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We generalize and extend the stochastic path integral formalism and action principle for contin-
uous quantum measurement introduced in [A. Chantasri, J. Dressel and A. N. Jordan, Phys. Rev.
A 88, 042110 (2013)], where the optimal dynamics, such as the most likely paths, are obtained
by extremizing the action of the stochastic path integral. In this work, we apply exact functional
methods as well as develop a perturbative approach to investigate the statistical behaviour of con-
tinuous quantum measurement. Examples are given for the qubit case. For qubit measurement with
zero qubit Hamiltonian, we find analytic solutions for average trajectories and their variances while
conditioning on fixed initial and final states. For qubit measurement with unitary evolution, we
use the perturbation method to compute expectation values, variances, and multi-time correlation
functions of qubit trajectories in the short-time regime. Moreover, we consider continuous qubit
measurement with feedback control, using the action principle to investigate the global dynamics
of its most likely paths, and finding that in an ideal case, qubit state stabilization at any desired
pure state is possible with linear feedback. We also illustrate the power of the functional method
by computing correlation functions for the qubit trajectories with a feedback loop to stabilize the
qubit Rabi frequency.

I. INTRODUCTION

Continuous measurement of quantum systems [1, 2],
the study of quantum systems states under the influence
of observation prolonged in time, has been a topic of con-
siderable activity in recent years. Particularly, for the
measurement of an individual microscopic system that is
weakly coupled to measurement apparatus, the system’s
state and its conditioned evolution in time, the so-called
diffusive-type quantum state trajectory [3–6], have been
intensively explored for applications in quantum infor-
mation and quantum control. Some of the active fields
are quantum state estimation (i.e., estimating the pre-
measurement state of an ensemble of identically prepared
systems [7]), conditional reversal of measurement [8], and
the preparation of entangled states [9]. The ability to
continuously measure quantum systems also opens the
possibility of feedback control [10], which has also been
investigated for topics such as the stabilization of coher-
ent oscillations [11–14] and rapid state purification [15].

This growing interest in the quantum systems under
weak continuous measurement has motivated a thorough
analysis of quantum trajectory statistics. Of notable im-
portance are advances in experiments, such as the mea-
surement of superconducting qubits [16, 17], which has
allowed the tracking of the trajectories of the quantum
state with high fidelity in a single measurement run, al-
lowing the statistics of selected subensembles of trajec-
tories to be explored. The authors recently developed
an action principle [18] over a doubled quantum state
space, based on a path integral representation of proba-
bility distributions of quantum trajectories. The action
principle, implemented by extremizing of the stochastic
path integral’s action, was used to investigate the optimal
behaviour of the trajectories with arbitrary constraints,
such as fixing the final boundary condition [19, 20]. The

stochastic path integral and the optimum likelihood ap-
proach provide a convenient way to investigate statistical
distributions and globally optimal dynamics of quantum
state evolution, in addition to the stochastic master equa-
tions describing the quantum trajectories and the Lind-
blad master equations describing their average evolution
[3, 21].

In this paper, we continue the development of the
stochastic path integral formalism [18], to further explore
advantages of having the full joint probability distribu-
tion of quantum trajectories. This includes computing
statistical averages or expectation values with the abil-
ity to condition on definite quantum states at particular
times. We present several examples of the formalism in-
cluding a qubit system under the influence of measure-
ment alone, measurement with concurrent unitary dy-
namics, and qubit measurement with feedback control.
In these examples, the statistics of qubit trajectories are
computed using developed techniques for the path inte-
gral, such as multi-dimensional Gaussian integrals and
diagrammatic expansion theory. Moreover, in an exam-
ple of qubit measurement with linear feedback, we utilize
a phase portrait analysis to investigate the most likely be-
haviour of the system dynamics, revealing a simple and
practical approach for qubit state stabilization.

