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It is an established fact that entanglement is a resource. Sharing an entangled state leads to
non-local correlations and to violations of Bell inequalities. Such non-local correlations illustrate
the advantage of quantum resources over classical resources. In this paper, we quantitatively study
Bell inequalities with 2 × n inputs. As found in [N. Gisin et al., Int. J. Q. Inf. 5, 525 (2007)]
quantum mechanical correlations cannot reach the algebraic bound for such inequalities. Here we
uncover the heart of this effect, which we call the fraction of determinism. We show that any
quantum statistics with two parties and 2×n inputs exhibit a nonzero fraction of determinism, and
we supply a quantitative bound for it. We then apply it to provide an explicit universal upper bound
for Bell inequalities with 2 × n inputs. As our main mathematical tool, we introduce and prove
a reverse triangle inequality, stating in a quantitative way that if some states are far away from a
given state, then their mixture is also. The inequality is crucial in deriving the lower bound for the
fraction of determinism, but is also of interest on its own.

I. INTRODUCTION

Since Bell’s paper [1], entanglement has been studied
and explored in depth. Entanglement has been used in
many information-processing applications in which it ei-
ther yields an advantage over the classical setting, e.g.,
in communication complexity [2], or where a classical
counterpart simply doesn’t exist, e.g., in quantum key
distribution (QKD) [3], its device independent variant
(DIQKD) [4], teleportation, super dense coding [5], or
Pseudo-Telepathy (PT) [6, 7].

Although quantum theory allows for violations of Bell
inequalities, in certain cases the violations cannot reach
their maximum algebraic value. Tsirelson was the first to
find upper bounds on the Bell values for quantum theory
[8] and to relate them to Grothendieck’s inequality. A
significant amount of work has been done to explain why
quantum mechanics does not lead to “algebraic” viola-
tions of Bell inequalities [9, 10]. In [11], Wehner and
Oppenheim argued that the trade-off between the so-
called steerability and uncertainty determines how non-
local a theory is. In [12], Cleve et al. gave an upper
bound for the winning probability for XOR games in the
quantum setting; their bound depends on the classical
winning probability and Grothendieck’s constant. (Note
that the XOR game is a so-called non-local game, and
Bell inequalities can be alternatively formulated as clas-
sical bounds on winning probabilities of non-local games
[13, 14].)

The approach to bound quantum violations via a
Grothendieck-type constant KG is now quite common
and reasonably well-understood. It leads to estimates
for the Bell values β that are of the form βqm ≤ KGβloc
[15]. In this work we develop a different strategy, where

the quantum Bell value of a given inequality depends on
the difference between its optimal algebraic value βalg
and its optimal classical value βloc.

Specifically, we study quantitatively Bell inequalities
with 2×n inputs and give a universal bound on quantum
Bell values of these inequalities. To find such a bound
for 2×n Bell inequalities, we introduce the notion of the
fraction of determinism (FOD) and show that the FOD
is non-zero and depends only on the number of outcomes
of each party (but not on n nor on the dimension of the
underlying Hilbert space). Next, we ascertain that the
presence of the FOD in quantum theory limits quantum
Bell values. Our paper is inspired by Gisin et al. [16],
where it is shown that there are some Bell inequalities
(two-party Pseudo-Telepathy games), for which quantum
resources achieve the algebraic violation. They show that
to achieve such violations, each party needs to have at
least 3 input settings. In other words, there is no 2 ×
n Bell inequality for which quantum theory attains the
algebraic violation. Here we uncover the heart of this
effect – the fraction of determinism – and are able to
give a quantitative bound for it.

While looking for a lower bound for the FOD, we
proved a fundamental property of quantum states which
is interesting on its own. Namely, if ρ1 and ρ2 are far
from σ, then any convex mixture of them is also far
from σ. More precisely, if ∆1 = ‖ρ1 − σ‖ ≥ 2 − ε and
∆2 = ‖ρ2 − σ‖ ≥ 2 − ε for some ε ≥ 0, then, for all
p ∈ [0, 1],

∆ = ‖pρ1 + (1− p)ρ2 − σ‖1 ≥ 2−O(
√
ε). (1)

where ‖ρ‖ def
= Tr

√
ρ†ρ is the trace norm. Since the in-

equality (1) bounds the trace distance between σ and
the mixture ρ = pρ1 + (1 − p)ρ2 from below (see Fig.
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FIG. 1: (Color online) Pictorial representation of
different bounds of ‖σ − ρ‖. The triangle inequality
gives an upper bound 2− ε, whereas reverse triangle
inequalities give lower bounds 2− 2

√
2ε for general

quantum states and 2− 2ε for classical (or commuting)
states.

1), we refer to it as a “reverse triangle inequality” (RTI).
Interestingly, it turns out that for classical states (i.e.,
probability densities, which can be represented as com-
muting density matrices) one can find lower bound of ∆
with the defect term linear in ε, while for non-commuting
quantum states one cannot, in general, have dependence
better than O(

√
ε).

The second fundamental property which we use here
follows from non-signalling - impossibility of instanta-
neous communication. Namely, by performing a mea-
surement on one site of the entangled state, one can
create only those ensembles which give rise to the same
density matrix – the reduced state of the entangled state.
This implies that if we consider two such ensembles, there
must be at least two elements (one from one ensemble,
and the other from the second ensemble) that are not per-
fectly distinguishable. It has been apparently not studied
to what extent they have to be indistinguishable. Here,
by using the reverse triangle inequality, we are able to
give a robust quantitative bound (Corollary 9), which is
independent of the dimension of the underlying Hilbert
space. We shall use it further to give a lower bound for
the FOD, which in turn will allow us to upper-bound
quantum violations for all 2× n Bell inequalities.

The paper is organized as follows. In section II, we in-
troduce necessary definitions and the role of the FOD. In
sections III and IV, we present respectively a summary
of our main results and sketches of their derivations. The
special case when Bob has two inputs with binary out-
comes is analyzed in section V. For this case, we have
explicitly calculated bounds for the FOD and for the clas-
sical fraction. Finally, we conclude our work in section
VII. Details of most proofs are relegated to the Appen-
dices.

