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We propose and analyze the design of a programmable photonic integrated circuit for high-fidelity
quantum computation and simulation. We demonstrate that the reconfigurability of our design
allows us to overcome two major impediments to quantum optics on a chip: it removes the need
for a full fabrication cycle for each experiment and allows for compensation of fabrication errors
using numerical optimization techniques. Under a pessimistic fabrication model for the silicon-
on-insulator process, we demonstrate a dramatic fidelity improvement for the linear optics CNOT
and CPHASE gates and, showing the scalability of this approach, the iterative phase estimation
algorithm built from individually optimized gates. We also propose and simulate a novel experiment
that the programmability of our system would enable: a statistically robust study of the evolution of
entangled photons in disordered quantum walks. Overall, our results suggest that existing fabrication
processes are sufficient to build a quantum photonic processor capable of high fidelity operation.

I. INTRODUCTION

Photonic integrated circuits (PICs) — waveguide-
based systems of optical elements such as beamsplitters
and phase shifters that are monolithically integrated on
a single chip — enable control over the propagation and
coupling of optical modes with exceptional phase stabil-
ity and at the scale of tens to hundreds of waveguides. In
particular, PICs fabricated using mature silicon processes
have seen rapid development in recent years for optical
interconnects and other classical applications [1, 2]. Ad-
ditionally, PICs have been shown to be an appealing plat-
form for quantum optics: PIC-based experiments have
demonstrated quantum simulation [3–5], boson sampling
[6–8], linear optical quantum gates [9, 10], and the simu-
lation of bosonic quantum walks [5, 11, 12].

One of the main impediments to quantum optics ex-
periments on PICs has been the need to fabricate cus-
tom chips for each experiment, an expensive and time
consuming process. In addition, many applications re-
quire PICs to be tuned between consecutive experiments.
While some experiments have shown on-chip reconfig-
urability [13–15], there has been to date no analysis of
a fully reconfigurable PIC that can implement arbitrary
circuits. Additionally, PIC-based experiments to date
have suffered from reduced fidelity due to variations and
imperfections in the fabrication process.

In this work, we propose and analyze the design of
a reconfigurable quantum photonic processor (QPP) —
achievable with existing, mature silicon processes — that
overcomes fabrication imperfections. We demonstrate
how to program arbitrary transformations into this sys-
tem and, using a fabrication model with conservative
assumptions on technology, demonstrate a tuning al-
gorithm that overcomes fabrication imperfections and

achieves high fidelity quantum operations. This pro-
grammable linear optics circuit would enable the rapid
testing of quantum optics algorithms.

In the next section, we introduce the QPP architec-
ture and discuss the origins of imperfections in realistic
devices. Section III shows how to implement quantum
gates on a QPP, quantifies the detrimental effects of fab-
rication errors, and then demonstrates a computationally
scalable, gate-by-gate procedure that allows us to recover
high-fidelity gate operation. As an example of the power
of this technique, we analyze a circuit implementing a
full quantum algorithm, the iterative phase estimation
algorithm (IPEA), and show that gate-by-gate optimiza-
tion is sufficient for high-fidelity operation of the full cir-
cuit. Next, in Section V, we propose and simulate a novel
bosonic transport experiment that leverages the reconfig-
urability of the QPP to investigate 1000 realizations of
quantum walks under a range of disorder and decoher-
ence levels and to perform state preparation on a pair of
input photons. To close, we discuss methods of extend-
ing this architecture with recent advances in integrated
quantum devices.

II. THE QPP ARCHITECTURE

The proposed QPP architecture consists of a lattice of
2 × 2 building blocks (Figure 1(a)), each of which is a
Mach-Zehnder interferometer (MZI) (Figure 1(d)) [18].
In the spatial mode basis, an ideal MZI applies the 2× 2
unitary given by

UMZI(θ, φ) =
1

2

(
eiφ 0
0 1

)(
1 i
i 1

)(
eiθ 0
0 1

)(
1 i
i 1

)
,

where θ and φ correspond to the labels in Figure 1(d).
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FIG. 1. (Color online) (a) Schematic of the QPP composed of interconnected MZIs. (b) The six-mode CNOT gate proposed in Ref. [16].

