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We apply a distance-based Bell-test analysis method [E. Knill et al., Phys. Rev. A. 91, 032105
(2015)] to three experimental data sets where conventional analyses failed or required additional
assumptions. The first is produced from a new classical source exploiting a “coincidence-time
loophole” for which standard analysis falsely shows a Bell violation. The second is from a source
previously shown to violate a Bell inequality; the distance-based analysis agrees with the previous
results but with fewer assumptions. The third data set does not show a violation with standard
analysis despite the high source quality, but is shown to have a strong violation with the distance-
based analysis method.
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Local realism, the notion that any two space-like sep-
arated events can have no influence on each other (local-
ity), and that measurement outcomes can be modeled as
if they were determined by hidden variables (realism), is
fundamental to classical physics, and is a natural view
of reality. When Einstein, Podolsky, and Rosen noted
that quantum mechanics appears to abandon local real-
ism, they thought that it must be quantum mechanics
that is incomplete [1]. Almost thirty years later, John
Bell showed that local realism and quantum mechanics
are not only conceptually incompatible, but can actually
give different statistical outcomes for experiments on en-
tangled particles [2]. The statistical differences are quan-
tified via a Bell inequality, a violation of which would
definitively rule out any local realistic theory, thereby
ending a central debate of 20th-century physics. While
entanglement has been experimentally demonstrated in
various physical systems, due to experimental challenges
every Bell test to date has required assumptions about
either the source and detector (e.g., that the detected
particles are a fair sample of the total ensemble emitted
from the source), or the possibility of signaling between
specific events (e.g., assuming that there is no signaling
between the measuring devices)[3]. While these assump-
tions allow one to make arguments against local realism,
they present loopholes that could be exploited by a local
realistic model to violate a Bell inequality.

Furthermore, there can also be implicit assumptions
within the data analysis itself if it directly or tacitly
assumes no-signaling or fair-sampling. Even worse, the
data analysis may directly violate an assumption, thereby
invalidating the analysis technique. The issue can be
subtle; for example, in the case of the “coincidence-time
loophole”[4], the implicit assumptions can come from an
otherwise standard coincidence counting method, where
the coincidence windows are centered on one party’s de-
tection events (the implicit assumption is that the local

hidden-variable model has no time-dependence) instead
of using a predefined coincidence window. Finally, addi-
tional loopholes can arise from the assumed source statis-
tics. Two analysis assumptions are noteworthy. The first
is that most analyses assume that the source emits par-
ticles with independent and identical states. The second
assumes that the average violation has a Gaussian distri-
bution; in particular, nearly all reported Bell violations
are cited in terms of numbers of standard deviations of
violation, whose interpretation requires that the relevant
distributions are Gaussian for many standard deviations
from the mean, which fails to hold no matter how many
particles are detected (for a discussion, see [5]).

As Bell tests can be a resource for cryptographic pro-
tocols, such as device-independent random number gen-
eration [6] and device-independent quantum key distri-
bution [7], these issues are critical to the security of the
device, as each loophole allows for an avenue of attack.
If the device satisfies a loophole-free Bell test, i.e., vio-
lates a Bell inequality with no extra assumptions, then
the device can be trusted regardless of the manufacturer
of the device or possible hacking technique. Thus it is
important to minimize any extra assumptions required
by the analysis or its interpretation.

In this paper, we begin by describing how common ex-
perimental Bell tests are performed, and the issues that
can arise from the data analysis. We then briefly summa-
rize a new, distance-based analysis technique described
in Ref. [8], and in the subsequent sections we compare
this technique to the conventional analysis for real data
sets from three distinct experimental configurations; one
is the first demonstration of a system capitalizing on
the coincidence-time loophole to fake a Bell-inequality
violation, while the other two are a pulsed version and
a continuous version of the quantum source presented
in Ref. [9]. Finally, we discuss general features of the
distance-based analysis technique that apply to all Bell
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test experiments.

I. EXPERIMENTAL BELL TESTS

An ideal (bipartite) Bell test consists of a series of “tri-
als,” which we now define. For each trial two parties,
Alice and Bob, each independently and randomly choose
a setting at which to perform a measurement. They then
perform their measurements and locally obtain measure-
ment outcomes. The outcomes are obtained locally in
the sense that each person’s outcome is a function only of
events occurring in her or his laboratory. Note: We shall
see below that a trial may consist of a single detected
outcome – or even none – or it may consist of multiple
detected outcomes for the measurement setting for that
trial, i.e., a trial may involve a single pair of photons or
multiple pairs, all measured the same way. For the ex-
periments discussed here, the settings are chosen from
two possibilities, labeled 0 or 1. Alice and Bob’s settings
choices are denoted by sA and sB , respectively; their cor-
responding measurement outcomes are denoted by tAsA
and tBsB , respectively. After many trials, the records of
settings and outcomes are analyzed to test local realism.

According to quantum theory, Alice and Bob must
share entanglement to obtain results that are not compat-
ible with local realism. Traditionally, experimenters have
endeavored to engineer their systems to deliver exactly
one pair of entangled photons to Alice and Bob during
each trial. This goal is technically challenging (for rea-
sons described later), so some experiments have allowed
violations of the definition of “trial” given above. In some
experiments, several measurements happened before Al-
ice and Bob chose new measurement settings, and those
measurements were then analyzed as if they were from
separate trials each with a randomly chosen setting. In
some, Alice and Bob non-locally determined when trials
have occurred and what their outcomes were. These al-
lowances complicate the interpretation of the experiment
so that local realism can be rejected only if other (of-
ten implicit) assumptions hold. In the first experiment
reported in this paper we demonstrate a system with-
out entanglement that can appear to violate local real-
ism when Alice and Bob determine trials and measure-
ments non-locally. In the second and third experiments
measurement settings are changed before each trial and
locally-determined trials are used, but the experiments
and analyses are designed to allow many entangled pho-
ton pairs to be measured during each trial.

One type of Bell test experiment in high-efficiency sys-
tems uses polarization entangled photons [9, 10]. To gen-
erate the entangled photons, a strong pump laser passes
through a nonlinear crystal setup, where each photon of
the pump has a small probability of downconverting into
a pair of entangled photons, one of which is sent to Alice,
and the other to Bob. The measurement settings for the
Bell test are provided by a polarizer placed after either
a half-wave plate in a rotation mount, or a Pockels cell.

Afterwards, the photons are detected on separate high ef-
ficiency photon counters, e.g., transition-edge-sensor de-
tectors (TES) [11]. The detection events from each TES
are recorded by a time-to-digital converter, and the re-
sulting timetag sequences are saved for later analysis to
check for correlations. A new timetag sequence is saved
for each new setting that Alice and Bob choose. Be-
cause motorized rotation mounts (and Pockels cells to a
lesser extent) cannot always change settings quickly, it is
possible that multiple detection events occur before the
settings can be changed. For example, the two recent
photon experiments closing the detection loophole kept
the same setting for 1 s [9] and 300 s [10] intervals, so the
measurement result obtained for each choice of measure-
ment settings actually involved many entangled photon
pairs. However, the conventional Bell inequalities used
to analyze these two experiments required each trial to
contain at most one photon pair for violation of local
realism to be visible.

Individual photon-pair events can be difficult to recon-
struct from the longer measurement record. For example,
all single-photon detectors have an intrinsic uncertainty
of the arrival time of the photon. Furthermore, down-
conversion is a probabilistic process, where the emission
can occur at any time when the pump laser has a non-
zero amplitude. This is most notable for continuous-wave
lasers, where downconversion events happen randomly,
uniformly in time. Alice and Bob need to determine
if they have a coincidence event (both saw a detection
event), a single event (only one saw a detection), or nei-
ther saw a detection event (the standard Bell test analysis
can be modified so that it is not necessary to account for
the cases where neither party detected a photon); they
must determine which type of event occurred despite the
temporal uncertainty of their measurements. For exam-
ple, typical quantum optics experiments determine co-
incidence events by allowing for a coincidence window
around one party’s - say Alice’s - detection events: if
Bob has a detection event within the coincidence window
determined by her detection event, then it is called a co-
incident detection. Similar non-local strategies involving
information from both parties have been used in many
experiments (for example [10]) to analyze the data as if
it were generated by a series of trials, each containing a
single photon pair.