II. PRELIMINARIES

A. Definitions

Box: Consider two distant parties, Alice and Bob
(A and B), sharing a physical system. Each of them
perform measurements labeled as x ∈ {x1, ...xnA} and
y ∈ {y1, ...ynB} respectively; we will refer to such setup
as having “nA×nB input settings” or “measurement set-
tings,” or simply “nA × nB inputs.” The outcomes of
Alice and Bob are labeled as a and b respectively. A
box is defined as family of joint probability distributions
p(a, b|x, y), i.e., P = {p(a, b|x, y)}. By a non-signalling
box (NS-box) we mean a box which satisfies the following
conditions

p(b|y) =

|x|∑
a=1

p(a, b|x, y) =

|x′|∑
a=1

p(a, b|x′, y) ∀b, x, x′ and y

p(a|x) =

|y|∑
b=1

p(a, b|x, y) =

|y′|∑
b=1

p(a, b|x, y′) ∀a, x, y′ and y,

(2)

where by |z| we denote number of outcomes an observable
z takes. A local box (or classical box) is defined as a box
where joint probabilities can be expressed as

p(a, b|x, y) =

∫
Λ

q(λ)p(a|x, λ)p(b|y, λ)dλ, (3)

where the hidden variable λ is distributed according to
some probability density q(λ). Such boxes satisfy, by
definition (see below), every Bell inequality. We say
that a box P is a quantum box (QM-box) if the con-
ditional probabilities can be realized as p(a, b|x, y) =
Tr(Mx

a ⊗N
y
b ρAB), where ρAB is a shared quantum state

between parties A and B, and Mx
a and Ny

b are mea-
surements for A and B respectively (that is, for each

inputs x and y, {Mx
a }
|x|
a=1 and {Ny

b }
|y|
b=1 are POVMs, i.e.,

families of positive operators satisfying
∑
aM

x
a = I and∑

bN
y
b = I). In this work, we only consider NS-boxes.

Notice that since the non-signalling conditions are linear
constraints, they define a polytope (NS-polytope). Local
boxes and QM-boxes belong to this polytope.

Bell Inequalities: Let S = {sx,ya,b} be a real vector

and P = {p(a, b|x, y)} be a box. The condition

S·P :=
∑
x,y,a,b

sx,ya,b p(a, b|x, y) ≤ β (4)

is called a Bell inequality if it is satisfied by any local box
P [13].

Fraction of determinism (FOD): Let P be a non-
signalling box. Consider representations of P as a convex
combination P = (1− c)X + cD, where X is an NS-box
and D is a deterministic box (i.e., a box, for which all
the conditional probabilities are either 0 or 1). The frac-
tion of determinism of P is then defined as the maximal
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possible weight of D in such representations, i.e.,

FOD := max
D,X
{c |P = (1− c)X + cD}. (5)

Classical Fraction (CF): For a non-signalling box
P , we similarly consider representations of P as a convex
combination P = (1−

∑
i ci)X+

∑
i ciDi, where X is an

NS-box and Di’s are deterministic boxes. The classical
fraction of P is then defined as the maximal combined
weight of deterministic boxes in decompositions of the
above form, i.e.,

CF := max
{Di},X

{∑
i

ci
∣∣P = (1−

∑
i

ci)X+
∑
i

ciDi

}
. (6)

Notice that the set of local boxes is a polytope (local poly-
tope), whose vertices are the deterministic boxes. Equiv-
alently, local boxes are exactly convex combinations of
deterministic boxes. Consequently, an alternative defini-
tion of CF is via a formula analogous to (5), with the
admissible decompositions being now P = (1−c)X+cL,
where L is any local (or classical) box. A similar quantity
was introduced in [18], where they call it “local fraction.”

Note that the FOD, the CF and the cost of nonlocality
cnl [19] satisfy the following relations

FOD ≤ CF = 1− cnl. (7)

While the FOD may be strictly smaller than the CF, it
is easy to see that if the CF is non-zero, so is the FOD.

B. The Role of the Fraction of Determinism

In the classical theory, the FOD is never zero. This is
because – as noted above – every local box is a convex
combination of deterministic boxes and some coefficients
in that representation must be clearly non-zero. On the
other hand, PR-boxes [9] are completely noiseless and
have zero fraction of determinism. This follows from the
fact that they are vertices of the NS-polytope and hence
cannot be expressed as a non-trivial mixture of NS-boxes;
since they are not local themselves, their classical fraction
is zero and, a fortiori, their FOD is also zero.

In quantum theory, the set of boxes is larger than the
local polytope. In particular, there exist quantum boxes
with zero fraction of determinism [16]. However, as will
be explained in the next section, this phenomenon cannot
materialize for quantum boxes with 2 × n measurement
settings. In turn, a non-zero FOD for a particular box,
or for a class of boxes, limits the corresponding Bell val-
ues β and, in particular, prevents an algebraic violation.
Indeed, for a given S, let

βdet = βSdet := max{S·D |D is a deterministic box} (8)

and

βalg = βSalg := max{S·X |X is an NS-box} (9)

be respectively the optimal deterministic and algebraic
β-values for the inequality associated with S. Note that
in (8) we would obtain the same value if we optimized
over all classical boxes; this is because a linear function
on a compact convex set (the local polytope) attains its
maximum on extreme points (the deterministic boxes).
In other words, βdet = βloc; in what follows the two quan-
tities will be used interchangeably.

Having defined the needed concepts, we present next
a crucial observation.

Observation 1. Let P be an NS-box such that c =
FOD(P ) > 0. Then any Bell expression β(P ) := S·P is
upper bounded by

β(P ) = S·P ≤ βalg − c(βalg − βdet). (10)

Proof. The proof is straightforward. We can decompose
box P as P = cD+ (1− c)X, where D is a deterministic
box and X is an NS-box. Therefore,

S·P = cS·D + (1− c)S·X ≤ c βdet + (1− c)βalg (11)

�
This observation implies that if there is any violation

at all (i.e., if βalg > βdet), then the β-value corresponding
to P is strictly smaller than βalg. Note that essentially
the same argument gives an identical bound with c =
CF (P ).

III. SUMMARY OF THE RESULTS

In this section we give a universal lower bound on the
FOD for the 2 × n inputs quantum scenario, depending
only on the number of outcomes of both parties. As ex-
plained above, such an estimate implies an upper bound
for all corresponding Bell-type inequalities in terms of the
classical and the algebraic β-values of each inequality. A
summary of our main results is as follows.

Theorem 2. For an arbitrary QM-box with nB = 2 and
nA = n, i.e., 2×n inputs, the fraction of determinism is
bounded as follows:

FOD ≥ 71− 17
√

17

16k(l − 1)l1 l2
≈ 0.0567

k(l − 1)l1 l2
, (12)

where k = max{|x1|, ...|xn|}, l1 = |y1|, l2 = |y2|, and
l = max{l1, l2}.

To illustrate an application of Theorem 2, let us con-
sider the (essentially simplest possible) instance of 2× 2
input settings with binary outcomes, i.e., n = k = l = 2.
In that case, the bound (12) becomes

FOD ≥ 7.08753× 10−3. (13)

Using the estimate (13), we can find an upper bound on
quantum value of the CHSH inequality [13] which is

βCHSHqm ≤ 4− 7.08753× 10−3(4− 2) ≤ 3.98583, (14)
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where we used (10) and the facts that βalg = 4 (attained
on a PR-box) and βdet = 2.

In section V, we will derive estimates for the FOD
and the CF in the particular case of 2 × n inputs with
2× k outputs without using our general theorem. When
specified to k = 2, the resulting bounds are

FOD ≥ 0.10961

4
and CF ≥ 0.11226

4
. (15)

Using these estimates, one can deduce from (10)
bounds for the CHSH scenario which are slightly better
than (14), namely

βCHSHqm ≤ 4− 0.10961 ∗ 2

4
≤ 3.94519 (16)

when using the FOD, and

βCHSHqm ≤ 4− 0.11226 ∗ 2

4
≤ 3.94386 (17)

when using the CF. We realize that these are still weak
bounds, but the importance of this study lies in its gen-
erality: these bounds are valid for any (appropriately
scaled) Bell inequality with 2× n inputs.

