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Dynamical decoupling has been actively investigated since Viola first suggested using a pulse
sequence to protect a qubit from decoherence. Since then, many schemes of dynamical decoupling
have been proposed to achieve high-order suppression, both analytically and numerically. However,
hitherto, there has not been a systematic framework to understand all existing uniform π-pulse
dynamical decoupling schemes. In this report, we use the projection pulse sequences as basic
building blocks and concatenation as a way to combine them. We derived a new concatenated-
projection dynamical decoupling (CPDD), a framework in which we can systematically construct
pulse sequences to achieve arbitrary high suppression order. All previously known uniform dynamical
decoupling sequences using π pulse can be fit into this framework. Understanding uniform dynamical
decoupling as successive projections on the Hamiltonian will also give insights on how to invent new
ways to construct better pulse sequences.

PACS numbers: 03.65.Yz,03.67.Pp,89.70.+c

I. INTRODUCTION

One of the major difficulties in the realization of quan-
tum computing and quantum information processing is
protecting the quantum state from decoherence. Quan-
tum error correction protocols were developed to meet
this challenge [1–3]. For a review and recent progress of
this area, see references [4, 5].

While quantum error correction can be regarded as
a form of closed-loop control, dynamical decoupling has
been proposed as a way to counteract the interaction
between a quantum system and the environment by an
open-loop control field. The idea of using pulse se-
quences, to protect nuclear spins from classical decoher-
ence, dates back to 1950, when the spin-echo method was
found [6]. Since then, many pulse methods have been de-
veloped in nuclear magnetic resonance spectroscopy [8].
In 1998, it was first pointed out that a similar technique,
periodical dynamical decoupling (PDD), can be applied
to open quantum systems [9]. By using a control field,
with duration shorter than the time scale of the environ-
ment, dynamical decoupling can suppress the interaction
between a qubit and the bath [9]. Important theoret-
ical progress was made by understanding the effect of
dynamical decoupling as the result of a symmetrizing
procedure over the group composed of all independent
π pulses [10, 11]. However, the finite switching time in
real experimental conditions makes the symmetrizing im-
perfect. Therefore, concatenated dynamical decoupling
(CDD) was proposed to eliminate higher-order errors in
the interaction Hamiltonian [12, 13].

In realistic experiments, the imperfection of pulses
such as the rotation angle error and the finite width,
must be taken into account. CDD is preferred over PDD
in this case, due to the fact that concatenation not only
suppresses the interaction with the environment but also
the pulse errors to higher order [12, 13].

Meanwhile, by optimizing the pulse interval to sup-
press the low-frequency region of the noise spectrum,
Uhrig dynamical decoupling (UDD) can achieve the same
suppression order with fewer pulses, compared with CDD
[16, 17]. Although it has superior performance, UDD is
very sensitive to pulse errors, due to the fact that it only
uses single-axis rotations. However, to protect unknown
states, uniform DD with multi-axis rotations can com-
pensate errors due to its symmetric structure [18, 22–24].
Another development in dynamical decoupling is to use

random pulses, instead of deterministic schemes, for suf-
ficiently long sequences [14, 15]. Instead of trying to sup-
press the interaction to arbitrarily high orders, random
dynamical decoupling schemes improves the time depen-
dence of the error accumulation from quadratic to linear
[14, 15].
In this paper we only consider deterministic uniform

dynamical decoupling for two reasons: (1) it is easy to im-
plement in experiment, and (2) it is robust against pulse
error compared to UDD. Besides analytical calculations,
recently many other DD sequences have been found using
genetic algorithms to optimize the suppression order [19],
some of which even achieve same suppression order with
fewer pulses than CDD. However, a unified understand-
ing of all known DD schemes has not been developed
until now.
In this work, we propose concatenated-projection dy-

namical decoupling (CPDD) to unify all known uniform
DD schemes. Our framework gives a way to construct
new pulse sequences and to calculate their suppression
order. In Sec. II, we describe the mathematical settings
of the dynamical decoupling technique. In Sec. III, we
first define our projection pulse sequence and explain its
effect as an ‘atomic’ projection. Then we use concate-
nated projections along different directions to construct
more complex pulse sequences with arbitrary suppres-
sion order in Sec. IV. These results comprise the two
cornerstones of our theory of CPDD. In Sec. V we for-