In a Bell test, however, this seemingly reasonable (but
non-local) method for determining coincidences cannot
exclude all local realistic models, as it opens up a loop-
hole that can be exploited by a hacker to produce an ap-
parent Bell inequality violation without any actual quan-
tum correlations. The loophole, called the coincidence-
time loophole, allows for a time-dependent local hidden-
variable model [4]. Consider the Clauser-Horne (CH) Bell
parameter [12] in the form

BCH = pAB(tA0 = 1, tB0 = 1) + pAB(tA0 = 1, tB1 = 1)

+ pAB(tA1 = 1, tB0 = 1)− pAB(tA1 = 1, tB1 = 1)

− pA(tA0 = 1)− pB(tB0 = 1), (1)



3

where tAz = 1 (tBz = 1) is a detection event for Al-
ice (Bob) with z being the measurement setting for Al-
ice’s (Bob’s) detector, pAB(x, y) denotes the settings-
conditional probability of the joint outcome of x and y
for Alice and Bob’s detectors, respectively, and pA(x)
(pB(x)) is the setting-conditional probability of outcome
x for any given trial at Alice’s (Bob’s) detector. Then it
can be shown that −1 ≤ BCH ≤ 0 for any local realistic
model.

Consider an experiment where the times of photon-pair
arrivals at the two parties are unknown. To exploit the
coincidence loophole, a hacker who has full control of the
photon source can send a group of four pulses (two to
Alice and two to Bob as shown in Fig. 1) with each pulse
offset by a little less than the Alice-detection-centered
coincidence window used by Alice and Bob. In doing so,
the pulses that result in detections for settings sA = 1
and sB = 1 are separated by nearly three coincidence
window “radii” and therefore do not result in any coinci-
dence counts, whereas at every other setting combination
the detected pulses fall within the coincidence window.
Consequently, a hacker can achieve an apparent Bell vi-
olation BCH > 0, since the pAB(tA1 = 1, tB1 = 1) term in
Eq. 1 can be made to vanish.

It is interesting to consider the size of the apparent
violation. Normally, we assume that the pairs arrive
at a constant rate rP . Let rA(x), rB(x) and rAB(x, y)
be the rates of events whose detection probabilities are
determined by pA(x), pB(x) and pAB(x, y). Given the
constant rate assumption, we can express pAB(x, y) =
rAB(x, y)/rP and similarly for the other rates. The quan-
tity BCH can be inferred accordingly and whether or not
it violates the inequality BCH ≤ 0 does not depend on
the rate rP . Thus, it is not necessary to know the rate to
observe such a violation. By exploiting the coincidence-
time loophole, sending pulses at a rate rH , a hacker can
force an apparent violation of up to BCH = rH/rP > 0,
given the experimenter’s assumed photon-pair rate rP . If
the experimenter attempts to measure rP independently,
this measurement may also be subject to the hacker’s ma-
nipulations. The data set itself only yields lower bounds
on rP . That is, assuming (wrongly) that the detections
arise from constant-rate photon pairs, we have that rP
should be at least the sum of the rate of detections by
A and B, minus the rate of coincident detections at any
given setting combination. This rate is maximized for
settings sA = 1 and sB = 1, where it is 2rH . Accord-
ingly, rP ≥ 2rH . Setting rP = 2rH gives a maximum in-
ferred violation of BCH = 1/2 per presumed pair, which
actually exceeds not only the local realistic limit, but
even the maximal quantum mechanically allowed value
of BCH ≈ 0.207, matching the maximum allowed by no-
signaling [13]. When quantifying the violation in Fig. 1
and Fig. 3 and in the discussion in App. A 1, we use
this normalization for the values of BCH , i.e., we set
rP = 2rH .

One method to close the coincidence loophole is to pro-
duce photon pairs only during well-defined time windows
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FIG. 1: (Color online) A diagram illustrating the coincidence-
time loophole. Here tAz = 1 (tAz = 0) corresponds to a detec-
tion event (no detection event) when Alice chooses measure-
ment setting sA = z, and similarly for Bob. In diagram i,
a coincidence window (black arrow) is selected based on Al-
ice’s detection event. A hacker can exploit this loophole by
staggering pulses in time as shown. In this case, if the ra-
dius (half width) of the coincidence window is between T and
3T , there are no {sA = 1, sB = 1} coincidence counts, imply-
ing that BCH in Eq. 1 is greater than 0, even for a classical
source. In diagram ii, a well-defined trial is used, where the
window is centered on a synchronization pulse (blue line); the
loophole vanishes as there is no longer a way to address only
the {sA = 1, sB = 1} coincidence term. If a large coincidence
window (solid arrow) is used, then every measurement setting
has a coincident event, resulting in BCH = 0. If a short trial
window (dashed arrow) is used, then there are only coincident
and single events at settings {sA = 0, sB = 0}, giving a Bell
value of BCH = −1.

by using a pulsed laser to pump the downconversion crys-
tal. The arrival of the photon pairs at Alice and Bob can
be synchronized, e.g., with a separate laser pulse sent to
each party. The trial begins when Alice and Bob choose
measurement settings just before the possible arrival of
the entangled photon pair(s). Each party’s measurement
outcome is equal to 0 if he or she did not detect any
photons and 1 if he or she detected one or more pho-
tons during the trial’s duration. This strategy was used
by the experiments in [14] and [9], except that multiple
one-photon-pair trials are performed at the same setting,
so those trials cannot be considered strictly independent
of each other. This dependence issue could be fixed by
discarding all but the very first trial for a given setting
(at the cost of much less usable data), or if the data anal-
ysis considers all events taking place while the settings
are held constant to constitute one trial. The latter ap-
proach, discussed in the following section, requires a new
type of Bell inequality, which we now present.

II. ANALYSIS DESCRIPTION

A high-level explanation of the coincidence-time loop-
hole is that the non-local method for inferring single
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photon-pair events invalidates the assumptions underly-
ing the Bell inequalities. The solution is to ensure that
each party knows in advance the time and duration of
a trial and relates recorded data accordingly. Moreover,
if the settings are held fixed over multiple trials, it is
necessary to make additional assumptions; for example,
one can assume that the probability distribution of mea-
surement outcomes is equal for every trial (that has the
same settings) and that each trial is statistically inde-
pendent of other trials. Two trials are statistically in-
dependent if and only if the probability of one trial’s
settings and outcomes does not depend on the settings
and outcomes observed during the other trial. Trials
that obey these assumptions are said to be “indepen-
dent and identically distributed” (i.i.d.) [15]. To avoid
making such additional assumptions, trials should be de-
signed so that a single new trial begins when Alice and
Bob make new settings choices. (An alternative using
setting-dependent coincidence window sizes is described
in Ref. [16].) For the experiments analyzed in Sect. IV,
each party’s measurement outcome for a single trial is
their entire timetag sequence recorded between making
settings choices, rather than a single detection or non-
detection. Thus, the complete results from each trial
consist of each party’s settings choice and the detection
timetag sequences they measured before the next setting
was applied. Note that in the absence of large separa-
tions between A and B, this may make it difficult to en-
sure locality by space-like separation of relevant events.
In principle, a hacker could have exploited the ability to
communicate settings between A and B before the end
of a trial to effect arbitrary, non-local-realistic probabil-
ity distributions. Therefore, in order for the experiments
below to show violation of local realism, we must assume
that Alice’s measurement setting was not communicated
to Bob (and vice versa) during a single trial.