To prove Theorem 2 we need the following fundamental
property of quantum states. We state it here as it may
be of independent interest.

Theorem 3 (Reverse Triangle Inequality). Let ε ≥ 0
and assume that the states ρi, σ satisfy

‖ρi − σ‖ ≥ 2− ε (18)

for i = 1, . . . , l. Then, for any probability distribution
{pi}li=1,

1. For any states ρi, σ satisfying (18)∥∥∥ l∑
i=1

piρi − σ
∥∥∥ ≥ 2− 2

√
lε (19)

2. For commuting states ρi, σ satisfying (18)∥∥∥ l∑
i=1

piρi − σ
∥∥∥ ≥ 2− lε (20)

3. There exist three non-commuting states ρ1, ρ2 and
σ satisfying (18) such that∥∥∥ρ1 + ρ2

2
− σ

∥∥∥ ≤ 2−
√

2ε (21)

Remark: The third assertion says that when l = 2,
2−
√

2ε is the best possible bound one can hope to achieve
for general states. Hence, one cannot have better lower
bound in (19) than 2−O(

√
ε).

In the following section we shall sketch a derivation of
Theorem 2 from Theorem 3. The proof of Theorem 3 and
of its generalization, Proposition 8, is given in Appendix
A.

IV. FRACTION OF DETERMINISM IN QM

Our main objective in this section is to prove Theo-
rem 2. To do that, i.e., to lower-bound the FOD of a
given box, essentially requires one to look for determin-
istic structures in the box. Among all possible determin-
istic structures, picking the one with the maximal weight
gives the value of the FOD of the box. As a step in that
direction, we note first a simple fact following directly
from the definition.

Observation 4. Consider a box P = {p(a, b|x, y)} with
inputs {x1, . . . , xnA} on Alice’s side and {y1, . . . , ynB}
on Bob’s side. Then the following two conditions are
equivalent

1. We can find outcomes a(1), . . . , a(nA),
b(1), . . . , b(nB) such that

∀s, t p(a(s), b(t)|xs, yt) ≥ c (22)

2. FOD(P ) ≥ c .

This is illustrated pictorially in Fig. 2a (when nB =
|y1| = |y2| = 2). Although this is an important obser-
vation, it does not easily allow calculating explicit lower
bounds for the FOD. Therefore, we reformulate estimat-
ing the FOD of a QM-box as an optimization problem as
follows.

Proposition 5. Consider a QM-box with two inputs
{y1, y2} on Bob’s side and n inputs {x1, . . . , xn} on Al-
ice’s side. Then (22) is satisfied with c = c0, where

c0 = inf
ξ,ξ′

max
i,j

min
x

max
a

min{piTr(Mx
a ρi), qjTr(Mx

a σj)}.

(23)
The infimum is taken here over all ensembles ξ =

{(pi, ρi)}|y1|i=1, ξ′ = {(qj , σj)}|y2|j=1 (where {pi} and {qj} are

probability distributions, and ρi and σj are states) satis-
fying ∑

i

piρi =
∑
j

qjσj , (24)

and the first minimum over all inputs x ∈ {x1, ..., xn}
(with {Mx

a } the corresponding POVM measurements).

Proof. The argument depends on showing that c0 defined
via (23) works as a bound in (22), which then allows us
to appeal to Observation 4.

By definition, a quantum box is realized via POVMs
{Mx

a } (with x ∈ {x1, . . . , xn}) on Alice’s side, two
POVMs {Ny1

b , Ny2
b′ } on Bob’s side, and a shared quan-

tum state ρAB . Depending on Bob’s measurement

choice (y1 or y2), an ensemble ξ0 = {p(bi|y1), ρi}|y1|i=1 or

ξ′0 = {p(b′j |y2), σj}|y2|j=1 is created at Alice’s site, where

p(bi|y1) =: pi and p(b′j |y2) =: qj are the marginal condi-
tional probabilities. In terms of these marginals, one can



5

Alice
y1 y2

0 1 0 1

x1

.

.

.

xn

a(1)

.

.

.

.

.

.

a(2)

.

.

a(s)

.

a(n)

x2

(a) The outcomes a(1), . . . , a(n) satisfying (22). (These are the
optimal outcomes referred to in the proof of Propostion 5.)

Note that here b(1) = 0 = b(2).

c c

D

Alice
y1 y2

0 1 0 1

x1

.

.

.

xn

a(1)

.

.

.

.

.

a(2)

.

.

a(s)

.

.

a(n)

x2

c c

c c

c c

(b) Deterministic box D: the rectangle is a deterministic box
appearing with weight c in the decomposition of P .

FIG. 2: (Color online) Illustration of FOD

express joint probabilities as follows:

p(a, bi|xy1) = piTr(Mx
a ρi)

p(a, b′j |xy2) = qjTr(Mx
a σj). (25)

Note that these ensembles satisfy

TrB(ρAB) =
∑
i

p(bi|y1)ρi =
∑
j

p(b′j |y2)σj , (26)

so that the condition in (24) holds. Now, for a fixed
pair of indices (i, j) and an input x, pick an outcome

a = a
(x)
ij such that min{p(abi|xy1), p(ab′j |xy2)} is maxi-

mal. Essentially, by fixing a pair of indices (i, j), we fix
“one side” of (the support of) a deterministic box. The

optimal outputs {a(x)
ij } define “the other side” (see Fig.

2a) and the smallest probability gives the weight of that
box. Optimizing over all pairs (i, j) leads to the choices

of a(s) = a
(xs)
i0j0

, b(1) = bi0 , and b(2) = b′j0 that satisfy (22)

with the constant given by (23), as needed. �

In order to be able to apply Proposition 5, we need to
supply an appropriate lower bound on the parameter c0
defined by (23). To that end, let us analyze the optimiza-
tion problem implicit in (23). For given ξ, ξ′, {Mx

a } and
the selected i, j, it is a priori conceivable that the two
densities (25) are disjointly supported (when considered
as functions of a), and so any choice of a will lead to the
minimum of the two probabilities being 0. Another way
to describe such a situation is that the POVM {Mx

a } can
perfectly distinguish ρi from σj . However, it is easy to see
that this can only happen if the states ρi and σj “live”
on orthogonal subspaces of the underlying Hilbert space
or, equivalently, if ‖ρi−σj‖ = 2. Further, if this unfortu-
nate state of affairs persists for every pair i, j, it follows
that the mixtures

∑
i piρi and

∑
j qjσj themselves “live”

on orthogonal subspaces and hence can be perfectly dis-
tinguished by {Mx

a }, which is of course impossible since
they coincide by (24). This shows that there is a choice
of i (= i0), j (= j0), and then of a (= axsi0j0), such that

the objective function in the optimization problem (23)
is strictly positive. Note, however, that these considera-
tions do not yield yet any explicit lower bound nor any
hint of uniformity over ξ, ξ′ and x.