2

mally introduce CPDD by defining the CPDD equiva-
lence classes, which are specified by three integers. In
subsection A, a series of properties of CPDD are devel-
oped; in subsection B we design a deterministic scheme
to construct optimized pulse sequence for each suppres-
sion order. A table of known DD schemes is given as well
to show how these known schemes fit into our CPDD
framework. In Sec. VI, we discuss why, intuitively, some
CPDD sequences are superior than CDD. We also point
out a typo in Ref.[19], which is easily detected within
the framework of CPDD. We present our conclusion in
Sec. VII.

II. DYNAMICAL DECOUPLING SETTINGS

We consider a qubit system S coupled to an arbitrary
bath B, which forms a closed system on the Hilbert
space HS ⊗HB. The overall Hamiltonian can be written
in the form,

H0 = HS ⊗ 11B + 11S ⊗HB +HSB, (1)

where 11 is the identity operator, HS is the pure system
Hamiltonian, HB is the pure environment Hamiltonian,
and HSB is the interaction between the qubit and the
bath. In the following, we will assume the interaction
takes the general linear form,

HSB = σx ⊗Bx + σy ⊗By + σz ⊗Bz, (2)

where Bx, By and Bz are abitary operator on HB.
Decoherence can be suppressed by adding a control

field solely to the system, i.e., Hc(t)⊗ 11B. If the control
field is a series of pulses, then the suppression effect can
be understood as a symmetrizing procedure [10]. In the
toggling frame, the Hamiltonian is transformed into,

H̃(t) = U †
c (t)H0Uc(t), (3)

where Uc(t) = T exp{−i
∫ t

0
Hc(t)dt} is the evolution

operator of the control field. Here T is time ordering
operator. The evolution of the state vector is governed
by the evolution operator,

Ũ(t) = T exp
{

− i

∫ t

0

H̃(t)dt
}

. (4)

If the sequence length is τc, we can define an average
Hamiltonian H̄(τc) by Ũ(τc) = exp(−iH̄τc). By expand-

ing Ũ(τc), we can collect terms according to different
order of τc,

T exp
{

− i

∫ t

0

H̃(t)dt
}

= e−i[H̄(0)+H̄(1)+...]τc . (5)

The first two terms are

H̄(0) =
1

τc

∫ τc

0

H̃(t)dt,

H̄(1) =
−i

2τc

∫ τc

0

dt1

∫ t1

0

dt2[H̃(t1), H̃(t2)],

... (6)

We make the separation,

H̄ = 11s ⊗HB + H̄err, (7)

in which H̄err is the part responsible for undesired evolu-
tion of the qubit.
In the context of dynamical decoupling, the only mea-

sure of the performance of a pulse sequence is the sup-
pression order. The suppression order N is defined
through the following equation,

H̄err =

∞∑

m=N+1

H̄(m), (8)

which means the corresponding pulse sequence achieves
N th order decoupling.

III. PROJECTION PULSE SEQUENCE

Now consider that we use K uniform ideal π pulses
as the control field. Thus the field takes the form
Hc(t) = −

∑K
j=1

π
2σjδ(t − tj), where tj = jτd, τd is the

pulse interval and σj ∈ {11, σx, σy, σz}. In the following,
we use PK ...P1, PK ∈ {I,X, Y, Z} to represent corre-
sponding pulse sequence. In the limit of τd → 0, we have
a continuous pulse sequence, and only the zeroth-order
term in the Magnus expansion survives,

H̄(0) =
1

τc

∫ τc

0

U †
c (t)H0Uc(t)dt. (9)

Also, since the pulses are ideal, Uc(t) is a piece-wise
constant function. The first-order average Hamiltonian
reduces to

H̄(0) =
1

K

K∑

j=1

U †
c (tj)H0Uc(tj). (10)

