher values of n are more sensitive to the

plasma effect, which leads to a stronger effect on the wave-function. Thus, the choice

of boundary condition for the wave-function is expected to have the strongest effect for

higher values of n. We develop this point in the next subsection IV B 2. Therefore, we

expected that the disagreement in the shift should have increased with an increase in

the principal quantum number n, contrary to the observed trend in Table III. We note

that at higher free-electron densities, i.e. Ne = 1024 cm−3, the relative difference in

the energy shift for the 1s2 − 1s2p transition between FAC and the work of Sil et al. is

about 4.68%, while the relative difference between FAC and CATS is only about 0.11%.

So the discrepancy between our shifts and those of Sil et al. increases with density.

Overall, the same quantitative agreement described for aluminum is found for the other

elements (carbon and argon) that are present in the reference [20]. Similar trends are

also observed for the transitions in H-like ions reported by Battacharyya et al. [19].
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Transitions Energy shift in eV Relative difference in %

FAC CATS(HFR) Sil et al. [20] FAC vs CATS(HFR) FAC vs [20]

1s2 − 1s2p 0.1547 0.1544 0.1605 0.19 3.75

1s2 − 1s3p 1.0268 1.0262 1.0476 0.06 2.03

1s2 − 1s4p 3.5485 3.5520 3.6055 0.10 1.61

1s2 − 1s5p 9.8662 9.8966 9.7058 0.31 1.63

TABLE III. Shift of energies for the 1s2 − 1snp transitions in Al11+ due to the plasma potential

at an average electron density of Ne = 10
23 cm−3 using the UEGM. The results from the work

of Sil et al. [20] are taken from their relativistic calculations.

2. Beryllium-like ions

We may also perform another comparison with the work of Saha et al. [18] which

uses a multiconfiguration Dirac-Fock (MCDF) calculation within the ion-sphere model.

In their paper, the chosen ion-sphere model is the UEGM. This model is suitable when

the temperature is high enough to assume a uniform density of free electron. In their ion-

sphere model an additional assumption is made on the wave-functions. They impose the

wave-function to be zero on the ion-sphere. We believe that this assumption — though

of little consequence here as will be discussed later — is not suitable because it leads to

unphysical behavior. Indeed, the cancellation of the wave-function on R0 is equivalent

to an infinite potential at the ion-sphere radius.

In the work of Saha et al. [18], the energy shift caused by the plasma is given for the

2s2−2s2p3P1 intercombination line and the 2s2−2s2p1P1 resonance line of beryllium-

like ions for different elements (O, Ne, Si, Ar, Fe, Mo). To lead the comparison with

their work, we have chosen the ion Fe22+.

We firstly focus our attention on the intercombination line. As we observe in Table

IV the agreement between the three codes is satisfactory (less than a 1% difference).The

agreement between the codes and the NIST value [31] is of similar quality. Usually the
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FAC CATS (HFS) CATS (HFR) MCDF NIST

Unperturbed energy in units of eV 47.1104 46.8781 47.1323 47.1181 47.0055

Plasma

shift in units of eV

Ne = 10
23

0.01331 0.01383 0.01381 0.01327

Ne = 10
24

0.1327 0.1347 0.1344 0.1327

Ne = 5× 10
24

0.6647 0.6712 0.6698 0.6647

TABLE IV. Unperturbed energy (i.e., for Ne = 0) and plasma energy shift at various electron

densities for the 2s2 − 2s2p 3
P1 intercombination line of Fe22+. Electron densities Ne are in

cm−3. The plasma shift is computed using the UEGM. The MCDF calculations are from Saha

et al [18], the NIST data from Kramida et al [31].

plasma effect shifts the transition energies downward for ions with few electrons, so it

is noteworthy to mention that this case behaves differently. This issue was previously

discussed in [32], in which the terminology blue and red shift was applied to upward and

downward shifted energies, respectively. The results from CATS are slightly different

from FAC and MCDF because it is a semi-relativistic code, while the results of FAC and

the MCDF code of Saha et al. [18] are very similar, despite the assumption of cancella-

tion of the wave-function on the ion-sphere in the latter calculations. This agreement is

good because, at the density presented in Table IV, the wave-functions have converged

to zero at a distance much less than the ion-sphere radius (R0 = 1.921 a0). Therefore,

in this case, no difference should be expected between the two models. In Figure 2 we

have plotted the set of wave-functions generated with CATS (HFR) that were used to

represent the 1s22s2 and 1s22s2p 3P1 levels, which supports our argument.