A version of the above reasoning is the gist of the argu-
ment in [16]. In what follows we shall provide quantita-
tive statements elaborating on the points made above.
The first lemma asserts that if ‖ρ − σ‖ is noticeably
smaller than 2, then there is a limit on how well a POVM
can distinguish ρ and σ. More precisely, we have

Lemma 6. Let ε ≥ 0 and suppose that ‖ρ− σ‖ ≤ 2− ε.
Then, for any POVM {Ma}ka=1, there exists an outcome
a0 such that

Tr(Ma0ρ) ≥ ε

2k
and Tr(Ma0σ) ≥ ε

2k
. (27)

The proof is – unsurprisingly – based on the Helstrom
formula [20], which relates distinguishability of quantum
states via POVMs to their trace distance. The details
are presented in Appendix B. The importance of the
Lemma for our results lies in the fact that it uncovers a
deterministic structure in every quantum box with 2×n
inputs.

Using Lemma 6, we can replace marginal conditional
probabilities Tr(Mx

a ρi) and Tr(Mx
a σj) in (23) by ε (de-

pending on i and j). Having done this, we can get rid
of the optimization over inputs and outputs of Alice, i.e.,
over a and over all POVMs {Mx

a }. As a consequence, we
have the following
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Observation 7. The quantity c0 of (23) satisfies c0 ≥ c1
with

c1 =
1

2k
inf
ξ,ξ′

max
i,j

(2− ‖ρi − σj‖) min{pi, qj}, (28)

where the infimum is taken over all ensembles ξ =

{(pi, ρi)}|y1|i=1, ξ′ = {(qj , σj)}|y2|j=1 satisfying∑
i

piρi =
∑
j

qjσj , (29)

Proof. Lemma 6 tells us that, for given ξ, ξ′, i, j and x,

max
a

min{piTr(Mx
a ρi), qjTr(Mx

a σj)} ≥ min{pi, qj}
εij
2k
,

(30)
where εij = 2 − ‖ρi − σj‖. To conclude that c0 ≥ c1, it
remains to notice that the left hand side and the right
hand side of (30) represent the expressions appearing re-
spectively in (23) and (28) (the definitions of c0 and c1),
and that the right hand side doesn’t depend on x. �

Having simplified the FOD, we are ready for the crucial
step, which involves quantifying the limitations on the
trace distances ‖ρi − σj‖. Our aim is to estimate those
distances in terms of the number of Bob’s outcomes. In-
terestingly, this leads to an important independent result,
which is a purely geometric property of quantum states,
and which is stated as Theorem 3. For our purposes, we
need a slight generalization of the first statement of the
Theorem.

Proposition 8. Assume that ε ≥ 0 and that the states
ρi, σj satisfy ‖ρi − σj‖ ≥ 2 − ε for all i ∈ {1, ..., l1} and
all j ∈ {1, ..., l2}. Then, for any probability distributions

{pi}l1i=1 and {qj}l2j=1,

‖
l1∑
i=1

piρi −
l2∑
j=1

qjσj‖ ≥ 2− 2
√
l1l2ε. (31)

Proposition 8 follows by essentially the same argument
as Theorem 3 (see Appendix A). Alternatively, a state-
ment with a little worse dependence on ε, l1, l2 in (31)
can be formally derived from Theorem 3 by applying it
twice.

For facility of application, it is more convenient to re-
state Proposition 8 in the contrapositive form. Note that,
by continuity, it doesn’t matter whether we state the re-
sults with strict or non-strict inequalities, as long as we
are consistent.

Corollary 9. Let θ ∈ [0, 2] and assume that two ensem-

bles {(pi, ρi)}l1i=1, {(qj , σj)}l2j=1 satisfy

‖
∑
i

piρi −
∑
j

qjσj‖ ≤ θ. (32)

Then there exist i0 and j0 such that

‖ρi0 − σj0‖ ≤ 2− ε, (33)

where

ε =
1

l1l2

(
2− θ

2

)2

. (34)

We are now almost done: choosing i = i0 and j = j0
in (28) yields a non-zero lower bound for c1, hence for c0.
However, it may still happen that, for the chosen pair of
indices, the probabilities pi0 , qj0 are very small. To guard
against that risk, we truncate the ensembles so that the
minimal probability is bounded away from zero. Such
smaller ensembles do not give rise to the same density
matrix. However their density matrices will be still close,
provided we did not truncate too much. Here is a precise
quantitative statement to that effect.

Lemma 10. Let E1 = {pi, ρi}l1i=1, E2 = {qj , σj}l2j=1 be
two ensembles which give rise to the same density matrix.
Given l̃1 ≤ l1 and l̃2 ≤ l2, we set

δ1 = 1−
l̃1∑
i=1

pi, δ2 = 1−
l̃2∑
j=1

qj (35)

and define new ensembles

Ẽ1 = {p̃i, ρi}l̃1i=1, Ẽ2 = {q̃j , σj}l̃2j=1, (36)

where p̃i = pi/(1 − δ1) and q̃j = qj/(1 − δ2). Then the

ensembles Ẽ1, Ẽ2 satisfy

‖
l̃1∑
i=1

p̃iρi −
l̃2∑
j=1

q̃jσj‖ ≤
2 max{δ1, δ2}

1−min{δ1, δ2}
. (37)

Thus we can use the new ensembles (36) to show that
there exist a pair of states ρi0 and σj0 with ‖ρi0 −σj0‖ ≤
2− ε, and that at the same time the weights of the states
satisfy pi0 ≥ pl̃1 , qj0 ≥ ql̃2 . By adjusting l̃1 and l̃2 prop-
erly, we can simultaneously secure bounds on both the
weights and the norm, and complete the proof of our
main result.

Proof of Theorem 2. We start by recalling Observation
4, which states that FOD ≥ c if c satisfies (22). In
Proposition 5, we showed that a particular c = c0 satisfies
(22), namely

c0 = inf
ξ,ξ′

max
i,j

min
x

max
a

min{piTr(Mx
a ρi), qjTr(Mx

a σj)}.

(38)
To simplify the optimization problem implicit in (38),
another lower bound for the FOD (c1 ≤ c0) was obtained
in Observation 7 by using Lemma 6, to wit

c1 =
1

2k
inf
ξ,ξ′

max
i,j

(2− ‖ρi − σj‖) min{pi, qj}. (39)

We now want to appeal to Corollary 9. However, the
probabilities pi and qj may a priori be very small for the
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chosen pair of indices (i, j) = (i0, j0). Hence, we first
need to truncate the ensembles appropriately following
the scheme outlined in Lemma 10. Assume that {pi}
and {qj} are arranged in the nonincreasing order and let

µ ≥ 2 be a parameter. Choose the largest l̃1 and l̃2 such
that pl̃1 ≥

1
(l−1)µ and ql̃2 ≥

1
(l−1)µ , where l = max{l1, l2}.