Generalizing the notation introduced above, we de-
note the timetag-sequence measurement outcomes of the
two parties by tAsA and tBsB , where tAsA denotes A’s out-

come with the subscript sA indicating the setting used,
and similarly for B. Since the settings choices are un-
der experimenter control, their probability distribution
is known. For the Bell tests considered here, each of the
four setting-choice combinations has probability 1/4.

To review the principles of the analysis method in [8],
consider first a general local-realism test. The method
begins by constructing a Bell function B of trial results
such that a Bell inequality in the form

〈B(tAsA , t
B
sB , s

A, sB)〉LR ≤ 0 (2)

holds for all local realistic models. Here, 〈. . .〉LR denotes
the expectation with respect to a local realistic probabil-
ity distribution, where the settings distribution is fixed
as above. Given such a Bell function, a violation can be
demonstrated in an experiment by showing a statistically
significant positive value for an empirical estimate B̂ of
B̄ = 〈B(tAsA , t

B
sB , sA, sB)〉EX, where 〈. . .〉EX denotes the

expectation with respect to the experimental probability

distribution. The traditional method for evaluating sig-
nificance is via the sample standard error of B̂. This can
be used to assign approximate confidence intervals for
B̄ but cannot quantify the extremely high significance
of the evidence against local realism that we seek. To
quantify the significance, it is desirable to determine up-
per bounds on p-values in the framework of statistical
hypothesis testing. Given a test statistic, the associated
p-value is the maximum probability according to a null
hypothesis (if it was true) that the experiment would
produce a value of the test statistic equal to or more
extreme than the observed value. Smaller p-values can
be interpreted as stronger evidence against a hypothe-
sis. Here, our hypotheses are that local realism is true,
measurement settings are chosen independently and from
known distributions, and that measurement settings are
not communicated to the remote party during a single
trial. Assuming the latter two are satisfied, a small p-
value means local realism is unlikely to have produced
the observed data. Ref. [5] shows how to obtain p-value
bounds from the trial results.

A general strategy for constructing Bell functions that
can be used for conservative estimates of B̄ and p-value
bounds is given in Ref. [8]. Here, “conservative” means
that the estimates and bounds are statistically valid with
no approximations or extra assumptions on distributions
other than the standard ones, namely that the settings
probabilities are known and that local realistic distribu-
tions are mixtures of outcomes determined by the lo-
cal settings. The fundamental principle is to start with
settings-dependent “distance” functions lsA,sB (tA, tB) on
the measurement outcome pairs; such functions are re-
quired to satisfy a generalized, twice-iterated triangle in-
equality

l1,1(tA1 , t
B
1 ) ≤ l1,0(tA1 , t

B
0 )+ l0,0(tB0 , t

A
0 )+ l0,1(tA0 , t

B
1 ). (3)

(If l is non-negative and independent of the settings, then
this is the conventional twice-iterated triangle inequal-
ity. Here we use the term “distance function” to refer to
any function family l satisfying Eq. 3.) Since local re-
alistic models are given by probability distributions over
deterministic models where a party’s setting determines
the party’s measurement outcome, a Bell function can be
constructed from l according to

B(tAsA , t
B
sB , sA, sB) =


l1,1(tA1 , t

B
1 ) if sA = 1, sB = 1,

−l1,0(tA1 , t
B
0 ) if sA = 1, sB = 0,

−l0,0(tB0 , t
A
0 ) if sA = 0, sB = 0,

−l0,1(tA0 , t
B
1 ) if sA = 0, sB = 1.

(4)
The use of distance functions to obtain Bell inequalities
was introduced by Schumacher in Ref. [17].

For timetag sequence outcomes associated with exper-
iments that are intended to violate a CH-type inequal-
ity, Ref. [8] shows that one can define distance func-
tions according to a minimum cost of converting the
first timetag sequence into the second by shifting and/or
deleting timetags. A feature of the technique is that in
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the limit where the average time between detections is
large compared to the time-jitter (the uncertainty in the
time of the detection), the value of the distance function
can be made to match the value of any CH-type Bell
function. One issue is that the costs defining the dis-
tance function are parametrized, and we wish to choose
these parameters optimally given the characteristics of
the experiment. However, to avoid biases and remain
conservative, it is necessary to choose the parameters be-
forehand, independent of the data to be analyzed. That
is, contrary to what is often done in experiments, no
part of the “final data” can be used to find analysis
parameters, such as delays. Otherwise the validity of
confidence intervals or p-values is lost. The parameters
can instead be determined by setting aside a fraction of
the trials from the beginning of the experiment. This
“training data set” is used for optimizing analysis param-
eters. The remainder of the trials constitute the analysis
data set and should only be analyzed once the param-
eters have been chosen. In the applications below, the
training set serves to determine two Bell functions. The
first is designed to maximize a CH-like violation and can
be compared to traditional (that is, non-distance-based)
measures of violation. For reporting these violations, we
modify the conventional method so that the violation re-
ported is meaningful without assuming that the trials
are independent, as explained in App. B. The methods
for computing p-value upper bounds used by [5] require
Bell functions that are bounded, so we create a second
Bell function that is a systematically “truncated” version
of the first. The truncation method is general and can
be applied to any distance-based Bell function [8]. As
these p-value bounds are extremely small, we give their
negative logarithm base 2, called the log2-p-value (lower)
bound. See Sect. IV for the interpretation of p-values
and their comparison to Gaussian tails.

Because all the experiments discussed below were per-
formed before the statistical techniques were fully devel-
oped, their analysis was retrospective and in this sense
deviated from the ideal protocol (i.e., there could be
a slight bias in the bounds due to prior knowledge of
the data before analysis); the deviations are discussed in
App. C.

III. EXPERIMENTAL REALIZATION OF THE
COINCIDENCE-TIME LOOPHOLE

We realized the coincidence-time loophole experimen-
tally by combining two attenuated lasers on a beam split-
ter for both Alice and Bob (Fig. 2). For Alice, one laser
is polarized orthogonal to the polarizer setting for mea-
surement setting sA = 0, while the other laser is polar-
ized orthogonal to the polarizer setting for sA = 1, and
similarly for Bob. This allows the source to address the
measurement settings independently (i.e., when we send
a laser pulse polarized along (sA = 1)⊥, we should only
receive detection events for measurement setting sA = 0).

We then attenuate the sources to a mean photon num-
ber per pulse of around 10. The relatively high mean
photon number offsets the loss in the measurement and
detection process, but is still small enough to minimize
the effect of crosstalk in the polarizer (there is a small
chance that the polarization state to be blocked is still
transmitted through the polarizer). We then pulse the
lasers as shown in Fig. 1, with adjacent pulses separated
by T = 1µs. If we determine the number of coincidence
events by a non-local method of checking if Bob had a
detection event within a window (e.g., 2µs) around Al-
ice’s detection events, then we observe Bell inequality
violations up to BCH = 0.49 (with the normalization
discussed earlier), where Alice and Bob use the optimal
settings for an ideal maximally entangled state as speci-
fied in the caption of Fig. 1. A plot of the data analyzed
in this way is displayed in Fig. 3. We see a “violation” of
over 2700-σ (assuming Gaussian statistics). By altering
the two laser polarizations and increasing the mean pho-
ton number to offset any additional losses, we have been
able to exploit this loophole for a wide range of measure-
ment settings, see App. A 1. In addition, the degree of
violation can be altered by changing the laser polariza-
tion. As a final note, while the plot in Fig. 3 has a well-
defined structure (which would obviously make the hack
easy to detect), it is possible to broaden the observed “vi-
olation range” by probabilistically switching between lo-
cal hidden-variable models with different pulse spacings;
therefore, one cannot simply look at a plot of the Bell
violation versus coincidence window size to determine if
the coincidence-time loophole is being exploited.