There have been past works on continuous quantum
measurements with path integrals, so we wish to discuss
how our approach bears both similarities and differences
to them. An early approach suggested by Feynman [22]
and later independently developed by Mensky [23] is a
restricted path integral: a modified version of the Feyn-
man path integral to only sum over paths that contribute
to a measurement record. Caves, and also Barchielli [24–
26], constructed similar path integrals by adding coarse-
graining (resolution) functions describing the effect of the
measurement. In these path integral approaches, ones
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only consider the distribution of the measurement records
(it can be derived from the probability amplitude, see
Appendix A), whereas in our approach, we formulate a
path integral in quantum state space to represent a joint
probability distribution of the measurement readouts as
well as quantum state trajectories. Wei and Nazarov dis-
cussed a different approach to continuous measurements
using the Keldysh path integral technique [27]. In Breuer
and Petruccione’s path integral [2, 28], the notion of the
sum over pure state paths in Hilbert space is applied,
resulting in a different type of doubled state space that
does not yield an action functional.

The stochastic path integral formalism and the anal-
ysis of its action are also applied in classical stochastic
processes. For instance, the formalism is used in studying
the dynamics and distribution of transmitted electronic
charge [29], the neural network [30], and the large de-
viations from typical behaviours (rare events) [31]. Our
approach is similar to the Martin-Siggia-Rose formalism
[32], which involves adding conjugate fields through the
Fourier integral form of delta functionals enforcing diffu-
sive dynamics. Notably, one can think of the quantum
trajectories on a finite dimensional state space as analo-
gous to classical random processes in configuration space
of that dimension.

This paper is organized as follows. In section II,
we review the stochastic path integral formalism and
its extremized action equations, for a general finite-
dimensional system with a Markovian setup for weak
continuous measurement. In section III, a specific mea-
surement setup for a qubit is presented, which is used
throughout this paper. In section IV, we show that, in
the case without qubit Hamiltonian, we can perform the
full path integration directly to get the multi-time corre-
lation functions for the preselected and postselected qubit
state. In section V, the diagrammatic expansion the-
ory is presented as an alternative approximation method
for computing multi-time correlation functions, with ex-
amples for qubit measurement with Rabi oscillation. In
section VI, qubit measurement with feedback control and
its optimal dynamics are investigated using the path inte-
gral and the action principle approaches. The conclusion
can be found in section VII. A series of supplementary
discussions and some detailed calculations that are not
included in the main text are presented in the Appen-
dices.

II. STOCHASTIC PATH INTEGRAL AND ITS
OPTIMAL PATHS

We consider the distribution of quantum state trajec-
tories for continuous quantum measurement. A quan-
tum state trajectory, or simply a quantum trajectory,
is an evolution of a quantum state in time, conditioned
on a detector readout realization. This conditional state
trajectory is also known as a solution of stochastic mas-
ter equations, unravelling master equations in Lindblad

form. Let us discretize the measurement readout into n
time points and denote {rk}

n−1
k=0 as a measurement real-

ization. Each rk is a readout obtained between time tk
and tk+1 = tk + δt, and is assumed dependent only on a
quantum state right before its measurement (Markov as-
sumption). We define a series of quantum states {qk}

n
k=0,

written as a d-dimensional parametrized vector q, where
the components are the expansion coefficients of the den-
sity operator ρ written in some orthogonal operator basis,
such as the N2−1 generalized Gell-Mann matrices σ̂j of a
N -state system [33]. For a two-state system, the matrices
σ̂j for j = x, y, z are the Pauli matrices, and q = {x, y, z}
is a vector in Bloch sphere coordinates. The quantum
state trajectory can be computed with an update equa-
tion of the form, qk+1 = E[qk, rk], taking into account the
measurement back-action from the measurement readout
rk, and also considering the unitary evolution from the
measured system’s Hamiltonian.

Since the distribution of the measurement readout
only depends on the quantum state right before the
measurement in this Markovian approach, we can then
write the joint probability density function (PDF) of
all measurement outcomes and state trajectories Pζ ≡

P ({qk}
n
1 ,{rk}

n−1
0 ∣q0, ζ) given an initial state q0 and a

set of other constraints ζ as,

Pζ = Bζ
n−1

∏
k=0

P (qk+1∣qk, rk)P (rk ∣qk). (1)

This is a time step product of P (rk ∣qk), the conditional
probability distribution for the measurement outcome
rk given the system state before the measurement qk,
and P (qk+1∣qk, rk) = δ

d(qk+1 −E[qk, rk]), the (determin-
istic) conditional probability distribution for the quan-
tum state after the measurement, given the state at the
previous time step and the measurement readout. The
prefactor Bζ = Bζ[{qk},{rk}] in Eq. (1) is a function of
quantum states and readouts at any times, accounting
for constraints used in selecting a sub-ensemble of the
quantum trajectories, such as initial-state and final-state
conditions.