If we chose pulses such that Uc(tj) go through each ele-
ment of certain group such as G = {I,X, Y, Z}, Eq. (10)
is just a symmetrizing procedure which projects H0 onto
the commutant of the group algebra [10].
A more intuitive way to view the effect of pulse se-

quence is to look at them as combination of basic projec-
tions [12]. The simplest pulse sequence is PiPi, which is
similar to the CPMG pulse sequence [7, 20]. Hereafter we
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call it the projection pulse sequence and use the notation
pi = PiPi. To explain its projecting effect, we consider
the spin-boson model, which induces the longitudinal de-
cay of the spin. The interaction takes the form,

HSB =
∑

k

(gkσ
+ ⊗ bk + g∗kσ

− ⊗ b
†
k), (11)

where bk is the annihilation operator of a photon with
momentum k, and gk is the coupling strength between
photon with mode k and the spin. Here σ± is the creation
(annihilation) operator, σ± = σx ± iσy.
If we apply pz = ZZ to the system, then Uc(tj) ∈

G = {11, Z}. Using Eq. (10), the interaction term will be
completely removed in the continuous limit due to the
fact σzσx(y)σz = −σx(y). Therefore, geometrically the
pulse sequence pz projects the Hamiltonian along the z

direction.
However, in real experimental conditions, there is an

upper limit of the pulse switching rate; thus τd is finite.
Although the Magnus expansion is still valid, so long as
τcωc << 1, where ωc is the cut-off frequency of the bath,
the projection is not exact anymore due to higher-order
corrections.

Theorem 1 : Assume the interaction between a single
qubit and bath takes the form of Eq. (2). After applying
the projection pulse sequence pj (j = x, y, z) with pulse
interval τd, the zeroth order error Hamiltonian defined
in Eq. (7) and Eq. (8) is given by,

H̄(0)
err ≡ π

(0)
j H0 = σj ⊗Bj . (12)

Thus the full error average Hamiltonian is given by,

H̄err = σj ⊗ [Bj + k
(1)
j (τd)] +

∑

i⊥j

σi ⊗ [B
(1)
i + k

(2)
i o(τ2d )],

(13)

where we use π
(0)
j to represent the mapping from H0 to

H̄
(0)
err that is induced by the projection pulse sequence pj.

The symbol ⊥ represents the directions orthogonal to di-

rection j and B
(1)
i ∼ k

(1)
i o(τd). Here k

(n)
i is some combi-

nation of commutators of the bath operators with dimen-
sion of [H ]n.

This projection point of view gives a geometrical and in-
tuitive way to understand the effect of the pulse sequence
PjPj . The full proof is given in Appendix A.
In summary, we have shown that the effect of the pro-

jection pulse sequence pi = PiPi is to project the Hamil-
tonian along i direction up to first order.

IV. CONCATENATION OF CYCLIC PULSE

SEQUENCES AS SUCCESSIVE PROJECTIONS

The higher-order terms remaining in the Herr, after ap-
plying the projections, will coherently add up with time.

To achieve higher-order suppression, we need to project
the Hamiltonian along different directions successfully.
We will show in this section that the effect of the concate-
nation of cyclic pulse sequences is to apply successively
the projections induced by each pulse sequence.
A pulse sequence is called cyclic when the generated

evolution operator is periodic with period τc up to a
phase factor,

Uc(nτc) = eiφUc(τc), (14)

where n = 0, 1, 2 ... and φ is an arbitrary phase.
An equivalent definition of a cyclic pulse sequence is

that the product of all the pulses is equal to one, up to
an arbitrary phase,

K∏

i=1

Pi = eiφ11, (15)

which follows directly from Eq. (14) when n = 0. We will
see that this property is necessary for the proof of the
equivalence between concatenation and successive pro-
jections.
Another useful property of the cyclic pulse sequence

is that the concatenation of two cyclic pulse sequences is
still cyclic. The proof is straightforward and we include it
in the Appendix A. Having the definition of cyclic pulse
sequence, we now prove the second basic theorem of our
CPDD scheme.

Lemma 1 : Consider two pulse sequences A and B,
P i
K ...P i

1, where i = A,B, with the same pulse interval.
The first pulse sequence A = PjPj (j ∈ {x, y, z}), which
is a projection pulse sequence, and sequence B is concate-
nated from multiple projection pulse sequences. A third
pulse sequence C is constructed by concatenating A and
B, C = A[B] ≡ PjBPjB. The following relationship is
true,

π0
C = π0

Bπ
0
A, (16)

where the mapping π0
i induced by applying the pulse se-

quence i is defined in Theorem 1.