In contrast, if Alice and Bob determine each trial’s
measurement outcomes locally using a coincidence win-
dow of fixed duration centered on a predefined time
rather than one centered on a detection (see App. A 2 for
details), we do not see a statistically significant Bell vio-
lation, as shown in Fig. 3. Furthermore, when we use the
distance-based analysis from Ref. [8], the results correctly
do not indicate that the system is behaving contrary to
local realism. Initially, in the training set, where delays
are determined to offset electronic latencies, the delays
on apparent coincidences were found to depend highly
on the measurement settings, due to the scheme for ex-
ploiting the coincidence loophole. From the other exper-
iments using the same setup, the latencies are known to
be small, so for demonstration purposes we did not offset
for electronic latencies. The resulting distance-based Bell
function (Eq. 4) is then significantly negative, showing no
evidence against local realism according to this analysis.

While the data set in this case is contrived to be clearly
determined by a local hidden-variable model, in real ex-
periments the issues are far more subtle. For example,
avalanche photo-diodes can have a count-rate-dependent
latency, and since each measurement setting can have dif-
ferent detection rates (for example, in Ref. [9], the count
rates differed by a factor of 3), it is critical that the anal-
ysis is not susceptible to these minor latency shifts. To
show that these issues are relevant, Ref. [8] proposes a
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FIG. 2: (Color online) A diagram of our experimental setup to
produce the local hidden-variable model described in Fig. 1.
On Alice’s side, we electrically pulse two 670-nm laser diodes
with a pulse width of 100 ns; these pulses then pass through
polarizers aligned orthogonally to her two measurement set-
tings (Pol (sA = 0)⊥ and Pol (sA = 1)⊥). That is, we emit
pulses that will not pass through one of the two measurement
settings, ensuring only one of the measurement settings will
detect our optical pulse. The laser pulse that passes through
the (sA = 0)⊥ polarizer is emitted 2µs before the (sA = 1)⊥

laser pulse. We attenuate the lasers enough so that after they
are combined on a beam splitter, each pulse has a mean pho-
ton number of approximately 10, to offset any system loss
while minimizing the noise due to crosstalk in the polarizers.
Similarly on Bob’s side, we combine two attenuated lasers on
a beam splitter. Here, the (sB = 1)⊥ pulse is emitted 2µs be-
fore the (sB = 0)⊥ pulse, and both are offset from Alice’s pho-
ton pulses by 1µs. The basis choice for the polarization anal-
ysis is implemented with a half-wave plate (HWP) and polar-
izer (Pol), where the settings are −11.25o for sA = 0, 33.75o

for sA = 1, 11.25o for sB = 0, and −33.75o for sB = 1 (corre-
sponding to the optimal CH-Bell-inequality-violating settings
of a perfect maximally entangled state). The photons are
then detected by avalanche photo-diodes (APDs), with an ef-
ficiency lower than 66 %, the outputs of which are recorded
using time-to-digital converters. The results of analyzing the
data both with a coincidence window determined by Alice’s
detection event, as well as a predefined coincidence window,
are displayed in Fig. 3.

coincidence-loophole-exploiting scheme whose statistics
closely match those of a standard photon-pair source.

IV. EXPERIMENTS WITH VIOLATION

The example above shows the use of the distance-based
analysis technique to “catch” an invalid violation of a Bell
inequality with a purely classical source. The following
two examples demonstrate the strength of this analysis
on data with actual quantum correlations.

First, we consider the data collected and analyzed in
Ref. [9], where the experiment had a high enough sys-
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FIG. 3: (Color online) Two plots of the measured Bell pa-
rameter, BCH (Eq. 1) (solid blue line), as a function of the
coincidence window radius for our experiment using a classical
source to produce the local hidden-variable model shown in
Fig. 1. When the data set is analyzed with a coincidence
window determined by a detection event (diagram i), the
coincidence-time loophole can be exploited to produce a Bell
violation (values greater than 0). We separated each pulse by
1µs, so with this model we see BCH > 0 for any coincidence
window radius between 1µs and 3µs. For coincidence win-
dows less than 1µs, we do not have any coincidence counts,
but we still have single counts, resulting in a negative Bell
parameter of BCH ≥ −1. While this value depends on the
chosen normalization, the minimal inferred value of rp is at
rp = 2rh, resulting in the most negative Bell parameter of -1.
With window sizes larger than 3µs, we assign coincident and
single events to nearly every detection event, resulting in a
Bell parameter of 0. In contrast, when the data is analyzed
with a fixed predefined coincidence window (diagram ii), or
using the technique described in the text, the Bell parame-
ter remains between -1 and 0, and therefore does not show a
violation of local realism. The results match well the predic-
tions given the structure of the classical source, as explained
in App. A 2. The positions of the transitions are due to the
location of the predefined coincidence window relative to the
pulse set. The transitions between 0 and −1 are not sharp
because of the slow desynchronization between the fixed win-
dows and the actual source pulse rate. That is, the window
slowly drifted such that it was not always centered on the
pulse set. For more details, see App. A 2.
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tem efficiency and low enough noise to be able to vi-
olate a CH Bell inequality without the detection loop-
hole. This system consisted of a mode-locked frequency-
tripled Nd:YAG laser (120-MHz repetition rate, 5-ps
pulse width, λ = 355 nm) which was attenuated to ap-
proximately 10 mW and focused on a pair of orthogo-
nal nonlinear crystals to produce 710-nm polarization-
entangled photon pairs via type-I spontaneous paramet-
ric downconversion [18]. Through precise spatial and
spectral filtering, as well as using TES detectors, a system
efficiency of 75%± 2% was achieved, enough to close the
detection loophole with the background counts present in
the system. However, due to the 1-µs timing jitter of the
detectors, the resultant timetag sequences cannot distin-
guish individual pulses, separated by only 8 ns; instead,
a Pockels cell was used to create 2-µs pulses every 40µs.
A predefined coincidence window of 2.4µs was centered
around a signal from the Pockels cell which produced the
laser pulse. Alice’s and Bob’s measurement outcomes
for that trial were “0” if no photons were detected dur-
ing that window and “1” if any photons were detected
during that window. These predefined coincidence win-
dows together with the use of the Pockels cells ensured
that with high probability at most a single photon-pair
was present during each trial. A Bell inequality designed
for single photon-pairs could witness violation of local
realism while avoiding the coincidence-time loophole dis-
cussed above. The data set was collected by changing the
measurement settings randomly every second, collecting
for 4450 different measurement setting choices. For the
analysis in Ref. [9], the data set was partitioned into 50
different Bell tests. The uncertainty was calculated from
the distribution of the 50 different Bell parameters using
the sample standard error. The reported value from this
approach was BCH = 5.4×10−5±7.0×10−6, a 7.7-σ vio-
lation, where the conventional interpretation of the large
violation assumes Gaussian statistics. In contrast, here
we analyze the same data set with the distance-based
method without making distributional assumptions or
approximations. Additionally, because the measurement
settings were fixed across many trials (i.e., multiple pho-
tons detected at each setting), the previous analysis re-
quired assuming that each trial was i.i.d., but the new
analysis treats each 1 s period with fixed settings as one
trial and therefore does not require this assumption. This
analysis is detailed in App. C. We find a log2-p-value
bound of 33, which means that for every local realis-
tic model, the probability that this analysis reports a
log2-p-value above 33 is less than 2−33 = 1.16 × 10−10,
a very unlikely event. While this result is equivalent
to a 6.3-σ violation for Gaussian statistics (we give the
Gaussian-equivalent violation only for comparison; it is
computed from the p-value bound of 2−33 by solving∫∞
x
e−x

2/2/
√

2π = 2−33 for x), slightly lower than the
7.7-σ violation reported in Ref. [9], it does not assume
Gaussian statistics. Thus, we see that with minimal
degradation of the evidence for Bell-inequality violation,
we have reduced the required assumptions on the system:

the trials need not be independent and identical and the
distributions are not approximated by Gaussians. If the
system is being hacked, lack of independence and Gaus-
sianity are even more pronounced.