Concerning the resonance line, the results shown in Table V are not as good as those

of the intercombination line. The biggest disagreement is ∼ 3.7% between FAC and

MCDF in most of the cases.

For completeness, when studying elements with lower values of Z, we note that

the discrepancy between FAC and MCDF increases. We find a 6.7 % difference on

the plasma shift for O4+ ions between FAC and MCDF, and 0.46 % for Mo38+. We
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FIG. 2. Radial wavefunctions for the 1s22s2 and 1s22s2p 3
P1 levels of Fe22+, at a density

ofNe = 5 × 10
24 cm−3 calculated with the UEGM. The electron distance to the nucleus, r, is

expressed in units of the ion-sphere sphere radius R0 = 1.921 a0. The wave-functions have

been computed from CATS (HFR).

emphasize that this behavior is only observed for the resonance line. This discrepancy

might be explained by the fact that the wave-functions of FAC may not converge to

the non-relativistic wave-functions. This type of non-convergence has been observed

and discussed by Kim et al. [33] for MCDF codes. However we point out that in the

latter paper the discrepancy is observed for the intercombination line, while in our case

it concerns the resonance line. We do not discuss this possibility in more detail here,

since it is beyond the scope of this article.

3. He-α line for Titanium

In the last case, we compare our work with an experiment published by Khattak

et al. [25] on titanium. This experiment was performed at the Rutherford Appleton
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FAC CATS (HFS) CATS (HFR) MCDF NIST

Unperturbed energy in units of eV 94.8552 92.4145 92.5428 93.848 93.2869

Plasma

shift in units of eV

Ne = 10
23

0.01193 0.01256 0.01254 0.01239

Ne = 10
24

0.11941 0.12185 0.12161 0.12386

Ne = 5× 10
24

0.59770 0.60656 0.60543 0.62077

TABLE V. Unperturbed energy (i.e., for Ne = 0) and plasma energy shift at various electron

densities for the 2s2 − 2s2p 1
P1 resonance line of Fe22+. See Table IV for details.

Laboratory using the terawatt short pulse laser facility ASTRA. This work reported a

red shift of the Ti He-α line which is the highest charge state measured (the average

charge of the plasma being Z∗ ≃ 20). In that paper the titanium foil was irradiated at

on optimum focus and at an offset of 100 µm from the best focus. Therefore two He-α

line shifts were reported. In the case of the optimum focus, the reported line shift was

3.4 eV, while in the second focus the measured line shift was 1.8 eV. The unshifted

He-α line was taken to be at 4749.73 eV in [25], as provided by Beiersdorfer et al [34].

A similar value of 4749.85 eV was given by Chantler et al [35]. We point out that the

FAC code provides an unshifted value of 4749.34 eV. The unshifted value of CATS

(HFR and HFS) is 4753.48 eV.

In order to evaluate the density and the temperature, two simulations were carried

out in the article. The first simulation was realized by the hydrodynamic code HYADES

[36] and post-processed with the collisional-radiative code SOBOLEV [37]. This simu-

lation concluded that the plasma density exceeded Ne = 1024 cm−3 with a temperature

above 3000 eV in the case of the optimum focus. In the second focus a temperature of

well below 1000 eV and density lower than Ne = 1024 cm−3 was suggested. The sec-

ond simulation was performed with the spectral simulation code MARIA [38]. For the

optimum focus, the prediction of MARIA is close to the first simulation. For the second

focus, the estimate range of temperature is 500−1000 eV and an electron density closer

18



to 1023 cm−3 than 1024 cm−3.

From our numerical simulation with FAC using the ion-sphere model (Fermi-Dirac

distribution), a line shift of 3.4 eV for the He-α is obtained for an electron density of

4.2× 1024 cm−3 with an electron temperature of 3000 eV. The density and temperature

used in our model are in good agreement with those mentioned in the paper of Khattak

et al. [25]. For the second focus, a line shift of 1.8 eV is found at an electron density of

Ne = 1024 cm−3 with an electron temperature of 587 eV. The temperature falls within

the range predicted by the code MARIA. However our density is higher than the one

obtained with the code MARIA [38].

Concerning CATS (both HFR and HFS), we obtain very similar results compared to

FAC. A shift of 3.4 eV for the He-α line is obtained for an electron density of Ne =

4.1 × 1024 cm−3 with an electron temperature of 3000 eV. For the second focus the

density and temperature used with CATS are exactly the same as the ones obtained with

FAC.