Lemma 1 is the theoretical cornerstone of this work. It
explains why concatenation can increase the suppression
order, which is not so obvious. The cyclic properties and
the changeability of different pulses (up to an irrelevant
phase factor) are necessary for the proof. The full proof
is included in the Appendix A.

V. CONCATENATED PROJECTIONS

DYNAMICAL DECOUPLING

What really distinguishes our work from the CDD
scheme is that we chose the projection pulse sequence as
the basic element of concatenation. Motivated by Theo-
rems 1 and 2, we define our concatenated-projection dy-
namical decoupling (CPDD) as a new way to construct
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pulse sequences by applying projections along different
directions successively. Since each projection kills the in-
teraction terms orthogonal to it by one more order, by
appropriately combining different projections, our CPDD
can achieve arbitrarily high suppression order.

Definition 1 : A CPDD pulse sequence is specified by
an ordered series iN , iN−1, ..., i1. It is constructed by con-
catenating N projection pulse sequences successively, A =
piN [piN−1 [...[pi1 ]...]

︸︷︷︸

N

, where ij ∈ {x, y, z} and 1 ≤ j ≤ N .

The suppressing effect of the CPDD sequence on the
Hamiltonian follows immediately from the combination
of the effects of projections and concatenation.

Theorem 2 : Consider a CPDD pulse sequence A spec-
ified by iN , iN−1, ..., i1. After applying pulse sequence A,
the average interaction Hamiltonian is given by

H̄err =
∑

i=x,y,z

σi ⊗ [B
(di)
i + k

(di+1)
i o(τdi+1

d )], (17)

where

di =
∑

j⊥i

nj , (18)

and nj is the number of pj sequences.

Proof : Repeatedly using Lemma 1, the leading order
of the error average Hamiltonian after applying sequence
A is given by

π
(0)
A H0 = π

(0)
i1

π
(0)
i2

...π
(0)
KA

H0 . (19)

From Theorem 1, each projection remove the first order
term in the perpendicular direction. Therefore,

H̄(0)
err =

∑

i=x,y,z

σi ⊗B
(di)
i , (20)

where

di =
∑

j⊥i

nj . (21)

From Theorem 2 we can see that the effect of ni

pis is to suppress the error Hamiltonian along the i

direction to nith order. From Eq. (21) we also notice
that the order of how different projection pulse sequences
is concatenated does not affect the leading order of the
average Hamiltonian along each direction. Therefore we
can define an equivalence relationship between different
CPDD pulse sequences,

Definition 2 : Consider two pulse sequences A and
A′. The leading order of the error Hamiltonians induced

by each of them are H̄
(0)
err =

∑

i=x,y,z σi ⊗ B
(di)
i and

H̄
(0)′

err =
∑

i=x,y,z σi ⊗ B
(d′

i)
i . We define A and A′ to be

equivalent to each other

A ∼ A′, (22)

if the leading order of the average error Hamiltonians are
the same along each direction, namely ni = n′

i.

It can be easily proved that the relationship defined above
satisfies the three properties of an equivalence relation-
ship.
Therefore, for a CPDD sequence specified by sequence

a = iN , iN−1, ..., i1, all CPDD sequences specified by
a’s permutations A{iN , iN−1, ..., i1} form an equivalence
class. By the virtue of the equivalence class, only three
numbers nx, ny, nz are needed to completely specify a
CPDD class.

Definition 3 : A CPDD class is defined as an equiva-
lence class with equivalence relationship defined in Def-
inition 2, specified by three integers, {nx, ny, nz}. The
structure of the pulse sequence can be generated by con-
catenating all ni pi sequences (i = x, y, z) in arbitrary
order.

From the definition of CPDD and Theorem 2, we derive
a series of properties satisfied by CPDD sequences and
their equivalence classes.

A. Properties of CPDD

Due to the way concatenation connects two pulse se-
quences, we can derive two properties that the structure
of each CPDD sequence must satisfy.