(c) The same CNOT protocol implemented on the QPP. The upper number in each box represents the splitting ratio η ≡ sin2(θ), where

θ is the internal phase setting, and the lower number represents the output phase offset φ. (d) The MZI unit cell. (e) Cross-section of

the directional coupler showing the dominant mechanisms for disorder in the splitting ratio, variation in the height of the waveguide h,

the width w, and the waveguide spacing g. (f) Cross section of the phase shifter illustrating free carrier absorption, the dominant loss

mechanism [17].

In realistic integrated optical devices, photon loss,
phase errors, and unbalanced beam splitters can severely
impact performance. To simulate the effect of these
imperfections, we consider a model for the well devel-
oped, CMOS-compatible silicon-on-insulator (SOI) plat-
form, based on deep-UV photolithography [19, 20]. As
photon loss is a primary concern in quantum optics ex-
periments, we have chosen the lowest-loss elements avail-
able in this material system: directional couplers [21]
for the beamsplitters and thermo-optic phase modulators
[17].

Figs. 1(e,f) illustrate the primary causes of non-
idealities in these devices: in directional couplers, small
variations in the dimensions and spacing of coupled
waveguides (Fig. 1(e)) result in varied splitting ratios,
while in phase shifters, free carrier absorption in the
doped silicon regions (Fig. 1(f)) results in increased prop-
agation loss. Our model accounts for realistic variations
by using wafer-scale test results for directional couplers
[21] and phase shifters [17]. Wafer-scale test data — as
opposed to single-device test data — improves the va-
lidity of our model. We model the splitting ratios by a
Gaussian distribution with a mean (standard deviation)
of 50% (4.3%) [21]. We assume the loss in each thermo-
optic modulator is also sampled from a non-negative
Gaussian distribution [22] with a mean (standard devi-
ation) of 5.16% (2.84%). While we vary only two phase
shifters in each MZI, we include four phase shifters in the
design to balance loss (see Fig. 1(d)).

To incorporate these errors into simulations of QPP
performance, we need to modify UMZI. First, to account
for unbalanced splitting ratios, we make the replacement

1√
2

(
1 i
i 1

)
→
( √

t i
√

1− t
i
√

1− t
√
t

)

for each directional coupler, where the value of the tran-
sitivity t is chosen randomly according to the distribution
above.

To incorporate losses — if we wish the analysis to re-
main unitary — it is necessary to add an additional mode
for each lossy component. Then, loss is simply introduced
as a beamsplitter with reflectivity equal to the loss. How-
ever, due to the block structure of the resulting matrix
along with the post-selected nature of the quantum gates
we simulate, we can instead work only with the 2×2 sub-
matrix corresponding to the waveguide modes. As such,
each diagonal element in the 2 × 2 phase-shift matrices
acquires a factor of

√
1− γ, where the values of the γs

are distributed according to the loss distribution given
above:

(
eiφ 0
0 1

)
→
(√

1− γ1eiφ 0
0

√
1− γ2

)

III. HIGH FIDELITY QUANTUM GATES ON
THE QPP

A. Individual Quantum Gates

To demonstrate linear optical quantum gates in the
QPP architecture, Figs. 1(b,c) show the post-selected
linear optical CNOT gate previously implemented in a
custom, static PIC [9, 23] and the same gate programmed
into a subset of the (ideal) QPP lattice, respectively. The
beamsplitting ratio of each MZI in Fig. 1(c) is given by
η ≡ sin2(θ).