V. SUMMARY

Using a Thomas-Fermi description of the free-electron density, we have been able

to describe plasma environment effects within the Hartree-Fock or Hartree-Fock-Slater

options of the CATS code and within the parametric potential FAC code. Calculations

of the ground state shift for the AlXII–AlVIII ions have been performed with both codes

and fairly agree. Within the Uniform Electron Gas Model, the results from CATS in HF

and HFS forms and FAC codes fairly agree together and also agree with the MCDF

values from Saha et al [18]. Finally a comparison with experimental data on titanium

at the ASTRA terawatt laser facility [25] leads to predictions of electron density and

temperature in agreement with another interpretation using the MARIA code [38]. In the

near future, we intend to apply the present ion-sphere formalism to collisional-radiative

modeling.
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Paris XI (2014).

[5] M. F. Gu, Can. J. Phys. 86, 675 (2008).

[6] J. Abdallah Jr, R. E. H. Clark, J. M. Peek, and C. J. Fontes,

J. Quant. Spectrosc. Radiat. Transfer 51, 1 (1994).

[7] C. J. Fontes, H. L. Zhang, J. Abdallah Jr, R. E. H. Clark, D. P. Kilcrease, J. Colgan, R. T.

Cunningham, P. Hakel, N. H. Magee, and M. E. Sherrill, Journal of Physics B: Atomic,

Molecular and Optical Physics 48, 144014 (2015).

[8] R. D. Cowan, The Theory of Atomic Structure and Spectra (University of California Press,

Berkeley, 1981).

[9] P. Debye and E. Hückel, Phys. Z. 24, 185 (1923).

[10] D. Salzmann, Atomic Physics in Hot Plasmas, The International Series of Monographs on

Physics (Oxford University Press, Oxford, 1998).

[11] H. Nguyen, M. Koenig, D. Benredjem, M. Caby, and G. Coulaud,

Phys. Rev. A 33, 1279 (1986).

[12] C. A. Iglesias and R. W. Lee, Journal of Quantitative Spectroscopy and Radiative Transfer

58, 637 (1997).

[13] R. P. Feynman, N. Metropolis, and E. Teller, Phys. Rev. 75, 1561 (1949).

[14] B. F. Rozsnyai, Phys. Rev. A 5, 1137 (1972).

[15] D. A. Liberman, Phys. Rev. B 20, 4981 (1979).

[16] B. L. Whitten, N. F. Lane, and J. C. Weisheit, Phys. Rev. A 29, 945 (1984).

21

http://dx.doi.org/10.1086/148714
http://dx.doi.org/10.1016/j.hedp.2013.05.016
http://dx.doi.org/10.1103/PhysRevA.90.062712
http://dx.doi.org/10.1139/p07-197
http://dx.doi.org/http://dx.doi.org/10.1016/0022-4073(94)90059-0
http://dx.doi.org/ 10.1103/PhysRevA.33.1279
http://dx.doi.org/10.1103/PhysRev.75.1561
http://dx.doi.org/10.1103/PhysRevA.5.1137
http://dx.doi.org/10.1103/PhysRevB.20.4981
http://dx.doi.org/10.1103/PhysRevA.29.945


[17] D. Salzmann and H. Szichman, Phys. Rev. A 35, 807 (1987).

[18] B. Saha and S. Fritzsche, J. Phys. B: At., Mol. Opt. Phys. 40, 259 (2007).

[19] S. Bhattacharyya, A. N. Sil, S. Fritzsche, and P. K. Mukherjee,

Eur. Phys. J. D 46, 1 (2008).

[20] A. N. Sil, J. Anton, S. Fritzsche, P. K. Mukherjee, and B. Fricke, Eur. Phys. J. D 55, 645

(2009).

[21] D. Mihalas, Stellar Atmospheres, 2nd ed., Series of Books in Astronomy and Astrophysics

(W. H. Freeman, San Francisco, 1978).

[22] P. Quarati and A. M. Scarfone, Astrophys. J. 666, 1303 (2007).

[23] R. Piron, Atome moyen variationnel dans les plasmas quantiques (Variational Average-

Atome in Quantum Plasmas,VAAQP), PhD thesis, Ecole Polytechnique (2009).

[24] T. Blenski and B. Cichocki, Phys. Rev. E 75, 056402 (2007).