Finally, we consider a different data set taken on the
same high-efficiency system, but without pulsing the
laser with a Pockels cell, so that the entanglement source
is effectively emitting continuously. To analyze the data
conventionally, we partition time into segments indepen-
dent of the data (that is, we impose a fixed coincidence
window). Since we are not determining the coincidence
window based on the data, it is not susceptible to the
coincidence-time loophole (see Fig. 1ii). However, be-
cause we are introducing a coincidence window that is
not related to the arrival time of photons, due to the de-
tector time-jitter, we are effectively introducing loss into
the system. That is, if the window is small compared to
the time-jitter, then it is possible that Alice and Bob’s
detection events from a single pair of photons are nev-
ertheless registered in different time segments, resulting
in two single counts without a coincidence count. In the
opposite limit, the window becomes too large, which re-
duces the Bell parameter due to the high likelihood of
counting uncorrelated photon pairs as coincidences. The
result of analyzing the data in this way is displayed in
Fig. 4. While the source quality is sufficient for a Bell
test (that is, it has high heralding efficiency and high en-
tanglement quality), the effective loss introduced by this
conventional analysis is too much for us to adequately ex-
tract the quantum correlations. If we instead analyze the
data using the distance-based approach discussed here,
we find a violation with a log2-p-value bound of 269, the
equivalent of a 19-σ violation (see App. C for more de-
tails). In addition to revealing a violation where con-
ventional analysis would not produce one, the confidence
in the violation is actually significantly larger than that
with the pulsed source presented in Ref. [9]. This is be-
cause we can utilize a system that is “on” more often than
a pulsed source (which by definition has no data collec-
tion between pulses), thereby resulting in substantially
more data.

V. DISCUSSION

As shown in the above examples, the distance-based
analysis of Ref. [8] is able to improve the statistical
significance of a Bell inequality violation, as well as re-
duce the required assumptions compared to a standard
analysis. While the analysis uses distance functions as a
measure of the violation, it has important features com-
mon to any conservative analysis of Bell inequality data.
First, to estimate the significance of the violation, it is
important to use p-value bounds instead of standard devi-
ations. The latter are unreliable for the high significance
of typical Bell inequality violations. Second, to prevent
overestimating the statistical significance of the Bell in-
equality violation, delays, coincidence windows and other
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FIG. 4: (Color online) A plot of the CH-Bell parameter from
a non-pulsed experiment, analyzed using different predefined
coincidence windows. While the system is capable of a detec-
tion loophole-free violation as verified in Ref. [9], the ineffi-
ciencies of a conventional analysis with predefined coincidence
windows are unable to produce a non-classical result: for
small window sizes, the analysis introduces loss because of the
timing uncertainty (time-jitter) of the detectors, causing the
mis-assignment of some detection events as non-coincidence
counts; large windows catch all coincidences, but also increase
the system noise, to which the CH Bell inequality is very sen-
sitive, again resulting in a reduced Bell parameter. Here we
show the Bell parameter for many different coincidence win-
dows, the blue solid line is a fit to all of the data points
(the points are spaced by 10 ns), each of which lie within the
thickness of the line. With conventional analysis, we do not
observe a Bell violation (above the red dashed line) for any
coincidence window size. With the new analysis discussed in
[8], we observe a violation with a log2-p-value bound of 269.

such analysis parameters should be determined from a
training data set (that is then discarded) rather than the
data to be analyzed. Otherwise, if the final data set is
used to determine these parameters, the reported viola-
tion may be biased by statistical fluctuation rather than
reflect a fair estimate. Finally, all Bell tests should have
predefined trials to avoid opening up additional loopholes
(e.g., the coincidence-time loophole). The predefined tri-
als may be based on a timetag sequence according to the
chosen settings as presented here, specific laser pulses
detected on a photodiode as presented in Ref. [9], or the
detection of heralding photons as in the ion experiments
of Ref. [6].
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Appendix A: Additional Experimental Details

This section further discusses our classical source that
exploits the coincidence time loophole. The first subsec-
tion explains how the source can be tuned to match Alice
and Bob’s expectations (i.e., to give violations consistent
with quantum mechanics). In the second subsection we
use a predefined coincidence window to analyze the data
from the classical source and find no violation of local
realism.

1. Controlling Violation Size

In an actual attempt of a Bell test, Alice and Bob
would likely suspect the presence of a hacker if their es-
timated CH-Bell parameter is beyond the quantum me-
chanical limit of (

√
2− 1)/2. Even more so, if Alice and

Bob know that they have low system efficiencies, then
the value they expect is well below (

√
2 − 1)/2. In par-

ticular, with low efficiency, Alice and Bob design their
system to use states of the form cos θ|HH〉 + sin θ|V V 〉
(see Ref. [9, 10, 19]) to maximize the measured violation.
Consequently, a hacker would want Alice and Bob to be-
lieve that they prepared a less entangled state (states
with θ farther from π/4). If Alice and Bob estimate θ for
their state, there is a maximum θ-dependent Bell parame-
ter they expect. Ideally, the hacker controls the measured
Bell parameter to match Alice and Bob’s expectation and
avoid suspicion. In our case, with the source depicted in
Fig. 2, we can tune the source polarizers (and adjust the
laser diode brightness to compensate the increased loss)
to create nearly any value of the Bell parameter. The
results of several measurements using this technique are
displayed in Fig. 5.

2. Predefined Window Analysis

To use a predefined window to analyze the data ex-
ploiting the coincidence-time loophole, we first add in a
synchronization signal at the rate equal to the rate that
the source emits a set of pulses, 100 kHz in our case.
As there was no actual synchronization signal when the
data set was taken, we implement this signal in post-
processing. For comparison with Fig. 1ii, where the pre-
defined coincidence window is in the center of the pulse
set, we placed the first synchronization signal in the cen-
ter as determined by the first two detection events in
the data set. We then create a periodic signal by spac-
ing each synchronization signal by 10 µs (= 1/100 kHz).
To compensate for the relative temporal drift between
the function generator and the timetagging electronics,
we reset the synchronization signal every 500 detection
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FIG. 5: (Color online) A plot of several measured data points
from our classical source when analyzed incorrectly (suscepti-
ble to the coincidence-time loophole discussed in Sect. I). The
blue curve is the predicted quantum mechanical maximum
given the state cos θ|HH〉+ sin θ|V V 〉. Here, we assumed Al-
ice and Bob have a target θ and use the optimal measurement
settings for their presumed input state. We then adjusted
the source polarizer angles to match the quantum mechani-
cally allowed maximum Bell parameter, given Alice and Bob’s
measurement settings. The resulting measurements (red data
points) are indistinguishable from the quantum mechanical
expectation.

events to be re-centered in the pulse set. If the separa-
tion between adjacent pulses is 1 µs (see Fig. 2), then
we would expect a Bell parameter close to 0 for windows
less than 0.5 µs, since there will be neither single nor
coincident events (other than occasional dark counts, no
event will fall within the predefined window). For win-
dows between 0.5µs and 1.5µs we would expect a Bell
parameter close to −1, since we see events primarily from
{sA = 0, sB = 0}. That is, pAB(tA0 = 1, tB0 = 1) = 1,
pA(tA0 = 1) = 1, and pB(tB0 = 1) = 1 in Eq. 1, while all
other terms are 0. Finally, for predefined window sizes
larger than 1.5 µs, all terms in Eq. 1 are equal to 1, lead-
ing to a Bell parameter of 0. The results of analyzing
the classical data with a predefined coincidence window
of variable width are displayed in Fig. 3.