This gate, as well as those discussed later, uses the
well known dual-rail encoding, i.e. each qubit is encoded
in the photon amplitudes in a pair of modes [24]. The
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control (target) modes are labeled c0 and c1 (t0 and t1)
in the figure. The gate succeeds if and only if a single
photon is detected in each pair of modes. Experimental
realizations of this gate have demonstrated the promise of
PICs, but imperfections in fabrication likely contributed
to the reduction in gate fidelities (e.g., to 94% in Ref.
[9]). To analyze realistic performance in a QPP system,
we simulated 1000 QPPs with splitting ratios and losses
given by the aforementioned fabrication model. We then
programmed the CNOT gate into each QPP.

To evaluate the performance of each gate, each simula-
tion calculates the sub-matrix corresponding to the input
and output computational modes:

1

2

(
eiφ
√

(1− γ3)t2 ieiφ
√

(1− γ3)(1− t2)

i
√

(1− γ4)(1− t2)
√

(1− γ4)t2

)

×
(

eiθ
√

(1− γ1)t1 ieiθ
√

(1− γ1)(1− t1)

i
√

(1− γ2)(1− t1)
√

(1− γ2)t1

)
.

In simulations, the splitting ratios and losses are deter-
mined from a Monte Carlo process; these values can be
experimentally determined for a real system using meth-
ods presented in [25]. This sub-matrix can then be used
to calculate the 4 × 4 transform in the computational
(i.e. two-qubit) basis {|00〉 , |01〉 , |10〉 , |11〉} [6], af-
ter post-selection. This is then compared to the ideal
transformation with the Hilbert-Schmidt inner product
[26] F (V, V0) = |tr(V †V0)|, where V0 is the ideal 4 × 4
transform and V is the calculated transform. Normal-
ization (corresponding to post-selection) is performed by
scaling V and V0 such that F (V, V ) = F (V0, V0) = 1.

The blue histogram in Fig. 2(a) (color online) shows
the fidelity of the CNOT gate over the 1000 simulated
QPPs, without optimal MZI tuning. These simulations
yield a median fidelity of 94.52%, which is similar to
experimentally reported values in custom PICs (e.g.,
[9, 27]). We then performed a nonlinear optimization
[28–30] of the MZI phase settings [31] to maximize this
fidelity for each instance of disorder [25]. The green his-
togram in Fig. 2(a) (color online) shows the optimized
QPP performance; the median fidelity improved dramat-
ically to 99.99%.

We performed the same tuning procedure on the post-
selected CPHASE gate of Ref. [32], for which we observe
a similar improvement in median fidelity after optimiza-
tion from 92.22% to 99.99% (see Fig. 2(b)). These results
show that post-fabrication optimization enables the reli-
able implementation of high-fidelity quantum logic gates
on QPPs using currently realizable PICs.

B. Iterative Phase Estimation Algorithm

The possibility of high-fidelity operations makes the
QPP architecture attractive for studying larger-scale
quantum algorithms. As it is dynamically reconfigurable,
it is well suited for iterative algorithms that rapidly up-
date the circuit in response to previous measurements.
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FIG. 2. (Color online) (a) Performance of the CNOT gate for 1000

instances of the QPP. The blue (green) histogram plots the fidelity

before (after) optimization of the phase settings. (b) Results pre-

and post-optimization for the CPHASE gate over 300 instances of

the QPP. For each simulation, the reported fidelity is the minimum

over six different choices of φ (the phase applied by the controlled

operation), equally distributed from 0 to 2π.

Here, we examine the performance of one such algorithm,
the iterative phase estimation algorithm. The IPEA is
an iterative procedure used to solve for the eigenvalues
of a Hamiltonian, which has applications in sensing and
simulation [3]. The IPEA maps a Hamiltonian H to a
unitary propagator U ≡ eiHτ . In this approach, solving
the eigenvalue problem U |u〉 = ei2πλ |u〉 is equivalent to
calculating the energy levels of H. A binary expansion
of λ can be calculated by adaptive and iterative bitwise
measurements [33, 34].