The benefit of having the joint PDF Eq. (1) is that it
contains all the statistical information about the system’s
evolution under measurement, and it allows us to selec-
tively work with sub-ensembles of quantum trajectories
simply by adding constraints (or conditions) to the joint
distribution. Statistical moments can be computed from
this joint PDF by integrating over its variables. For ex-
ample, an expected value of an arbitrary functional A =

A[{qk},{rk}] is given by ⟨A⟩ζ = ∫d[qk]
n
1 d[rk]

n−1
0 PζA,

where we define a notation for the multiple integral,

∫d[qk]
n
1 ≡ ∫dq1⋯dqn. Direct integration of these quan-

tities using the joint PDF as in Eq. (1), however, can
be a challenging task even for a simple qubit measure-
ment problem. As such, we are motivated to write the
joint PDF in a path integral form with an action (or
exponent), so we can perform the integration using tech-
niques developed in quantum theory such as a diagram-
matic perturbation theory.
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The path integral representation of the joint PDF in
Eq. (1) can be attained by writing the delta functions for
the state update δd(qk+1 −E[qk, rk]) for k = 0 to n− 1 in

the Fourier integral form, i.e., δ(q) = (1/2πi) ∫
i∞
−i∞ e−pq dp

for each k and each component of the vector q, and then
rewrite other terms in exponential forms. The conjugate
variables for those delta functions are denoted by pk for
k = 0 to n − 1. We refer to Ref. [18] and its Appendices
for a thorough discussion about this transformation and
the construction of the path integral. As a result, the
joint PDF is then given in a path integral form,

Pζ = N∫ d[pk]
n−1
0 exp(S), (2)

where the integrals are over all possible paths of {pk}
n−1
0

and the action S is defined as,

S = Bζ +
n−1

∑
k=0

{− pk ⋅ (qk+1− E[qk, rk]) + lnP (rk ∣qk)}.

(3)

We note that Bζ is an additional term determined by the
formation of Bζ in Eq. (1), andN is a prefactor absorbing
normalization constants.

For an example, we consider a sub-ensemble of trajec-
tories that obey conditions on the initial and final states.
The theoretical analysis of this kind of constraint is pre-
sented in Ref. [18]. The initial state is fixed at q0 = qI
and the final state is at qn = qF . This leads to the con-
straint term Bζ = BqI ,qF = δd(q0 − qI)δ

d(qn − qF ) in
Eq. (1) and the preselected and postselected joint PDF,
PqI ,qF = P ({qk}

n
0 ,{rk}

n−1
0 ,qF ∣qI), which is written in a

path integral form as,

PqI ,qF = N∫ d[pk]
n
−1 exp(SqI ,qF ), (4)

where the path integral’s action is,

SqI ,qF = − p−1 ⋅ (q0 − qI) − pn ⋅ (qn − qF )

+
n−1

∑
k=0

{− pk ⋅ (qk+1− E[qk, rk]) + lnP (rk ∣qk)}. (5)

We note that, in Eq. (4) and (5), two additional conju-
gate variables, p−1 and pn, are introduced, because we
have written the delta functions in BqI ,qF , one for the ini-
tial state and another for the final state, in the Fourier
integral form.

We can investigate the path integral’s dominant con-
tribution by solving for its action’s extrema. Taking the
variation of the action Eq. (5) over all the variables and
setting it to zero, we obtain a set of difference equations,

−qk+1 + E[qk, rk] = 0, (6a)

−pk−1 +
∂

∂qk
{pk ⋅ E[qk, rk] + lnP (rk ∣qk)} = 0, (6b)

∂

∂rk
{pk ⋅ E[qk, rk] + lnP (rk ∣qk)} = 0. (6c)

The first, second and third equations are from taking
derivatives over the conjugate variables pk from k = 0 to
n − 1, over the state variables qk from k = 1 to n − 1,
and over the measurement readout variables rk from k =
0 to n − 1, respectively. The derivative over the final
state variable qn gives a trivial equation −pn − pn−1 = 0,
whereas the derivatives of the action over p−1 and pn
force the boundary conditions q0 = qI and qn = qF on
the solutions of Eqs. (6). We note that, in the case of
no final boundary condition on the quantum state (i.e.,
pn = 0 or Bζ = BqI = δ

d(q0 − qI)), the derivative of the
action over qn instead gives pn−1 = 0, a final value of the
conjugate variable.