Appendix B: Conservative Estimates of
Bell-Violation

For each experiment, the timetag Bell function B used
has expectations that are related to the violation of a CH-
type inequality by multiplying the latter by the expected
number of photon pairs. In the limit of low time-jitter
compared to the mean photon-pair inter-arrival time, the
expectations according to B and that expected from the
CH-type inequality converge. It is therefore worthwhile
to estimate the expected value of the Bell function for
comparison purposes. In principle, for each trial, the
expectation of B is an experimental observable that, if
greater than zero, witnesses violation of the Bell inequal-

ity associated with B. If the trials are i.i.d., the expec-
tation can be estimated empirically using conventional
methods. For tests of LR, this is usually done by esti-
mating the settings-conditional expectations of B, which
are then added. The uncertainty is obtained accordingly.
When the trials are not necessarily independent or iden-
tical, there may be no single expectation of B to esti-
mate, so the conventional method cannot be used. Here
we give an alternative that produces meaningful results
in the general case. It statistically agrees with the con-
ventional method when the trials are i.i.d.: While the
estimated uncertainties obtained are slightly larger on
average, they differ by an amount that is comparable to
the expected statistical fluctuations in the estimate.

We emphasize that the purpose of these methods is to
obtain an estimate of a physical quantity and the associ-
ated uncertainty. They do not yield certificates against
local realism (see [5] for a discussion). While we obtain
uncertainties that are appropriate for dependent trials
whose expectations change in time under normal exper-
imental conditions, a sufficiently determined adversary
can still ensure that our uncertainties are overly opti-
mistic.

Here is the procedure for our method. A mathematical
discussion follows the procedure.

1. a. Initialize the running value of the estimated

total Bell violation by setting b̂[0] = 0.

b. Initialize the running value of the estimated
variance û[0] = 0

2. For each trial result di, 1 ≤ i ≤ N in order, do the
following

a. Before considering di:

1. Predict the settings-conditional expected
Bell-function values 〈B(Di)|Si = s〉 at the
next trial as bpred,i(s). This prediction
can be based on any information avail-
able before the ith trial occurred, includ-
ing calibrations, theory and previous trial
results. Here, Si = (SA

i , S
B
i ) are the joint

settings random variables and Di are the
random variables whose outcome values
are the di.

2. Determine the predicted average
Bell function violation b̄pred,i =∑

s bpred,i(s)ps, where ps is the prob-
ability of settings choice s. Note that
〈bpred,i(S)〉 = b̄pred,i is known exactly
before the ith trial.

b. Now consider di:

1. Compute b̂[i] = b̂[i−1] + B(di) −
(bpred,i(si)− b̄pred,i).

2. Compute û[i] = û[i−1] + (B(di) −
bpred,i(si))

2.
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3. Report the estimated total Bell violation as b̂[N ]

with an approximate 68 % confidence interval of

b̂[N ] ±
√
û[N ].

The simplest method for predicting the settings-
conditional Bell-function expectations in step 2.a.1 of the
procedure is to compute the sample means conditional on
settings from the first i− 1 trials and the training trials.
This works well for stable experiments. For the data
analyses in this paper, we used a segment of recent tri-
als (including the training trials) instead. We formulated
the procedure for a fixed Bell function, but the procedure
also works if the Bell functions are chosen adaptively be-
fore each trial.

Consider a sequence of trials with each trial’s result
given by di. We now adopt the usual conventions for
random variables and their outcome values, where ran-
dom variables are capitalized. Thus Di is the random
variable for the result from the ith trial, and di is its out-
come value in a particular run of the experiment. The re-
sults consist of the measurement outcomes and settings.
We let TX

i and SX
i be the respective random variables

for the measurement outcome and setting of party X in
the ith trial. We let D denote the sequence of random
variables Di. The random variables Di are not neces-
sarily independent, but the distributions of the settings
SX
i are jointly uniform and therefore independent of each

other. We let Hi−1 be a random variable that captures
the history of events preceding trial i, including events
not captured by D but that are relevant to the experi-
ment. In particular, Hi−1 determines Dj for j < i and
may include additional experimentally relevant informa-
tion. The goal is to obtain an empirical estimate of the
quantity

b̄[N ](h) =

N∑
i=1

〈B(Di)|Hi−1 = hi−1〉, (B1)

and a confidence interval for this estimate. Here, hi−1
is the actual value of the history random variable.
Throughout, we assume that the relevant real-valued ran-
dom variables have finite second moments. We inter-
pret b̄[N ](h) as the total Bell inequality violation actually

present in the experiment, which we estimate with b̂[i].
We do not assume that the outcome value hi−1 is known,
just that it is well-defined for a given run of the exper-
iment. Define b̄i(h) = b̄i(hi−1) = 〈B(Di)|Hi−1 = hi−1〉.
This is the expected value of the Bell function for the up-
coming ith trial, just before the trial is performed. We
use the following conventions to refer to functions of ran-
dom variables and the random variables defined by these
functions: Except for the Bell function B, we use lower
case annotated symbols for the functions. Applying a
function to a random variable as in the expression b̄i(H)
defines a new random variable. To simplify the notation,
we also refer to this random variable by its upper case
variant, so that B̄i = b̄i(H). (Here H refers to the full
history.) The outcome values of this random variable are
then denoted by b̄i = b̄i(h).

For i.i.d. trials, b̄i(h) = 〈B(Di)〉 and is independent of

i and h. The sum b̄[N ](h) =
∑N

i=1 b̄i(h) can then be inter-
preted as the conventional total Bell inequality violation
of the experiment, if it is positive. For the empirical

estimate of b̄[N ](h) we could compute
∑N

i=1B(di), but

instead we use the less-noisy estimate b̂[N ] from the pro-
cedure. The estimate is less noisy because we subtracted
from b(di) the quantity (bpred,i(si)− b̄pred,i), whose mean
is guaranteed to be zero but is expected to be positively
correlated with the original estimate.

The first task is to show that b̂[N ] is an unbiased es-

timator of b̄[N ](h) (that is 〈B̂[N ]〉 = 〈b̄[N ](H)〉). We use
E(A|B) to denote the conditional expectations of A with
respect to B interpreted as a function of the random
variable B. The notation 〈. . .〉 is reserved for uncondi-
tional expectations and expectations conditional on spe-
cific outcome values. Since E(. . . | . . .) denotes random
variables, they may occur inside 〈. . .〉. By expanding the
definition, we have〈

B̂[N ]

〉
=

〈
N∑
i=i

B(Di)− (Bpred,i − B̄pred,i)

〉
. (B2)

The expectation of Bpred,i − B̄pred,i is 0 by design, so〈
B̂[N ]

〉
=

N∑
i=i

〈B(Di)〉 (B3)

=

N∑
i=i

〈E(B(Di)|Hi−1)〉 (B4)

=

N∑
i=i

〈
b̄i(H)

〉
(B5)

=
〈
b̄[N ](H)

〉
, (B6)

where the identity 〈B(Di)〉 = 〈E(B(Di)|Hi−1)〉 fol-
lows from the rules for iterated conditional expectations.
(This is a special case sometimes referred to as the “law
of total expectations”.)

The second task is to determine an approximate 68 %

confidence interval for b̄[N ](h) around b̂[N ](d). Note that
the confidence interval is itself a random variable with
respect to H that should reflect what actually happened
during the experiment as indicated in the definition of
b̄[N ](h). Formally, we seek a bound δ for a (conservative)

confidence interval for b̄[N ](h) − b̂[N ](d) that satisfies a
coverage condition, namely that before the experiment,

the probability that −∆ ≤ b̄[N ](H) − b̂[N ](D) ≤ ∆ is at
least 68 %. Here ∆ is the random variable with outcome
values δ. (We could consider −δ as the lower endpoint of
a one-sided confidence set with no upper bound, in which
case we require that before the experiment, the proba-

bility that −∆ ≤ b̄[N ](H) − b̂[N ](D) is at least 84 %.)
Because the trials may not be i.i.d., the standard esti-
mates of variance cannot be applied to determine δ. Our
method yields an estimate of an error bound given rela-
tively mild assumptions and sufficiently large N .
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Let b̂i = B(di) − bpred,i(si) + b̄pred,i be the incre-

ment b̂[i]− b̂[i−1] of the estimated Bell violation from the

ith trial. By design of bpred,i, we have E(B̂i|Hi−1) =
E(B(Di)|Hi−1) = b̄i(H).