(Note that l̃1 and l̃2 exist because of our assumption µ ≥
2.) Then

δ1 =

l1∑
i=l̃1+1

pi < (l − 1)× 1

(l − 1)µ
=

1

µ
(40)

and, similarly,

δ2 <
1

µ
(41)

Lemma 10 yields now the following estimate on the trun-
cated ensemble:

‖
l̃1∑
i=1

p̃iρi −
l̃2∑
j=1

q̃jσj‖ <
2/µ

1− 1/µ
=

2

µ− 1
. (42)

Consequently, it follows from Corollary 9 that there are
indices i0, j0 such that

‖ρi0 − σj0‖ < 2− ε. (43)

where

ε =
1

l1l2

(
µ− 2

µ− 1

)2

. (44)

Next, taking into account that for the ensembles in ques-
tion

pi0 ≥
1

(l − 1)µ
and qj0 ≥

1

(l − 1)µ
, (45)

equation (39) yields

c0 ≥ c1 ≥
1

2k

ε

(l − 1)µ
. (46)

Finally, substituting the value of ε given by (44) into (46)
and recalling that µ ≥ 2 was arbitrary, we are led to

FOD ≥ 1

2k(l − 1)l1 l2
×max

µ≥2

1

µ

(
µ− 2

µ− 1

)2

. (47)

To complete the proof, it remains to observe that the

function f(µ) = 1
µ

(
µ−2
µ−1

)2

attains its maximum – equal

to 71−17
√

17
8 – at µ0 = 5+

√
17

2 . �

In the next section we will present a refinement of the
above argument when the party that has 2 allowed inputs
has only binary outcomes. For that case, we not only
explicitly calculate a (better) lower bound for the FOD,
but we also find a lower bound for the CF which is slightly
larger than that for the FOD.

V. FOD AND CF FOR A SIMPLE BOB

We devote this section to finding an upper bound for
quantum Bell values in the particular case where Bob has
2 inputs and 2 outputs, while Alice has n inputs and k
outputs. We will argue along the same lines as in the
proof of Theorem 2. However, rather than appealing di-
rectly to the conclusion of the Theorem, we will use the
simplicity of our setting to further optimize some steps
in the argument, particularly the one involving trunca-
tions. Again, we are looking for structures resembling
deterministic boxes within a quantum box. The weights
of such deterministic boxes yield lower bounds the FOD
and the CF of the box. The details are explained below
(and in Appendix C).

Since Bob is the party with 2 inputs and 2 outputs, he
can create ensembles {pi, ρi}1i=0 or {qj , σj}1j=0 at Alice’s
site by making respectively measurement y1 or y2 on his
part of the shared quantum state. Lemma 6 asserts that
for all pairs of ρi and σj , and for all POVMs {Mx

a } we
have

∃ a0, a1, a2, a3 such that

Tr(Mx
a0ρ0) ≥ ε00/2k, and Tr(Mx

a0σ0) ≥ ε00/2k

Tr(Mx
a1ρ0) ≥ ε01/2k, and Tr(Mx

a1σ1) ≥ ε01/2k

Tr(Mx
a2ρ1) ≥ ε10/2k, and Tr(Mx

a2σ0) ≥ ε10/2k

Tr(Mx
a3ρ1) ≥ ε11/2k, and Tr(Mx

a3σ1) ≥ ε11/2k, (48)

where εij = 2−‖ρi−σj‖. (Note that the outcomes ai de-
pend on the input setting x.) This means that if εij > 0
and when Bob obtains outcomes (b, b′) = (bi, b

′
j) for in-

puts (y1, y2), then for any POVM of Alice there exists at
least one outcome on her side such that once she obtains
it, she cannot tell apart measurement choices of Bob with
certainty (i.e., she cannot determine whether Bob chose
y1 or y2 to create the ensemble). Let us call such outcome
of Alice a confusing outcome. For example, in the first
pair of inequalities in (48), if ε00 > 0, then the outcome
a0 of the POVM does not differentiate with certainty be-
tween ρ0 and σ0. There are four pairs (b, b′), hence there
are four potential confusing outcomes corresponding to
each of these four cases.

Consider now the particular case when Bob’s outcomes
are 0 for measurement y1 and also 0 for measurement y2.
Let Alice choose input setting x and let us say that, for
this setting (and for the above Bob’s pair of outcomes), a0

is her confusing outcome. Using equation (48), we have
Tr(Mx

a0ρ0) ≥ ε00/2k and Tr(Mx
a0σ0) ≥ ε00/2k. Indeed,

this is true for any input choice of Alice and a0 depends
on the input. Now, note that the joint probabilities from
the quantum box can be expressed as follows

p(a0, 0|x, y1) = p0Tr(Mx
a0ρ0) (49)

p(a0, 0|x, y1) = q0Tr(Mx
a0σ0),

where p0 and q0 denote the marginal probabilities of
Bob’s outcome 0 while measuring respectively y1 and y2.
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Alice
y1 y

2
0 1 0 1

x1

.

xn

a0
a1
a2
.

a3
a1
a3
a0
.

a2
.

.

.

.

p0 ϵ01 q1 ϵ01

p0 ϵ00 q0 ϵ00

q0 ϵ10p1 ϵ10

p1 ϵ11 q1 ϵ11

p0 ϵ00 q0 ϵ00

p0 ϵ01 q1 ϵ01
q0 ϵ10p1 ϵ10

p1 ϵ11 q1 ϵ11

p0 ϵ01 q1 ϵ01

p0 ϵ00 q0 ϵ00

q0 ϵ10p1 ϵ10

p1 ϵ11 q1 ϵ11

x2

FIG. 3: (Color online) The box {p(a, b|x, y)} of Alice
and Bob. Dashed lines represent which pairs give rise to
confused outcomes (ai’s) and their lower bounds. Note

that, for some choice of inputs (x, y), some or all
confused outcomes (ai’s) may coincide with each other.

Thus we obtain that they both can be bounded as follows:

p(a0, 0|x, y1) ≥ c00, p(a0, 0|x, y1) ≥ c00 (50)

with

c00 :=
1

2k
min{p0ε00, q0ε00}. (51)

By this construction, we can create a deterministic box
(say D00) with fraction equal to c00. In other words,
every quantum box PQ satisfies the relation PQ = (1 −
c00)X + c00D00. In such a way, we can create four dif-
ferent decompositions of PQ = (1− cij)X + cijDij using
deterministic boxes ({Dij}1i,j=0) corresponding to each of
the four outcome pairs (b, b′) of Bob. Using these decom-
positions and the definition of FOD we get

FOD ≥ 1

2k
max

{
min{p0ε00, q0ε00},min{p1ε11, q1ε11},

min{p0ε01, q1ε01},min{p1ε10, q0ε10}
}
.