Interestingly, this extremization of the action in
Eqs. (6) reproduces the Lagrange multiplier method, an
optimization strategy that accommodates constraints.
In our case, the optimized function is the last term
of Eq. (5), ∑

n−1
k=0 lnP (rk ∣qk), subject to the constraints

qk+1 = E[qk, rk] for k = 0, ..., n − 1 (enforcing the de-
terministic state update) with the Lagrange multipli-
ers p0, ...,pn−1, and the boundary constraints q0 = qI
and qn = qF with the Lagrange multipliers p−1 and pn.
Therefore, a solution of the difference equations Eqs. (6)
is a path that optimizes the log-likelihood of a quan-
tum trajectory, ∑

n−1
k=0 lnP (rk ∣qk), subject to the indicated

constraints. The optimal path can be a local maximum,
a local minimum, or a saddle point in the constrained
probability space. For the optimal path that represents
the local maximum, we call it the most likely path or the
most probable path.

The optimal path, a solution of the difference equations
Eq. (6) and their boundary conditions, can be approxi-
mated by taking a time-continuous limit δt→ 0, changing
the difference equations to a set of ordinary differential
equations, which can then be solved analytically or nu-
merically. This approximation is applicable because its
solutions, the optimal readouts and the optimal quantum
paths, are smooth functions of time. In the case of the
optimal paths that maximize the log-likelihood of pres-
elected and postselected quantum trajectories (the most
likely paths between two quantum states), these solutions
have been experimentally verified with a superconducting
transmon qubit [19].

So far, we have presented the joint PDF and the path
integrals in the time-discrete form. For a more compact
representation, we introduce a time-continuous version of
the discrete stochastic path integral, assuming that the
system is not intrinsically discrete and a well-defined dif-
fusive limit exists. The joint PDF, for example in Eq. (2),
is written as,

Pζ = N∫ d[pk] exp(S)
δt→0
= N∫ Dp exp(S), (7)

where we have defined a notation for functional integrals,
e.g., ∫Dp ≡ limδt→0 ∫d[pk]. The action in Eq. (3) is given
by,

S = Bζ + ∫

T

0
dt{− p ⋅ (q̇ −L[q, r]) +F[q, r]}, (8)
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where we have introduced q̇ dt = L[q, r]dt as the time-
continuous version of the state update equation qk+1 =

E[qk, rk], and defined F[q, r] as the linear-order ex-
pansion in time of the log-probability, i.e., P (rk ∣qk) ∝
exp{δtF[qk, rk] + O(δt2)}. A proportionality factor of
the latter is absorbed into the normalization factor N .
The time dependence of the variables in Eq. (7) and (8)
is suppressed for simplicity (e.g., q ≡ q(t)).

In the continuous version of the action, the state
update equation q̇ = L[q, r] can be derived from the
first order expansion in δt of its discrete form qk+1 =

E[qk, rk] using the exact readout probability distribu-
tion P (rk ∣qk). As an alternative, one can consider using
a stochastic master equation of the quantum state, where
an ideal white noise ξ is introduced with its single Gaus-
sian probability distribution. The latter substitution is
valid in an idealized noise limit, which we discuss in more
detail in section V B 1 (where Itô stochastic equations are
chosen in the diagrammatic perturbation approach) and
in Appendix F. The choice of the stochastic state equa-
tions needs to be consistent with the readout (or noise)
probability distribution used in obtaining the functional
F[q, r] in Eq. (8).

A careful analysis is needed when considering the ex-
tremization of the action as described in Eqs. (6), which,
in the continuum limit, changes to a set of ordinary differ-
ential equations. We note that one can derive this same
set of differential equations directly from extremizing the
continuous-version action in Eq. (8), if the state update
equation q̇ = L[q, r] is obtained from the first order ex-
pansion in δt of its discrete form (this approach of deriva-
tion is presented in Ref. [18]). For the action constructed
using the Itô stochastic equations, its extremization does
not give a correct set of differential equations describing
the optimal paths. However, a stochastic path integral
formulated using the Itô equations is more advantageous
when computing functional integrals, which is presented
in section V.