We investigate the statistics of the estimation error

∆[N ] = b̂[N ](D)− b̄[N ](H) =
∑N

i=1 ∆i, with

∆i = B̂i − B̄i. (B7)

Note that 〈∆i〉 = 0 and 〈∆[N ] = 0〉, so the variance of
∆[N ] is

Var(∆[N ]) =

〈(
N∑
i=i

∆i

)2〉
. (B8)

Since E(∆i|Hi−1) = 0, the ∆i are martingale incre-
ments adapted to the Hi. (For the relevant theory of
martingales, see Ref. [20].) Martingale increments at
different times are uncorrelated. That is, for i > j,
〈∆i∆j〉 = 〈E(∆i∆j |Hj)〉 = 〈E(∆i|Hj)∆j〉 = 0. A con-
sequence is that the variance of the estimation error sat-

isfies Var(∆[N ]) =
〈∑N

i=1 ∆2
i

〉
. In detail,〈(

N∑
i=1

∆i

)2〉
=

〈∑
i>j

2∆i∆j +

N∑
i=1

∆2
i

〉
(B9)

=
∑
i>j

2〈∆i∆j〉+

〈
N∑
i=1

∆2
i

〉
(B10)

=

〈
N∑
i=1

∆2
i

〉
. (B11)

Since we do not know b̄i(h), we cannot directly com-
pute δ2i as our estimate of 〈∆2

i |Hi−1 = hi−1〉. But we
can use the prediction b̄pred,i of B̄i(h) made before the
ith trial. Recall that the variance of a random variable
R is the minimum expectation of (R − m)2, where the
minimum is achieved by m = 〈R〉. In conditional form,
this implies E(∆2

i |Hi−1) ≤ E((∆i −M)2|Hi−1) for any
M that is a function of Hi−1, because ∆i is zero-mean
conditional on Hi−1. We set M = B̄pred,i−B̄i and define

δ̂i = δi −m = B(di)− bpred,i(si), (B12)

which we can compute from the available information.
The variance inequality now implies E(∆̂2

i |Hi−1) ≥
E(∆2

i |Hi−1), so û[N ] =
∑N

i=1 δ̂
2
i can serve as a biased-

high estimate of the desired variance. Formally,

〈Û[N ]〉 =

N∑
i=1

〈∆̂2
i 〉 (B13)

=

N∑
i=1

〈E(∆̂2
i |Hi−1)〉 (B14)

≥
N∑
i=1

〈E(∆2
i |Hi−1)〉 (B15)

=

N∑
i=1

〈∆2
i 〉 (B16)

= Var(∆[N ]), (B17)

where Û[N ] is the random variable corresponding to û[N ].

To justify
√
û[N ] as an estimated uncertainty requires

additional assumptions on the random variables. For
Chebyshev-type inequalities involving variance and a va-
riety of exponential bounds on tail probabilities, bound-
edness of B suffices (and is typically stronger than nec-
essary). But one would like to use appropriate central-
limit theorems in the same way as for i.i.d. trials. The
conditions under which such central-limit theorems hold
are surprisingly broad, but not unrestricted. Ref. [20]
has a variety of relevant versions that can be applied in
non-adversarial situations where the square errors ∆2

i are
asymptotically well-behaved. We therefore suggest that
in typical physics experiments with sufficiently many tri-
als without excessive stability problems, the approximate
68 % confidence interval of the total Bell violation can be
given as b̂[N ]±

√
û[N ]. We expect this interval to be con-

servative under most conditions even though the trials
need not be i.i.d.

Appendix C: Discussion of Analyses

Here we describe in detail the distance-based analyses
of the data from the three experiments discussed in the
paper. The results reported are from final analyses that
adhered to the protocol of inferring parameters from the
training set and applying them adaptively to the anal-
ysis set. However, the final analyses were not strictly
blind; the data set was available for some time while our
analysis methods were being developed and there were
multiple early analysis attempts involving various tech-
niques. Features of the data discovered in these attempts
required changes in preprocessing and strategy. These
changes are described below as needed.

Each data set was analyzed by two or three meth-
ods for comparison purposes. The simplest method is
a conventional analysis based on coincidence counting.
The results of this method are susceptible to the coin-
cidence loophole and require strong assumptions on the
source and its statistics. The second method involves
our distance-based Bell-function analysis applied to trials
consisting of all the data acquired while the settings were
held fixed. The third computes “certificates” of violation
(given as log2(p)-values) using the prediction-based-ratio
(PBR) protocol [5, 21] with truncated versions of the
distance-based Bell functions. We discuss the analysis of
the three experiments in reverse order, which is also the
order in which the data sets were received and analyzed.
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1. Continuously Emitting Quantum Source

The data set for this experiment consists of 3953 trials
with randomly chosen settings. The measurement out-
comes consist of a sequence of timetags for each party,
where each timetag records a detection event. The av-
erage numbers of recorded detections per trial are ap-
proximately 1400 on setting 1 and 4900 on setting 2 for
both parties. Each trial’s results are stored in one file.
The files for eight trials were corrupted and therefore
discarded, leaving 3945 trials. The timetag sequences
were preprocessed in two steps. The preprocessing pa-
rameters were determined at an early stage of analysis
with a set consisting of 97 × 4 randomly chosen trials
with 97 at each settings choice. (The final analysis was
performed in the order in which the experiment was per-
formed with the initial trials used for training–see below.
The preprocessing parameters suggested by the training
set for the final analysis were the same up to statisti-
cal fluctuations, so we did not change them for the fi-
nal analysis.) The first preprocessing step compensated
for transient artifacts near the beginning and end of the
timetag sequences. We therefore used only timetags from
the middle portion of the sequence determined as follows:
The sequence durations are approximately 1 s. For each
trial, we first determined the earliest recorded time t0
in both parties’ sequences and set t′0 to be the second
multiple of 108 past t0 (in the time units used for the
timetags, 156.25 ps) Thus t′0 = (bt0/108c + 2)108. We
then used only timetags with recorded times t satisfying
t′0 ≤ t ≤ t′0 + 6 × 109. We remark that this prepro-
cessing step is non-local, which is in general undesirable.
We are not aware of any way in which a local realistic
(LR) source could exploit this, though the possibility ex-
ists. The second preprocessing step corrected a system-
atic timing offset between the recorded times for the two
parties. The offset was applied to all timetag sequences
of party A and involved shifting the timetags by −685
time units (i.e., 107 ns). For comparison, the time-jitter
determined as the typical distance between apparent co-
incidences is of the same order.

All analysis attempts used the preprocessing of the pre-
vious paragraph. We describe the final analysis first and
then discuss how we arrived at the final analysis. For the
conventional analysis, we used the first 197 trials to de-
termine the optimal coincidence window. We then com-
puted the number of coincidences for each trial. The co-
incidences were determined as described in [8] rather than
with the simple Alice-centered windows used in the main
text. We then computed the estimated total violation as
described in App. B according to the Bell-inequality used
for the original analysis of the pulsed quantum source in
Ref. [9]. The total violation according to this analysis
is 5.14(10) × 104, corresponding to a nominal signal-to-
noise ratio (SNR) of 59.7. The latter is the ratio of the
total violation to the estimated uncertainty; see App. B.

The distance-based analysis was performed adaptively.
An adaptive procedure was required because the parame-

ters of the distance-based Bell function used are sensitive
to the apparent drifts in count-rates over time. Start-
ing at the 201st trial and then every 400 trials, we re-
optimized the Bell function parameters on the previous
800 trials. (Before the 801st trial we used all the tri-
als already processed, including the first 200.) The Bell
function was then computed for each of the next 400
trials, before re-optimizing the parameters. We then es-
timated the total violation as described in App. B. The
total violation according to the distance-based analysis is
2.52(10)× 104, corresponding to a nominal SNR of 24.5.