Fig. 3(a) shows the quantum circuit for the two qubit
IPEA; as demonstrated in [35], this is sufficient to cal-
culate the first four energy levels of an H2 molecule over
a range of atomic separations. This is achieved through
the use of a basis set in which the Hamiltonian is block-
diagonal with at most 2 × 2 blocks [36]. To simulate
the performance of this system on the QPP, we decom-
pose the controlled unitary of the IPEA into a CPHASE
gate with additional single-qubit rotations. We then split
the system into three sections that were optimized sep-
arately: the input single-qubit rotations, the CPHASE
gate, and the output single-qubit rotations. This decom-
position into individually optimized gates is useful for
computational efficiency.

We find that for 10,000 simulated instances of the QPP,
the unoptimized IPEA performed with a median fidelity
of 82.63% (Fig. 3(b), blue) (color online). When using
our optimized gates, the median fidelity rose to 99.77%
(Fig. 3(b), green) (color online). While only two qubits
are required for simulating the hydrogen molecule [35],
more qubits will be required for simulating larger systems
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FIG. 3. (Color online) (a) Quantum circuit for the IPEA, as out-

lined in Ref. [35]. (b) The IPEA fidelity with unoptimized (blue)

and optimized (green) performance. By optimizing the circuit to

account for fabrication imperfections, the QPP enables very high

process fidelities. Again, note the logarithmic scaling to capture

both unoptimized and optimized performance on the same axes.

with more complex Hamiltonians. This motivates the
development of large-scale PICs such as the QPP.

IV. QUANTUM RANDOM WALKS

The programmability of the QPP also enables detailed
studies of single- [11, 37, 38] and multi-photon [5, 12, 39–
41] quantum random walks on a lattice with discrete,
nearest-neighbor coupling. These discrete-time quantum
random walks (DTQRWs) are attractive for their ap-
plication to the problems of quantum simulation [42],
database search [43], and Boson Sampling [6].

In the discrete-time QRW, a particle with an internal
binary degree of freedom (a “coin”) is placed on the lat-
tice. At each step of the walk, two operations occur: the
internal state of the coin is prepared and the particle is
shifted left or right (as indicated in Fig. 4) according to
the state of the coin (“left” and/or “right”). We use a
spatial encoding for both the position and the coin state
of a quantum walker: position is defined at an MZI, while
the coin state is defined by occupation between the two
output waveguides of the MZI. The coin toss operation is
controlled by the MZI splitting ratio and output phase.
The MZI lattice implements a shift operation where pho-
tons in the left (right) state propagate left (right) to the
next layer of the QPP.

We studied the propagation of two indistinguishable
photons on a QRW in the QPP. The path-entangled ini-
tial state is |ψ〉i = (|20〉LR + |02〉LR)/

√
2, where L and R

are the two outputs of the first MZI of the QRW, MZI1.
This state is prepared in the QPP by first launching in-
distinguishable photons into the two waveguides of the
first MZI set to (η, φ) = (0.5, π/2), producing the desired
state |ψ〉i. The next layer of MZIs is set to (η, φ) = (1, 0)
and (1, 0) in order to route the state to the first layer of

the random walk. The state is then evolved in the follow-
ing 15 MZI layers of the QPP, where all internal phases
θ are set to π/2. In these simulations, disorder is intro-
duced by sampling the MZI output phases (φ) randomly
from a uniform distribution on the interval [0,Φmax].

We first consider a lattice without disorder, i.e.,
Φmax = 0. Simulation results for a realistic QPP are plot-
ted in Figs. 4(a.i-iii). Fig. 4(a.i) shows the two-photon
correlation function, (a.ii) plots the particle density at
the output, and (a.iii) shows the particle density at every
layer of the QPP. The two-photon correlation function
(Fig. 4(a.i)) displays stronger correlations for neighbor-
ing waveguides (“bunching”) and particle density peaks
at the edges of the array (a.ii,iii). This bunching phe-
nomenon is analogous to Hong-Ou-Mandel interference
observed for two input and two output modes [44]. An
analogous effect is seen in continuous-time QRWs for
two indistinguishable photons launched in neighboring
waveguides [5, 39].