III. THEORETICAL MODEL: QUBIT
MEASUREMENT

So far we have presented the formalism in the gen-
eral context, the quantum measurement with measure-
ment readouts {rk} and corresponding quantum states
{qk}. In order to show examples and demonstrate how
to compute interesting quantities using the path integral
formalism, we choose a particular theoretical model, a
qubit continuously measured by an apparatus assuming
a weakly responding (or coupled) detector. This theoret-
ical setup has long been a subject of interest in theories
and experiments. Some of the physical realizations of
this system available with current technology are; a sin-
gle electron in a double quantum dot capacitively coupled
to a quantum point contact detector [34–39], a supercon-
ducting qubit dispersively coupled to a microwave waveg-
uide cavity [16, 17, 40], and quantum optics experiments

such as a two-level atom monitored with homodyne op-
tical measurement [41].

In most of these experimental setups, one can charac-
terize the qubit evolution as governed by the measure-
ment back-action, the qubit unitary evolution, and ex-
tra dephasing due to loss of information or added noise.
We write a time-discrete change for a qubit density ma-
trix ρ as ρk+1 = Oγ UδtMrk[ρk], where we define a mea-

surement operation Mrk[ρ] = M̂rkρM̂
†
rk

/Tr(M̂rkρM̂
†
rk

),

a unitary operation Uδt[ρ] = e
−iĤδtρeiĤδt, and an extra

dephasing operation Oγ[ρ] (we set h̵ = 1).
The measurement back-action on a qubit state, con-

sidering the diffusive measurement as in Refs. [18, 34,

35], is described by a measurement operator M̂rk =

(δt/2πτm)1/4 exp[−δt(rk− σ̂z)
2/4τm], where τm is a char-

acteristic measurement time taken to separate the two
Gaussian distributions by two standard deviations. The
measurement readout distribution is computed from the
trace of the measurement operator and the qubit state,

P (rk ∣ρk) = Tr(M̂rkρkM̂
†
rk

),

= (
δt

2πτm
)

1
2

e−
δt

2τm
(rk−1)2

(1 + zk)/2

+ (
δt

2πτm
)

1
2

e−
δt

2τm
(rk+1)2

(1 − zk)/2, (9)

with the Bloch sphere coordinates of the qubit state given
by {xk, yk, zk}.

We denote a qubit Hamiltonian by Ĥ = (ε/2)σ̂z +
(−∆/2)σ̂x characterizing the unitary evolution during
the measurement, and we define the dephasing opera-
tion Oγ[ρ] accounting for additional dephasing on the
system, such as detection inefficiency and dephasing due
to the environment. We model the dephasing operation
as an extra dephasing rate γ on the off-diagonal elements
of the qubit density matrix ρ. By expanding the state up-
date equation ρk+1 = Oγ UδtMrk[ρk] to first order in δt,
and taking a continuum limit δt → 0, we obtain a set of
differential equations,

ẋ = −γ x − ε y − xz r/τm, (10a)

ẏ = −γ y + ε x +∆ z − y z r/τm, (10b)

ż = −∆ y + (1 − z2
) r/τm, (10c)

which turns out to be analogous to the stochastic master
equation in Stratonovich interpretation as mentioned in
Ref. [34, 35].

Using the state update equations in Eqs. (10) and the
readout distribution in Eq. (9), we have the qubit action
in continuous form (as in Eq. (8)),

Sqb = Bζ + ∫

T

0
dt{− px(ẋ + γ x + ε y + xz r/τm)

− py(ẏ + γ y − ε x −∆ z + y z r/τm)

− pz(ż +∆ y − (1 − z2
) r/τm)

− (r2
− 2 r z + 1)/2τm}, (11)
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where we have approximated the logarithm of the readout
distribution as lnP (rk ∣zk) ≈ −(δt/2τm)(r2

k − 2rkzk + 1) +
(1/2) ln(δt/2πτm)+O(δt2), omitting the second term and
its higher order expansion because they can be absorbed
into the prefactor N . We note that the extremization of
this action and its most likely paths with fixed initial and
final states are presented in more detail in Ref. [18].