1. For an arbitrary CPDD pulse sequence, each
odd site has the same kind of π pulse.
We prove this by induction. Consider a pulse sequence

A = PKPK−1...P1, which is concatenated from N pro-
jection pulse sequences. Pulse sequences An are concate-
nated from the first n (1 ≤ n ≤ N) of them. The follow-
ing relations are satisfied,

An = pi[An−1], (23)

where pi is the nth projection pulse sequence. Assume
for subsequence An−1 the pulses are the same for each
odd site,

An−1 = P2n−2P0.....P2P0. (24)

Let’s examine the pulse sequence An,

An = pi[An−1]

= (PiP2n−2)P0...P2P0(PiP2n−2)P0...P2P0. (25)

Therefore, the fact that all the pulses at each odd site
are the same still holds.
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Since A2 = pi[pj ] = (PiPj)Pj(PiPj)Pj , which also has
the same kind of pulse on its odd sites, by induction we
have proved that for each odd sites of AN the pulses are
the same:

P2m+1 = P0, m = 0, 1, ... (26)

2. For an arbitrary CPDD pulse sequence, the
first half and the second half subsequences are the same.
Again this property follows from the definition of
concatenation. Using Eq. (23) for n = N we have

A = pin [An−1]. (27)

Assume An−1 = P2N−2P2N−3...P1, we have

A = (PinP2N−2)P2N−3...P1(PinP2N−2)P2N−3...P1.

(28)
Obviously sequence A is composed the same two copies
of AN−1, or more precisely

Pm = Pm−N/2, m = 1, 2, ..., N. (29)

3. For CPDD class {nx, ny, nz}, the number of
pulses or sequence length K is given by

Knx,ny,nz
= 2nx+ny+nz . (30)

The proof is straightforward. At first, each basic
projection is induced by the two same pulses. Secondly,
the length of two concatenated pulse sequences, A

and B, is equal to the product of the length of each
two, KA[B] = KAKB. Therefore, for a pulse sequence
composed of ni pairs of (Pi, Pi), the total pulse number
K is given by Eq. (30).

4. For the CPDD class {nx, ny, nz}, the suppres-
sion order achieved is given by,

Nnx,ny,nz
= min {ny + nz, nx + nz, nx + ny}. (31)

From Theorem 2, the leading order of the error Hamil-
tonian induced by any pulse sequence in the CPDD class
{nx, ny, nz} is given by

H̄(0)
err =

∑

i=x,y,z

σi ⊗B
(di)
i , (32)

where di =
∑

j⊥i nj . Since the suppression order N

is defined as the leading order of H̄ , N = min {dx, dy, dz}.

From the expression of suppression order, Eq. (31),
we can see that simply increasing pulse numbers (num-
ber of projections) does not necessarily increase the

suppression order. Actually, in the framework of CPDD,
only for pulse sequences with certain pulse numbers can
the suppression order increase.

5. For a given suppression order N , the minimum
number of pulses, Kmin, required to achieve such sup-
pression order is given by

log2(Kmin) =
1

2
[3N +

1

2
(1 − 1⊕N)], (33)

where 1⊕N = 1⊕ 1⊕ ... ⊕ 1
︸ ︷︷ ︸

N

.

To achieve suppression order N , 3N terms in the
interaction Hamiltonian need to be eliminated due to
the form of HSB, Eq. (2). However, each basic pro-
jection πi requires two pulses, which implies that only
an even number of terms can be eliminated for a given
CPDD sequence. Therefore, we need to add one more
pulse depending on whether N is odd or not. Divid-
ing the total number of eliminated terms by two we have,

∑

i=x,y,z

ni =
1

2
[3N +

1

2
(1 + (−1)N+1]. (34)

Using the results of property 3, we have Eq. (33). The
mysterious series 4, 8, 32, 64, 256... was first found by a
genetic algorithm in Ref. [19] which is now understood
within the framework of our unifying CPDD.

B. Optimized uniform dynamical decoupling

The pulse sequences corresponding to the pulse num-
ber in Eq. (33) uses the minimum number of pulses at
each suppression order. This optimized uniform dynami-
cal decoupling (OUDD) scheme can be represented using
the CPDD indexes as

OUDDk :
1

2
{k − 1⊕k, k + 1⊕k, k + 1⊕k}. (35)

The suppression order of OUDDk is Nk = k and the
sequence length is given by Kmin in Eq. (33).