The impact of disorder on path-entanglement and the
transport of multi-photon states is not presently well un-
derstood, and remains an active area of research. A single
realization of disorder offers little information as it can
contain extreme arrangements not representative of the
majority of lattices with the same level of disorder. This
can be seen by comparing a single realization of disorder
(Fig. 4 (b.i-iii)) to 1000 realizations of disorder (e.i-iii),
for Φmax = 2π in both cases. To build robust statis-
tics, multiple instances of a given level of disorder are re-
quired. Until now, this could have been accomplished by
fabricating numerous samples or by post-processing PICs
[11, 12, 38, 41]. This approach is difficult to extend to
hundreds or thousands of instances. While fast switches
could be used to modulate photons passing through a
looped QRW [45], there are significant losses associated
with this setup that hinder its application to large-scale
experiments.

However, a single QPP could generate many instances
of disorder. Time-dependent (independent) disorder can
be realized with random phase settings along (orthog-
onal to) the direction of propagation. Applying weak
time-independent disorder (Φmax = 0.6π) to the lattice
results in two-photon correlation and density functions
that exhibit both bunched and localized characteristics
(Fig. 4(c.i-iii)). This effect was predicted for continuous-
time QRWs [40].

Strong, time-independent disorder in the QPP lattice
(Φmax = 2π) reveals the characteristic exponential dis-
tributions of Anderson localization (Fig. 4(d.i-iii)). The
incorporation of time-dependent disorder results in the
two-photon correlation function and particle density dis-
tribution transitioning from exponential localization to
Gaussian delocalization (Fig. 4(e.i-iii)) — indicative of a
crossover to diffusion [46, 47]. Although fabrication de-
fects were included in the simulations, we find that the
two-photon correlations and densities were largely unaf-
fected [25].
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FIG. 4. (Color online) A simulation of the DTQRW in the QPP post-selected on detecting two photons for various levels of time-dependent

(TD) and time-independent (TID) disorder. (a.i-e.i) Correlation functions for output waveguide positions in the QPP lattice. (a.ii-e.ii)

Particle density distributions as a function of waveguide position (same as the last layer of a.iii-e.iii, marked in red). d.ii and e.ii have

logarithmic scales. (a.iii-e.iii) Dynamics of QRW where the x-axis and y-axis represent the waveguide output position and MZI layer,

respectively. (a.i-iii) Propagation of input state (|20〉LR + |02〉LR)/
√

2 revealing bunching effect seen for continuous-time QRWs. (b.i-iii)

A single realization of TID and TD disorder in the QPP resulting in highly irregular propagation. (c.i-iii) Average of 1000 realizations of

weak TID disorder showing the coexistence of bunching and localization. (d.i-iii) Average of 1000 realizations of TID disorder showing an

exponential density distribution — the hallmark of Anderson Localization. (e.i-iii) Average of 1000 realizations of TID and TD disorder,

showing delocalization and a Gaussian distribution.

V. DISCUSSION

We have shown that a QPP, fabricated in current sili-
con photonics processes, could enable high-fidelity quan-
tum gates and quantum simulation. We focused on post-
selected gates to compare this system to preceding PIC-
based experiments. Looking forward, one goal of lin-
ear optical quantum computing (LOQC) systems is to
achieve the error threshold necessary for fault-tolerant
quantum computation [24]. For post-selected LOQC,
this threshold can be as high as 1% [48], but with lim-
itations on overhead (e.g., < 104 physical CNOT gates
per qubit and gate), the error rate must be much lower:
∼ 10−3 − 10−4 [48]. LOQC requires post-selected gates
that are heralded by ancilla photons and involve more
beam splitters than the gates considered in Section III
[24, 49]. The QPP proposed here offers a path toward
achieving the high-fidelity gate operations on-chip that
are necessary for LOQC.