(52)

Notice that the obtained bound still depends on the
shared state and on Bob’s measurements (through the
ensembles {pi, ρi} and {qj , σj}). Later on (Appendix C)
we will optimize over the ensembles, thus obtaining a uni-
versal bound for the FOD of any quantum box with 2×n
inputs and 2×k outcomes for Bob and Alice respectively
which is as follows,

FOD ≥ 0.10961

2k
(53)

Using this value of FOD in (10), we can find the follow-
ing upper bound on quantum Bell values for the CHSH

inequalities

βCHSHqm ≤ 4− 0.10961 ∗ 2

4
≈ 3.94519 (54)

Next, we will show how this bound can be improved
using the Classical Fraction. We have more flexibility
here because we can, instead of a single deterministic
box, consider mixtures of boxes corresponding to differ-
ent pairs of Bob’s outcomes. To this end, we notice that
there is a possibility that there may exist a POVM for
Alice such that she obtains a single confusing outcome
for two or more different cases (e.g., when she obtains
a confusing outcome a0, she is unable to distinguish be-
tween measurement choices of Bob not only in the case
when Bob obtains (0, 0), but also in the case when he
obtains (1, 0)). So, in the worst case, for some measure-
ment choices there may be just one confusing outcome at
Alice’s side for all the four different cases as shown in Fig.
3 in the last row of the box. In that case, the quantum
box does not satisfy PQ = (1−

∑
cij)X +

∑1
i,j=0 cijDij

because this would require us to use some probabili-
ties twice. Thus, to be on the safe side, we will use
only orthogonal pairs of deterministic boxes (i.e., either
PQ = (1 − c00 − c11)X + c00D00 + c11D11 or PQ =
(1 − c01 − c10)X + c01D01 + c10D10). Using these de-
compositions and the definition of CF we get

CF ≥ 1

2k
max

{
min{p0ε00, q0ε00}+ min{p1ε11, q1ε11},

min{p0ε01, q1ε01}+ min{p1ε10, q0ε10}
}
.

(55)

After optimizing over p0, q0, ρi’s and σj ’s, (Appendix
C contains detailed calculations) one can obtain the fol-
lowing bound on the CF for 2×n inputs and 2×k outputs
for Bob and Alice.

CF ≥ 0.11226

2k
. (56)

Using this estimate one can infer from (10) the fol-
lowing upper bound on quantum Bell values for CHSH
inequalities (i.e., when n = 2 and k = 2).

βCHSHqm ≤ 4− 0.11226 ∗ 2

4
≈ 3.94386 (57)

Notice that these bounds are slightly better than the one
obtained in (14). However, even these slightly better
bounds are quite weak, but since they hold for any 2×n
Bell inequalities, they presumably cannot be strength-
ened substantially.

VI. DISCUSSION

While the bounds we obtained are universal, they are
rather weak. In addition to universality, there are two
sources of this weakness. On one the hand, we have ap-
plied a series of inequalities and even if all of them were
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tight, their combination will lose that precision. On the
other hand, the very concept of the FOD does not lead
in general to optimal bounds (i.e., the Tsirelson bounds).
To see this, let us note that even for classical boxes the
FOD can be very small, leading to a weak bound.

Let us restrict our discussion to the CHSH case (hence
2×2 inputs with binary outcomes). Consider the classical
box Pnoise that can be called maximally mixed and is
given by

p(ab|xy) = 1/4 for all a, b, x, y . (58)

Since all probabilities are equal to 1/4, it follows from
Observation 4 that

FOD(Pnoise) =
1

4
. (59)

Indeed, any choice of a(1), a(2), b(1), b(2) works in (22)
with c = 1/4 and clearly no choice allows c > 1/4. Our
inequality (10) yields now

βCHSH(Pnoise) ≤ 3.5 . (60)

Thus even the bound obtained this way for classical boxes
is worse than the Tsirelson bound. (However, as we noted
in section II B, we were guaranteed to get a non-trivial
bound, that is, strictly smaller than βCHSHalg = 4).

Note that, in the above example, using the classical
fraction of Pnoise (CF (Pnoise) = 1) would clearly give
the correct value βCHSHloc = 2. However, even having
a general way of calculating the classical fraction would
not always lead to tight estimates. Indeed, while – as
shown by a simple separation argument – for every box
P there is a Bell expression S·P , for which the bound (10)
with c = CF (P ) is saturated (cf. the comment following
Observation 1), this is no longer true for an arbitrary
pair P,S.

VII. CONCLUSION

In this paper we gave an explicit universal bound for 2×
n Bell inequalities, which is independent of the number n
of inputs and of the dimension of the underlying Hilbert
space. Specifically, we showed that this universal bound
depends only on the number of outputs of the two parties,
and on the difference between the optimal algebraic value

and the optimal deterministic value of the inequality. We
showed that the presence of the fraction of determinism
(FOD) in 2 × n BI prevents quantum Bell values from
achieving the maximal algebraic value. Hence this result
is a quantitative variant of the theorem shown by Gisin
et al. in [16], which states that there exist no 2×n inputs
Pseudo-Telepathy game. Although these bounds are not
tight, one can improve them by considering the classical
fraction (CF) and by using it to strengthen the estimate.
We have analyzed a simple case where the CF gives a
better bound than taking into account merely the FOD.

To obtain the above results, we established a reverse
triangle inequality (RTI), which is an independent re-
sult of its own interest. While the triangle inequal-
ity gives upper bounds on the trace distance between a
state and mixtures of other states, the RTI bounds that
trace distance from below. We have determined that this
lower bound is different for general (i.e., possibly non-
commuting) states than when considering only commut-
ing states. The bound in the commuting case is sharp,
and the one in the non-commuting case is close to being
sharp.
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Appendix A: Proof of Theorem 3 and a discussion of
its optimality

Theorem 3. Let ε ≥ 0 and assume that the states ρi, σ
satisfy

‖ρi − σ‖ ≥ 2− ε (A1)

for i = 1, . . . , l. Then, for any probability distribution
{pi}li=1,

1. For any states ρi, σ satisfying (A1)

‖
l∑
i=1

piρi − σ‖ ≥ 2− 2
√
lε (A2)

2. For commuting states ρi, σ satisfying (A1)

‖
l∑
i=1

piρi − σ‖ ≥ 2− lε (A3)

3. There exist three non-commuting states ρ1, ρ2 and
σ satisfying (A1) such that

‖ρ1 + ρ2

2
− σ‖ ≤ 2−

√
2ε (A4)

Proof. We start by recalling two well-known facts.

Rotfel’d Inequality [21]: Let f be a concave function
on [0,∞) such that f(0) ≥ 0 and let A1, . . . , Al ≥ 0.
Then

Trf
( l∑
i=1

Ai

)
≤ Tr

l∑
i=1

f(Ai) (A5)

Rotfel’d Inequality is usually stated for just two matri-
ces (i.e., l = 2), but the general case follows easily by
induction.