As we can see, some of the pulse sequences are
particular levels of CDDl and GA8l. To compare with
OUDD and other known DD schemes, we list the
corresponding CPDD indexes of known DD schemes in
Table I below.
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TABLE I: Known DD schemes represented as
CPDD

{nx, ny, nz} Name Pulse sequence K N
{0, 0, 1} Projection PiPi 2 0
{0, 1, 1} PDD(CDD1) PiPjPiPj 4 1
{1, 1, 1} GA8a IPiPjPiIPiPjPi 8 2
{0, l, l} CDDl CDD[CDDl−1 ] 4l l

{l, l, l} GA8l GA8a[GA8l−1] 8l 2l

VI. DISCUSSION

Although CDD also relies on concatenation, the
fact that our CPDD uses basic projections as building
blocks makes finding more efficient pulse sequences
possible. To make this clear, we consider the CDD from
the view point of our CPDD. CDD1 can be consid-
ered as the concatenation of two different projections,
CDD1 = X(Y Y )X(Y Y ) = ZY ZY [13]. Therefore the
effect of CDD1 is to apply projections along the y and x
direction successively,

π
(0)
CDD1

HSB ≡ π(0)
y π(0)

x H0

= π(0)
y [σx ⊗Bx + σy ⊗B(1)

y + σz ⊗B(1)
z ]

= σx ⊗B(1)
x + σy ⊗B(1)

y + σz ⊗B(2)
z

∼ k(1)o(τ1d ). (36)

As we can see, CDD1 completely removes the zeroth or-
der interaction terms, thus achieving suppression order
NCDD1

= 1.
Now consider CDD2, which is the concatenation of

two CDD1 sequences: we write explicitly the process of
the successive projections ,

π0
CDD2

HSB = π(0)
y π(0)

x π(0)
y π(0)

x H0

= π(0)
y π(0)

x [σx ⊗B(1)
x + σy ⊗B(1)

y + σz ⊗B(2)
z ]

= σx ⊗B(2)
x + σy ⊗B(2)

y + σz ⊗B(4)
z

∼ k(2)o(τ2d ). (37)

As we can see from above, a total of eight eliminations
(each projection pulse sequence eliminates two terms
in the orthogonal directions) are used to completely
remove the first two orders of the interaction HSB.
However, the two additional eliminations of Bz does
not contribute to further increasing of the suppression
order. To avoid this, we consider projecting along each
direction exactly once, namely πxπyπz, which belong
to the CPDD class {1, 1, 1}. Translating the projection
back to corresponding pulse sequence according to the
rule of concatenation, we have

π(0)
x π(0)

y π(0)
z : px[py[pz]]

= px[Y (ZZ)Y (ZZ)]

= X(XZXZ)X(XZXZ)

= IZXZIZXZ, (38)

which only uses eight pulses and six projections. This
was first found by a genetic algorithm and called GA8a
in Ref. [19].

To achieve suppression order of N = 2, CDD2 needs
16 pulses while GA8a sequences only requires 8 pulses.
This efficiency of using pulses comes from the very fact
that GA8a uses basic projections πi as building blocks
while CDD2 uses composed projections πiπj (i 6= j) as
building blocks.

In Ref. [19], the author claimed to find another 8
pulse sequence GA8b=Z(XYXY )Z(XYXY ) which also
achieved suppression order of N = 2. From the structure
of GA8b, we know the projections induced by it is,

π
(0)
GA8b

= π(0)
z π(0)

z π(0)
y , (39)

which belong to CPDD class {0, 1, 2}. Using the results
from Eq. (31), the suppression order of GA8b is equal to
1. Therefore the claim in Ref. [19] is typo.

To double check our results, we also use the multi-
precision package mpmath [28] to compute the suppres-
sion order of both GA8a and GA8b for a 5-spin model
with random coupling constants. Here the distance D
is defined as the distance between an actual evolution
operator and the unit operator [19],

D(U, 11S) =

√

1−
1

dH
||Γ||Tr, (40)

where dH is the dimension of the Hilbert space, Γ =
TrS [U ] and || · ||Tr represents the trace norm. An upper
bound of D can be calculated[19],

D <
∼ O[τN+1

d ]. (41)

Therefore, we can extract the suppression order by plot-
ting D versus τd in the log-log diagram. As we can see
in Figure 1, GA8a achieves higher suppression order than
GA8b which is in agreement with the argument from the
view point of our CPDD.