Proposed universal quantum computers based on
LOQC will also require efficient single-photon sources,
single-photon detectors, and feed-forward operations.
There has been rapid progress integrating these ele-
ments into the silicon photonics platform; recent ex-
amples include entangled-photon sources based on four-

wave mixing [50] and waveguide-integrated supercon-
ducting single-photon detectors [51, 52]. The poten-
tial for multiplexing the emission of spontaneous single-
photon sources [53, 54] could enable high-efficiency state
preparation for quantum computation; low-latency su-
perconducting logic [55] could enable the feed-forward re-
quired for scalable LOQC; and low photon-number non-
linear elements could enable photon-photon interaction
and deterministic quantum logic [56, 57].

The high-dimensional transformations possible on the
QPP could also enable a number of applications in classi-
cal optics, including multi-input multi-output, transpar-
ent, non-blocking switches [58, 59], signal routers, high-
dimensional beam splitters, and large phased arrays [60],
e.g., for LIDAR applications.

VI. CONCLUSION

We presented a detailed analysis of the feasibility of a
reconfigurable quantum photonic processor that enables
high-fidelity linear optical transformations and could
greatly accelerate prototyping of quantum algorithms in
integrated quantum photonics. As demonstrated by our
simulation of quantum walks, reconfigurability also en-
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ables a single device to perform statistically robust stud-
ies of the propagation of photons through complex optical
networks. The predicted high fidelity of quantum oper-
ations under realistic fabrication defects suggests that a
QPP reaching high post-selected gate fidelities is within
experimental reach.
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K. Wörhoff, et al., Science 329, 1500 (2010).

[6] S. Aaronson and A. Arkhipov, in Proceedings of the 43rd
annual ACM symposium on Theory of computing (ACM,
New York, NY, USA, 2011), STOC ’11, pp. 333–342,
ISBN 978-1-4503-0691-1.

[7] M. A. Broome, A. Fedrizzi, S. Rahimi-Keshari, J. Dove,
S. Aaronson, T. C. Ralph, and A. G. White, Science 339,
794 (2013).

[8] J. B. Spring, B. J. Metcalf, P. C. Humphreys,
W. S. Kolthammer, X.-M. Jin, M. Barbieri, A. Datta,
N. Thomas-Peter, N. K. Langford, D. Kundys, et al.,
Science 339, 798 (2013).

[9] A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L.
O’Brien, Science 320, 646 (2008).

[10] E. Martin-Lopez, A. Laing, T. Lawson, R. Alvarez, X.-Q.
Zhou, and J. L. O’Brien, Nat Photon 6, 773 (2012).

[11] Y. Lahini, A. Avidan, F. Pozzi, M. Sorel, R. Moran-
dotti, D. N. Christodoulides, and Y. Silberberg, Phys.
Rev. Lett. 100, 013906 (2008).

[12] A. Crespi, R. Osellame, R. Ramponi, V. Giovannetti,
R. Fazio, L. Sansoni, F. D. Nicola, F. Sciarrino, and
P. Mataloni, Nat Photon 7, 322 (2013).

[13] J. C. F. Matthews, A. Politi, A. Stefanov, and J. L.
O’Brien, Nat Photon 3, 346 (2009).

[14] A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q.
Zhou, P. J. Love, A. Aspuru-Guzik, and J. L. O’Brien,
Nat Commun 5 (2014).

[15] S. J., V. R., PeruzzoA., PolitiA., LaingA., LobinoM.,
M. C. F., T. G., and O. L., Nat Photon 6, 45 (2012).

[16] T. C. Ralph, N. K. Langford, T. B. Bell, and A. G. White,
Phys. Rev. A 65, 062324 (2002).

[17] N. C. Harris, Y. Ma, J. Mower, T. Baehr-Jones, D. En-
glund, M. Hochberg, and C. Galland, Optics Express pp.
10487–10493 (2014).