[25] F. Y. Khattak, O. A. M. B. Percie du Sert, F. B. Rosmej, and D. Riley, Journal of Physics:

Conference Series 397, 012020 (2012).

[26] F. Rosmej, K. Bennadji, and V. S. Lisitsa, Phys. Rev. A 84, 032512 (2011).

[27] B. F. Rozsnyai, Phys. Rev. A 43, 3035 (1991).

[28] R. Latter, Phys. Rev. 99, 510 (1955).

[29] M. Goano, Solid-State Electronics 36, 217 (1993).

[30] S. Ichimaru, Rev. Mod. Phys. 54, 1017 (1982).

[31] A. Kramida, Yu. Ralchenko, J. Reader, and NIST ASD Team, NIST Atomic Spectra

Database (ver. 5.2), [Online]. Available: http://physics.nist.gov/asd [2015,

April 29]. National Institute of Standards and Technology, Gaithersburg, MD. (2014).

[32] G. Massacrier and J. Dubau, J. Phys. B: At. Mol. Opt. Phys. 23, 2459S (1990).

[33] Y.-K. Kim, F. Parente, J. P. Marques, P. Indelicato, and J. P. Desclaux,

Phys. Rev. A 58, 1885 (1998).

[34] P. Beiersdorfer, M. Bitter, S. von Goeler, and K. W. Hill, Phys. Rev. A 40, 150 (1989).

22

http://dx.doi.org/10.1103/PhysRevA.35.807
http://dx.doi.org/10.1140/epjd/e2007-00270-x
http://dx.doi.org/10.1086/520058
http://dx.doi.org/10.1103/PhysRevE.75.056402
http://dx.doi.org/10.1103/PhysRevA.84.032512
http://dx.doi.org/10.1103/PhysRevA.43.3035
http://dx.doi.org/10.1103/PhysRev.99.510
http://dx.doi.org/http://dx.doi.org/10.1016/0038-1101(93)90143-E
http://dx.doi.org/10.1103/RevModPhys.54.1017
http://dx.doi.org/10.1088/0953-4075/23/13/033
http://dx.doi.org/ 10.1103/PhysRevA.58.1885
http://dx.doi.org/10.1103/PhysRevA.40.150


[35] C. T. Chantler, M. N. Kinnane, J. D. Gillaspy, L. T. Hudson, A. T. Payne, L. F. Smale,

A. Henins, J. M. Pomeroy, J. N. Tan, J. A. Kimpton, E. Takacs, and K. Makonyi,

Phys. Rev. Lett. 109, 153001 (2012).

[36] J. T. Larsen and S. M. Lane, J. Quant. Spectrosc. Radiat. Transfer 51, 179 (1994).

[37] D. Riley, J. Quant. Spectrosc. Radiat. Transfer 60, 221 (1998).

[38] F. B. Rosmej, J. Phys. B: At., Mol. Opt. Phys. 30, L819 (1997).

Appendix A: sensitivity of the numerical grid

We have implemented a method to modify the radial grid of CATS so that a point in

the grid will correspond to R0. By default, the grid spacing of CATS is

∆r = α ∗ cZ . (A1)

where α is a fixed numerical with a default value of 0.0025. The parameter cZ is given

by

cZ =
1

4

(

2Z

9π2

)

−1/3

, (A2)

where Z is the nuclear charge. When the ion-sphere potential is taken into account,

the variable α is adapted so that the grid contains a point that corresponds to R0. If

the grid does not contain R0, the missing contribution associated with the integrand

between the grid point that immediately precedes R0 and R0 itself is obtained by linearly

interpolating the integrand between the two grid points that straddle R0. In most cases,

the interpolation method that uses the default grid is sufficiently accurate. In Figure 3 we

plot the difference between the plasma potential obtained with the linear interpolation

method and the case with R0 on the grid. In that figure we have selected the worst

scenario, where the ion-sphere radius is in the middle of two points of the default grid.

As can be seen the difference between the two cases is fairly small.

This small change in the plasma potential has a very small impact on the level energy.

For instance, in the case of the 1s2 ground state of He-like Al, the relative error in the
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FIG. 3. Difference between the plasma potential obtained with the linear interpolation method

and the case with R0 on the grid. The density used is Ne = 5.1829 × 10
23 cm−3 and the

temperature kTe = 100 eV. The electron distance to the nucleus, r, is expressed in units of the

ion-sphere radius R0 = 3.2457 a0.

energy is 1.344× 10−6.
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