VII. CONCLUSION

We have developed tour CPDD schemes in which
CPDD sequences are concatenated from different
projection pulse sequences. We also define CPDD
equivalence classes as the set of pulse sequences that
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FIG. 1: (Color online) Comparing the suppression order
of GA8a and GA8b. D is the dimensionless distance
between actual evolution operator and the unit
operator, defined in [19], and τd is the pulse interval
with unit second. The suppression order N is defined
by the relation D ∼ O(τN+1

d ). We consider the
parameters J in the range of Jτd ∈ [10−6, 10−1], where
J is the norm of the interaction Hamiltonian.

have the same leading order along each direction in the
Magnus expansion of the average Hamiltonian. Based
upon the definition of our CPDD pulse sequences, we
prove a series of properties about the structure of the
sequences that must hold for CPDD. We also give
a formula to calculate suppression order for a given
CPDD class specified by {nx, ny, nz}. We propose the
optimal uniform DD sequence given in Eq. (35) use in
experiments, since each of the sequences in the series
achieves its suppression order using minimum pulse
numbers. Although some of OUDD are already known
DD sequences, our CPDD framework gives a unifying
and consistent way to both understand and construct all
of them.

The main advantage of using UDD is that the pulse
number needed scales linearly with the suppression
order, NUDD ∼ O(K), which is much more efficient
than the exponentially dependence in CPDD. However,
UDD is subject to several difficulties. Firstly it is
valid only for environmental spectrum with a hard
cut-off [17, 25], and secondly it is very sensitive to pulse

errors [18, 22–24]. However, for our CPDD, especially
the OUDD class, some pulse sequences have rotation
symmetry thus making them robust against pulse
error. Although we have not given a rigorous bound
analysis for CPDD here, the results and the calculation
should be similar to those in Ref. [13]: the distance
between the actual state and the desired state goes to
zero as the concatenation level goes to infinity. More
importantly, pulse errors are suppressed along with se-
ries of concatenations as long as the error is not too large.

Moreover, although the suppression order of CPDD
is still exponentially dependent on the pulse number,
NCPDD ∼ O(log2 K), the reduction of the number of
pulses for the same suppression order is exponentially
large compared to the case of CDD, NCDD ∼ O(log4 K).

Given the structure of our CPDD, one can see
that two directions to try to find more efficient pulse
sequences are worth exploring. Firstly, to find basic
sequences, which could achieve higher N to K ratio than
projection pulse sequences. The concatenated UDD
[26, 27] obviously belongs to this class. However, the
applicability of Lemma 1 in the context of non-uniform
DD is questionable and requires a new proof. Secondly,
we seek to find new ways to combine two pulse sequences
or two projections. Since the fact that exponentially
large pulse numbers are needed to achieve high suppres-
sion order resulting from the concatenation , new ideas
in this direction may greatly improve the efficiency of
uniform dynamical decoupling.
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Appendix A

In this appendix we include the proof of Theorem
1 and Lemma 1, which are the foundations of our
CPDD scheme. A proof about a property of cyclic pulse
sequences is also included.

Proof of Theorem 1: Without loss of generality,
we consider the pulse sequence is ZZ, where Z = −iσz.
The transformed Hamiltonian H̃(t) is given by

H̃(t) ≡

{

H1, 0 < t < τd

H2, τd < t < 2τd ,
(A1)
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where

H1 = 11⊗B0 + σx ⊗Bx + σy ⊗By + σz ⊗Bz, (A2)

H2 = 11⊗B0 − σx ⊗Bx − σy ⊗By + σz ⊗Bz. (A3)

After applying the pulse sequence PjPj , the first and sec-
ond order expansion of the average Hamiltonian is given
by Eq. (6),

H̄(0) =
1

2

2∑

i=1

Hi, (A4)

H̄(1) =
−i

2
τc

∑

i<j

[Hi, Hj]. (A5)