[18] M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani,
Phys. Rev. Lett. 73, 58 (1994).

[19] T. Baehr-Jones, R. Ding, A. Ayazi, T. Pinguet,
M. Streshinsky, N. Harris, J. Li, L. He, M. Gould,
Y. Zhang, et al., arXiv:1203.0767 (2012).

[20] M. Hochberg, N. C. Harris, R. Ding, Y. Zhang, A. No-
vack, Z. Xuan, and T. Baehr-Jones, Solid-State Circuits
Magazine, IEEE 5, 48 (2013).

[21] J. C. Mikkelsen, W. D. Sacher, and J. K. Poon, Optics
Express 22, 3145 (2014).

[22] Note1, the continuum limit of a Poisson distribution of
scattering events with large mean.

[23] J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph,
and D. Branning, Nature 426, 032316 (2003).

[24] E. Knill, R. Laflamme, and G. J. Milburn, Nature 409,
4652 (2001).

[25] see Supplemental Information.
[26] M. A. Nielsen and I. L. Chuang, Quantum Computation

and Quantum Information (Cambridge University Press,
2011), 2nd ed.

[27] M. Thompson, A. Politi, J. Matthews, and J. O’Brien,
IET Circuits, Devices & Systems 5, 94 (2011).

[28] A. H. G. R. Kan and G. T. Timmer, Mathematical Pro-
gramming 39, 27 (1987).

[29] S. Kucherenko and Y. Sytsko, Computational Optimiza-
tion and Applications 30, 297 (2005).

[30] G. R. Steinbrecher, Y. Lahini, and D. R. Englund (to be
published).

[31] Neither the optimized nor unoptimized CNOT gate pro-
grammed into the QPP directly implemented the de-
composition of the corresponding single-photon unitary
transformation proposed in Ref. [12].

[32] K. Kieling, J. L. O’Brien, and J. Eisert, New Journal of
Physics 12, 013003 (2010).

[33] A. Aspuru-Guzik, A. D. Dutoi, P. J. Love, and M. Head-
Gordon, Science 309, 1704 (2005).

[34] J. D. Whitfield, J. Biamonte, and A. Aspuru-Guzik,
Molecular Physics 109, 735 (2011).

[35] B. P. Lanyon, J. D. Whitfield, G. G. Gillett, M. E.
Goggin, M. P. Almeida, I. Kassal, J. D. Biamonte,



7

M. Mohseni, B. J. Powell, M. Barbieri, et al., Nature
Chemistry 2, 106 (2010).

[36] W. J. Hehre, R. F. Stewart, and J. A. Pople, The Journal
of Chemical Physics 51, 2657 (1969).

[37] P. W. Anderson, Phys. Rev. 109, 1492 (1958).
[38] T. Schwartz, G. Bartal, S. Fishman, and M. Segev, Na-

ture 446, 52 (2007).
[39] Y. Bromberg, Y. Lahini, R. Morandotti, and Y. Silber-

berg, Phys. Rev. Lett. 102, 253904 (2009).
[40] Y. Lahini, Y. Bromberg, D. N. Christodoulides, and

Y. Silberberg, Phys. Rev. Lett. 105, 163905 (2010).
[41] G. Di Giuseppe, L. Martin, A. Perez-Leija, R. Keil,

F. Dreisow, S. Nolte, A. Szameit, A. F. Abouraddy, D. N.
Christodoulides, and B. E. A. Saleh, Phys. Rev. Lett.
110, 150503 (2013).

[42] M. Mohseni, P. Rebentrost, S. Lloyd, and A. A. Guzik,
The Journal of Chemical Physics 129, 174106+ (2008).

[43] A. Childs and J. Goldstone, Physical Review A (2004).
[44] C. K. Hong, Z. Y. Ou, and L. Mandel, Phys. Rev. Lett.

59, 2044 (1987).
[45] A. Schreiber, K. N. Cassemiro, V. Potoček, A. Gábris,
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