The Bell-function values from the distance-based anal-
ysis were then used in an adaptive version of the PBR
analysis. This required adaptively computing the param-
eters for Bell-function truncations and the mixtures used
in constructing the test factor according to the protocol
in Ref. [8]. This proceeded similarly to the distance-
based analysis, except that the parameters were updated
every 10 trials and optimized on the last 400 (or less) tri-
als. We chose the more frequent update because there is
little computational cost in doing so and the truncation
and mixture parameters are sensitive to small drifts in
the conditional means of the Bell function. The log2(p)-
value bound obtained is 269, equivalent to a one-sided
Gaussian SNR of 19.

The final analysis was performed after two previous
analyses. The first analysis involved partitioning the
trials into randomly chosen sets of four matched trials,
one at each of the settings choices. The version of the
distance-based analysis available at the time yielded a
significantly smaller total violation than the final analy-
sis. The PBR analysis at the time was faulty, but sug-
gested a significantly higher log2(p)-value bound than re-
vealed by the final analysis. Because the randomization
strategy used in this analysis is not acceptable for cer-
tification purposes, a second analysis was performed af-
ter the analysis procedures were updated. During this
analysis, we discovered that the count-rate variations in
time significantly affect the log2(p)-value bounds, requir-
ing that the analysis be performed adaptively. A choice
for adaptation parameters was made after investigating
the timescale of the variations. The estimated total vi-
olation found was the same within error bars as the one
for the final analysis. The third and final analysis was
required because we discovered an error in our original
method for Bell function truncation in the PBR analy-
sis resulting in an overly optimistic log2(p)-value. The
adaptation parameters were chosen for the final analysis
based on our experience in the second round of analy-
sis. Because of this history, a moderate bias in the esti-
mated total violation and in the log2(p)-value bounds is
expected.

2. Pulsed Quantum Source

The data set for this experiment consists of 4450 trials.
The settings for each trial were chosen randomly. Each
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party’s measurement outcome consists of a sequence of
time-tagged detections. The source was pulsed with the
pulses synchronized with a clock whose “ticks” were also
recorded for each trial. There were approximately 12500
pulses per trial before preprocessing. The original analy-
sis of the data reported in Ref. [9] analyzed each pulse as
a trial. To consider the results of this analysis as evidence
against local realism requires an assumption such as that
each pulse is independent and identical. Defining trials so
that they contain all the measurements that occur while
the settings are fixed avoids making this assumption.

The sequences of timetags from each trial were prepro-
cessed as follows: We first corrected for the time-offset
of A as we did for the data from the continuously emit-
ting source. We then removed detections outside narrow
windows containing each pulse. The windows were de-
termined relative to the recorded clock ticks and have
a width of 16000 time units. The pulses are separated
by about 256000 time units. We dropped the first 200
pulses and saved the 12200 subsequent pulses, dropping
the rest. To correct for intermittent interference causing
excess detections, we “blanked out” (removed detections
in) pulses where there was an excess number (three or
more) of detections outside pulse windows in the period
spanning three pulses before and after. Note that the
preprocessing is local in the sense that the parties can in
principle perform it without communicating, given that
they have synchronized clocks.

As in the case of the continuously emitting source,
there were several analysis attempts. In the first attempt,
the order of the trials was randomized and we only con-
firmed that the violation based on distance-based anal-
ysis was consistent with the results reported in Ref. [9].
The PBR analysis was not performed at this time. Later
analyses were performed in parallel with the analysis of
the continuously emitting source, with the final analysis
correcting the same problem with our original implemen-
tation of Bell-function truncation.

For the final analysis, we did not perform a version
of the conventional coincidence analysis as the pulsed
nature of the source made this unnecessary. Applying
the distance-based analysis using the distance-based Bell
functions of Ref. [8] failed to show a violation; we at-
tribute this to the presence of an excess of multiple de-
tections during pulses and the sensitivity of the analy-
sis to detection-rate changes. (We attribute most mul-
tiple detections to local detection artifacts, such as de-
tector after-pulsing, rather than photons. These local ef-
fects confuse the distance-based analysis by adding non-
violating LR signals.) We therefore used a simpler Bell-
function with no parameters. This Bell-function is ob-
tained by adding the Bell-function derived from the Bell
inequality used in Ref. [9] over the detections for each
pulse. For this purpose, multiple detections in a pulse are
counted as one. This is an instance of a general strategy
for pulsed sources where the settings are not changed
for every pulse. Consider a Bell function B for the
detections from one pulse satisfying the Bell inequality

〈B(T, S)〉LR ≤ 0, where T is the detection pattern and S
the measurement settings. If we have a sequence of pulses
at fixed measurement settings S with detection patterns
Ti, we can define a Bell function B′(T, S) =

∑
iB(Ti, S),

where T is the sequence of detection patterns Ti. The
Bell inequality 〈B′(T, S)〉LR ≤ 0 is also satisfied by B′.
To avoid assuming that trials are i.i.d., one can analyze
the violation of B′ instead of B. This change of view
enables the PBR analysis: As noted in Ref. [8], all Bell
functions for two parties and two settings can be derived
from a set of distance-like functions satisfying an iter-
ated triangle inequality. This makes it possible to ap-
ply the PBR analysis as we have done here. Although
the parameters of the Bell-function require no training,
the total violation was computed using the procedure of
App. B with an initial set of 200 trials set aside for ini-
tializing the predictions. In each step, the predictions
in the procedure were updated using the previous 200
trials to account for experimental drift. The distance-
based analysis found a total violation of 1.41(18) × 103,
corresponding to a nominal SNR of 7.8.

For the PBR analysis, we computed the necessary
truncation and mixture parameters adaptively based on
the Bell function values obtained in the Bell function
analysis. The first 400 trials were reserved for training.
Starting with the 401st trial, we updated the parame-
ters every 200 trials based on the previous 1600 trials (or
less, initially). We found a log2(p)-value bound of 33,
equivalent to a one-sided Gaussian SNR of 6.3.

3. Classical Source

The experiment on the classical source consisted of 9
groups of four trials at each of the four settings choices.
The settings were not chosen randomly. Thus the inter-
pretation of an apparent violation requires i.i.d. assump-
tions. Of course, the source was designed to be LR, so no
real violation can be observed. The data from this exper-
iment was analyzed just once, after the distance-based
analysis matured. Each trial has approximately 97000
detections for each party, independent of the settings.
The first group was set aside for training. A first step
in all our analyses was to determine systematic timing
offsets and an estimate of the time-jitter; both were done
by checking timetag differences on apparent coincidences.
For this source, the timetag differences immediately re-
vealed that there was an “unexpected” pattern in the
detections. That is, since there was no attempt at hid-
ing that the source was exploiting the coincidence-time
loophole, the resulting characteristic detection delays are
obvious. (Ref. [8] demonstrates a simulated source that
can successfully hide these detection patterns.)

For the purpose of demonstrating that a standard co-
incidence analysis (windows determined by Alice’s de-
tections) is deceived by this source, we optimized the
coincidence window as usual on the training set and ap-
plied the coincidence analysis to the rest. The total vi-
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olation found was 6.6488(24) × 105 for a large nominal
SNR of 2781. We optimized the Bell function for the
distance-based analysis but were unable to detect a vi-
olation. In fact, the estimated total Bell function was
significantly negative. We cannot exclude the possibility
that a better choice of parameters for the timetag Bell

function exists, though we know on theoretical grounds
that a violation should not be observable according to
the distance-based analysis. Given the absence of viola-
tion, the PBR analysis is guaranteed to use trivial test
factors, giving a log2(p)-value bound of 0.
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