Using Eq. A1, we have

H̄(0) = 11⊗B0 + σz ⊗Bz, (A6)

H̄(1) = τd[B0, Bx]⊗ σx

+τd[B0, By]⊗ σy + 2τd[By, Bx]⊗ σz. (A7)

Since the commutator between bath operators is not zero
in general, we have

H̄err = σz ⊗ [Bz + k(1)z o(τd)]+
∑

i⊥z

σi ⊗ [B
(1)
i + k

(2)
i o(τ2d )],

(A8)

where B
(1)
i = τd[B0, Bi]. The same calculation gives

similar results for j = x, y. Q.E.D.

Proof of Lemma 1 : The concatenated sequence C is
given by

(PiP
B
K )PB

K−1...P
B
1 (PiP

B
K )...PB

1 , (A9)

where the bracket means the there is no free evolution
in between the two pulses inside the bracket. Since the
projection pulse sequence is cyclic by definition, and se-
quence B is also cyclic by Theorem 3,

K∏

i=1

PB
i = eiφ11. (A10)

The 2KB evolution operator of the control field, UC
m is

given by,

UC
m =

∏

j≤m

PC
j (A11)

To construct π
(0)
A and π

(0)
B , we group UC

m and UC
m+KB

together(m ≤ KB).
For 1 ≤ m < KB,

UC
m =

∏

j<=m

PB
j = UB

m , (A12)

and,

UC
m+KB

=
( ∏

j<=m

PB
j

)

Pi

( KB∏

j>m

PB
j

)( ∏

j<=m

PB
j

)

= eiφPi

∏

j<=m

PB
j

= eiφPiU
B
m , (A13)

where we have used the commutativity of Pauli matrices
and the cyclic property Eq. (A10) of pulse sequence B.
Now adding the action of UC

m and UC
m+KB

on HSB

together, we have

UC†
m HSBU

C
m + U

C†
m+KB

HSBU
C
m+KB

= UB†
m HSBU

B
m + UB†

m P
†
i HSBPiU

B
m

= UB†
m (2π

(0)
A HSB)U

B
m (A14)

If m = KB, we have UC
KB

and UC
2KB

, which are

UC
KB

= PiP
B
K

∏

j<KB

PB
j

= Pi

∏

j<=KB

PB
j

= eiφPiU
B
KB

(A15)

UC
2KB

= Pi

( ∏

j<=KB

PB
j

)

Pi

( ∏

j<=KB

PB
j

)

= eiφUB
KB

. (A16)

Now using Eqs. (A14, A15, A16), the first order of aver-
age Hamiltonian after applying sequence C is given by

H̄
(0)
C =

1

2KB

2KB∑

m=1

UC†
m HSBU

C
m

=
1

2KB

KB∑

m=1

(

UC†
m HSBU

C
m + U

C†
m+KB

HSBU
C
m+KB

)

=
1

KB

KB∑

m=1

UB†
m

(1

2

KA∑

l=1

U
A†
l HSBU

A
l

)

UB
m

= π
(0)
B π

(0)
A HSB (A17)

Q.E.D.

Theorem 3 The concatenation of two cyclic pulse se-
quences is still cyclic.

Proof of Theorem 3 : Consider two cyclic pulse se-
quences A and B. From [Eq. (15)] we have

KA∏

i=1

PA
i = eiφA11, (A18)

KB∏

i=1

PB
i = eiφB11. (A19)

The pulse sequence C is constructed by concatenating A

and B, thus

C = A[B]

≡ PA
1 (PB

1 ...PB
KB

)PA
2 (PB

1 ...PB
KB

)...PA
KA

(PB
1 ...PB

KB
)

(A20)
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Therefore the product of all pulses of sequence C is

KC∏

i=1

PC
i = PA

1 (

KB∏

i=1

PB
i )....PA

KA
(

KB∏

i=1

PB
i )

= PA
1 eiφB ...PA

KA
eiφB

= eiKBφB

KA∏

i=1

PA
i

= ei(KBφB+φA)11

= eiφC11 (A21)

where we define φc = KBφB + φA. Therefore, the pulse
sequence C=A[B] is also cyclic. Q.E.D.
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