Fuchs–van de Graaf inequalities [22]: These inequal-
ities give two-sided bounds for the trace distance between
two quantum states σ and τ in terms of fidelity between

σ and τ , which is defined as F (σ, τ) = Tr
√√

σ τ
√
σ. We

have

1− F (σ, τ) ≤ 1

2
‖σ − τ‖ ≤

√
1− F (σ, τ)2. (A6)

Rotfel’d inequality applied with f(t) =
√
t allows us

to upper-bound fidelity of the mixture
∑l
i=1 piρi =: ρ in

terms of individual fidelities:

F (σ, ρ) = Tr

√√√√√σ( l∑
i=1

piρi

)√
σ

= Tr

√√√√ l∑
i=1

pi
√
σρi
√
σ

≤
l∑
i=1

√
pi Tr

√√
σρi
√
σ

=

l∑
i=1

√
pi F (σ, ρi) (A7)

The second inequality in (A6) can be rewritten as

F (σ, τ)2 ≤ 1− 1

4
‖σ − τ‖2, (A8)

which combined with the hypothesis ‖ρi − σ‖ ≥ 2 − ε
leads to

F (σ, ρi) ≤
√

1− 1

4
(2− ε)2 =

√
ε− ε2

4
≤
√
ε. (A9)

Inserting this bound into (A7) and using the Cauchy-
Schwarz inequality yields

F (σ, ρ) ≤
l∑
i=1

√
pi
√
ε ≤
√
lε. (A10)

We are now in a position to appeal to the first of the
Fuchs-van de Graaf inequalities (A6) to obtain

1

2
‖ρ− σ‖ ≥ 1− F (σ, ρ) ≥ 1−

√
lε (A11)

or ‖ρ − σ‖ ≥ 2 − 2
√
lε, as needed for part 1. of the

Theorem.
For part 2. of the Theorem, let us first reformulate the

statement in the language of probability densities (non-
negative functions with unit integral) and the usual L1-
norm ‖ · ‖1.

Let gi, h be probability densities satisfying ‖gi − h‖1 =∫
|gi − h| ≥ 2 − ε for i = 1, . . . , l. Then, for any weights

{pi}li=1,

‖
l∑
i=1

pigi − h‖1 ≥ 2− lε (A12)

and the inequality is sharp.

Now, since for any real u, v we have the identity |u−v| =
u+ v− 2 min{u, v}, the condition ‖gi − h‖1 =

∫
gi + h−

2 min {gi, h} ≥ 2 − ε translates to
∫

min {gi, h} ≤ ε/2.

Accordingly, if g =
∑l
i=1 pigi, then

min {g, h} ≤
l∑
i=1

min {gi, h} (A13)
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and so
∫

min {g, h} ≤ lε/2, which is again equivalent to
‖f − g‖1 ≥ 2 − lε. This proves part 2; moreover, the
proof provides a guide for constructing – for any instance
of parameters – examples when the inequality (A12) (or
(3)) is sharp.

While the “threshold for significance” in the bounds
in (A2) and (A12) is roughly the same (lε � 1), the
dependence on lε as that quantity goes to 0 is different.
What is interesting is that this difference between the
classical and quantum settings is genuine and not just an
artifact of the argument. This is the content of part 3. of
the Theorem, which shows that the O(

√
ε) dependence

in (A2) is optimal, at least in the case l = 2.
To simplify the exposition, let us first reformulate the

problem by considering a slightly more general question:

What is the optimal function ε 7→ φ(ε) such that whenever
ρ1, ρ2, σ are positive semi-definite matrices whose trace is
at most 1 and such that Trρi + Trσ − ‖ρi − σ‖ ≤ ε for
i = 1, 2, then Trρ+ Trσ− ‖ρ− σ‖ ≤ φ(ε) for any convex
combination ρ = pρ1 + (1− p)ρ2?

The point is that the optimal function φ for this relaxed
problem is the same as for the original problem, where
all the traces are required to be equal to 1, at the cost
of increasing the dimension by 2. Indeed, if ρi, σ are as
above, we may define states ρ̃i, σ̃ by

ρ̃i =

 ρi 0 0
0 1− Trρi 0
0 0 0

 , σ̃ =

 σ 0 0
0 0 0
0 0 1− Trσ

 (A14)

It is then easy to see that 2 − ‖ρ̃i − σ̃‖ = Trρi + Trσ −
‖ρi − σ‖, and similarly for ρ̃ = pρ̃1 + (1− p)ρ̃2.

With this reformulation, it is enough to look at 2 × 2
matrices and p1 = p2 = 1

2 . Given r ∈ [0, 1], consider

σ =

[
0 0
0 r

]
, ρi =

[
1− r ±

√
r(1− r)

±
√
r(1− r) r

]
,

(A15)
where i = 1 corresponds to the plus sign and i = 2 to the
minus. One directly checks that

Trρi + Trσ − ‖ρi − σ‖ = 1 + r −
√

1 + 2r − 3r2 (A16)

On the other hand, if ρ = 1
2 (ρ1 + ρ2), then

Trρ+ Trσ − ‖ρ− σ‖ = 2r. (A17)

In our setting, this means that if ε := 1 + r −√
1 + 2r − 3r2 (which covers all possible values ε ∈ [0, 2]

as r varies over [0, 1]), then φ(ε) ≥ 2r. Since (2r)2 ≥
2
(
1 + r −

√
1 + 2r − 3r2

)
= 2ε for r ∈ [0, 1], this shows

that φ(ε) ≥
√

2ε. In other words, for l = 2 one can not

have a lower bound in (A2) that is better than 2−
√

2ε.
While this example does not directly address the case

l > 2, we know that – already in the classical setting –
one can not have a nontrivial bound if lε is not small
enough, and so the dependence of the bound in (A2) on
l can not be too far from optimal. �

Proposition 8. Assume that ε ≥ 0 and that the states
ρi, σj satisfy ‖ρi−σj‖ ≥ 2−ε for all i ∈ {1, ..., l1} and j ∈
{1, ..., l2}. Then, for any probability distribution {pi}l1i=1

and {qj}l2j=1

‖
l1∑
i=1

piρi −
l2∑
j=1

qjσj‖ ≥ 2− 2
√
l1l2ε. (A18)

Proof. The proof is a straightforward extension of the
previous argument. Using Rotfel’d inequality one more
time for F (σ, ρi) in (A7) gives us the following,

F (σ, ρi) ≤
l2∑
j

√
qjF (σj , ρi) (A19)

Since we are assuming ‖ρi−σj‖ ≥ 2− ε, the same calcu-
lation as in (A9) yields

F (σj , ρi) ≤
√
ε (A20)

Therefore, combining (A7), (A19) and (A20) we are led
to

F (σ, ρ) ≤
l1∑
i

√
pi

l2∑
j

√
qjF (σj , ρi)

≤
l1,l2∑
i,j

√
piqj
√
ε ≤

√
l1l2ε. (A21)

It remains to use the first Fuchs-van de Graaf relation
(A6) to obtain (A18). �

Appendix B: Fraction of Determinism in QM

Lemma 6. Let ε ≥ 0 and suppose that ‖ρ− σ‖ ≤ 2− ε.
Then, for any POVM {Ma}ka=1, there exists an outcome
a0 such that

Tr(Ma0ρ) ≥ ε

2k
and Tr(Ma0σ) ≥ ε

2k
(B1)

Proof. We shall show that if, on the contrary, for all a
we have either Tr(ρMa) < ε

2k or Tr(σMa) < ε
2k , then

pe <
ε

4
, (B2)

where pe is the probability of error in distinguishing ρ
versus σ with equal a priori probabilities. Since it is
known that probability is given by the Helstrom relation
[20].

pe(ρ, σ) =
1

2
− 1

4
‖ρ− σ‖, (B3)

this will contradict the hypothesis ‖ρ − σ‖ ≤ 2 − ε and
prove the Lemma.
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To that end, let us define two sets: Iρ = {a :
Tr(σMa) < ε

2k} and Iσ = I \ Iρ, where I is the set of
all indices a. By the above assumption, for all a ∈ Iσ we
have Tr(ρMa) < ε

2k . Our decision scheme will be now as
follows: if a ∈ Iρ then the state is ρ, otherwise it is σ.
With this decision scheme we have

pe ≤
1

2
Tr(
∑
a∈Iρ

Maσ) +
1

2
Tr(

∑
a∈Iσ

Maρ)

<
1

2
|Iρ|

ε

2k
+

1

2
|Iσ|

ε

2k
=
ε

4
, (B4)

which shows (B2) and completes the proof of Lemma 6.
�

Lemma 10. Let E1 = {pi, ρi}l1i=1 and E2 = {qj , σj}l2j=1 be
two ensembles which give rise to the same density matrix.
Given l̃1 ≤ l1 and l̃2 ≤ l2, we set

δ1 = 1−
l̃1∑
i=1

pi, δ2 = 1−
l̃2∑
j=1

qj (B5)

and define new ensembles

Ẽ1 = {p̃i, ρi}l̃1i=1, Ẽ2 = {q̃j , σj}l̃2j=1, (B6)

where p̃i = pi/(1 − δ1) and q̃j = qj/(1 − δ2). Then the

ensembles Ẽ1, Ẽ2 satisfy

‖
l̃1∑
i=1

p̃iρi −
l̃2∑
j=1

q̃jσj‖ ≤
2 max{δ1, δ2}

1−min{δ1, δ2}
. (B7)

Proof. Since
∑l1
i=1 piρi =

∑l2
j=1 qjσj , it follows from the

triangle inequality that

∥∥ l̃1∑
i=1

piρi −
l̃2∑
j=1

qjσj
∥∥ ≤ ∥∥ l1∑

i=l̃1+1

piρi
∥∥+

∥∥ l2∑
j=l̃2+1

qjσj
∥∥

= δ1 + δ2. (B8)

Let θ1 = 1− δ1, θ2 = 1− δ2. Then

(1− δ1)
∥∥ l̃1∑
i=1

p̃iρi −
l̃2∑
j=1

q̃jσj
∥∥

=
∥∥θ1

l̃1∑
i=1

p̃iρi − θ1

l̃2∑
j=1

q̃jσj
∥∥

=
∥∥θ1

l̃1∑
i=1

p̃iρi − θ2

l̃2∑
j=1

q̃jσj + (θ2 − θ1)

l̃2∑
j=1

q̃jσj
∥∥

≤
∥∥ l̃1∑
i=1

piρi −
l̃2∑
j=1

qjσj
∥∥+ |δ1 − δ2| (B9)

Combining (B8) and (B9) we are led to

∥∥ l̃1∑
i=1

p̃iρi −
l̃2∑
j=1

q̃jσj
∥∥ ≤ δ1 + δ2 + |δ1 − δ2|

1− δ1
. (B10)

Finally, using the identity a + b + |a − b| = 2 max{a, b}
and noticing that the same estimate holds if we replace
δ1 with δ2, we obtain the required estimate.

Appendix C: FOD & CF for l = 2

For a quantum box with 2×n inputs and 2×k outputs
for respectively Bob and Alice, the FOD and the CF were
estimated in section V as follows:

FOD ≥ 1

2k
max

{
min{p0ε00, q0ε00},min{p1ε11, q1ε11},

min{p0ε01, q1ε01},min{p1ε10, q0ε10}
}

and

CF ≥ 1

2k
max

{
min{p0ε00, q0ε00}+ min{p1ε11, q1ε11},

min{p0ε01, q1ε01}+ min{p1ε10, q0ε10}
}
,

where εij = 2− ‖ρi − σj‖.
The above bounds are independent of the choices of

measurements of Alice. We would like to find a bound
for the FOD and the CF, which only depends on the
number of outcomes of Alice. To achieve this, we have
to optimize over p0, q0, ρi’s, and σj ’s.

By renaming the labels, we may assume that

p0 ≥ q0 ≥ q1 ≥ p1, (C1)

in which case the above estimates simplify to

FOD ≥ 1

2k
max

{
q0ε00, p1ε11, q1ε01, p1ε10

}
(C2)

and

CF ≥ 1

2k
max

{
q0ε00 + p1ε11, q1ε01 + p1ε10

}
. (C3)

To come up with explicit bounds, we first note that
Corollary 9 implies that maxij εij ≥ 1

4 . Another bound
can be obtained from Lemma 10 by truncating from our
ensembles the elements with smaller probabilities (i.e.,
in view of (C1), {p1, ρ1} and {q1, σ1}). The truncated
ensembles are then simply {1, ρ0} and {1, σ0}, and since
δ1 = p1 and δ2 = q1, the conclusion of Lemma 10 trans-
lates to

ε00 = 2− ‖ρ0 − σ0‖ ≥ 2
(

1− max{p1, q1}
1−min{p1, q1}

)
= 2
(

1− q1

p0

)
.

(C4)

To produce a lower bound for the FOD we consider now
the following two cases.

1. If ε00 ≥ 1/4, then

FOD ≥ 1

2k
max

{q0

4
, 2q0

(
1− q1

p0

)}
. (C5)
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2. If ε00 < 1/4, then some εij other than ε00 is greater
than or equal to 1

4 and so

FOD ≥ 1

2k
max

{p1

4
, 2q0

(
1− q1

p0

)}
. (C6)

Since p1
4 ≤

q0
4 in view of our assumption (C1), a lower

bound for the FOD is given by (C6), the smaller of the
two values obtained in cases 1. and 2.

All that remains is to minimize over all pi’s and qj ’s
satisfying the constraints, i.e., 0 ≤ p1 ≤ q1 ≤ 1

2 . We have

min
0≤p1≤q1≤ 1

2

max
{p1

4
, 2q0(1− q1

p0
)
}
≥ 5−

√
17

8
≥ 0.10961

(C7)

and therefore

FOD ≥ 0.10961

2k
. (C8)

We can similarly estimate CF, which in the present
setting verifies

CF ≥ 0.11226

2k
. (C9)