In the remainder of this paper, we will focus on apply-
ing the path integral formalism to this particular qubit
measurement system, though in different regimes of the
Hamiltonian parameters. For example, in the next sec-
tion, we study the “plain” qubit measurement where we
assume that there is no qubit Hamiltonian, i.e., ε = ∆ = 0,
and the qubit’s evolution comes only from the measure-
ment and the dephasing mechanism.

IV. EXPANSION AROUND THE OPTIMAL
PATH IN THE PLAIN MEASUREMENT CASE

In this section, we present examples how we can use
the path integral and its optimal path to compute sta-
tistical moments of the measured qubit trajectories. As
it turns out, analytic solutions are possible for the case
of quantum non-demolition measurement (∆ = 0, where
the system Hamiltonian commutes with total system-
detector Hamiltonian) with a constraint on the initial
and final states of the quantum trajectories. In this case,
the path integral can be written only in the z-coordinate,
i.e., q = z, because the evolution of z is independent of
the other two coordinates, x and y. The x and y degrees
of freedom can be found directly from r and z, so they
will be dropped from the discussion until section V.

In the following subsections, we consider the plain mea-
surement case when ε = ∆ = 0 for simplicity. We show
how to compute the path integral using the preselected
and postselected joint PDF, P ({zk}

n
0 ,{rk}

n−1
0 , zF ∣zI).

We first integrate this joint PDF over all intermediate
variables to get the probability density function P (zF ∣zI)
of arriving at the final state zF after time T , given the
initial state zI . Then, we show how to generalize the
integration procedures to compute statistical quantities
such as averages, variances, and correlation functions of
the qubit trajectories in this simplified case. We note
here that even though we present the derivation in the
plain measurement case, the result should still be valid
for the case when ε ≠ 0. In the latter case, the evolution
of the x and y coordinates of the qubit will be determinis-
tically oscillating with the frequency ε, without affecting
the evolution of the z coordinate.

A. Probability density function of a final state
given an initial state

In order to compute the probability distribution of
the final qubit state given the initial state separated
by time T , we start with the joint PDF PzI ,zF =

P ({zk}
n
0 ,{rk}

n−1
0 , zF ∣zI) of the qubit trajectories {zk}

n
0

and measurement outcomes {rk}
n−1
0 with fixed bound-

ary states, and then integrate over all variables except
the final state zF ,

P (zF ∣zI) =∫ d[zk]
n
0 d[rk]

n−1
0 PzI ,zF , (12)

where, as before, we have defined the multi-variable in-
tegral, e.g., ∫d[zk]

n
0 = ∫dz0⋯dzn.

From the discussion in section II, the joint PDF is given
by a product over the sliced time variables, PzI ,zF =

δ(z0 − zI)δ(zn − zF )∏
n−1
k=0 P (zk+1∣zk, rk)P (rk ∣zk). The

term describing the state update equation is a delta func-
tion,

P (zk+1∣zk, rk) = δ(zk+1 −
zk cosh rkδt

τm
+ sinh rkδt

τm

cosh rkδt
τm

+ zk sinh rkδt
τm

), (13)

with its argument derived from the z-coordinate of the
density matrix equation ρk+1 = OγUδtMrk[ρk], whereas,
the probability distribution for the readout Eq. (9) is
expressed in this form,

P (rk ∣zk) ≈(
δt

2πτm
)

1
2

exp{
−δt

2τm
(r2
k − 2rkzk + 1)} , (14)

neglecting higher orders in δt. Substituting these two
expressions, Eqs. (13) and (14), into the joint PDF, we
get

PzI ,zF = δ(zn − zF )δ(z0 − zI) (
δt

2πτm
)

n
2

{
n−1

∏
k=0

δ(zk+1⋯)}

× exp{ −
n−1

∑
k=0

δt

2τm
(r2
k − 2rkzk + 1)}, (15)

where we have used δ(zk+1⋯) to represent the delta func-
tion in Eq. (13).

We then integrate out the measurement readouts by
transforming the delta function of z into a delta function
in the readout variable, δ(zk+1⋯) = δ(rk−

τm
δt

tanh−1 zk+1+
τm
δt

tanh−1 zk)τm/(1 − zk+1)
2δt, using the transformation

relation δ[x−f(y)] = ∑i δ[y−yi]/∣∂yf(y)∣yi=f−1(x), where

the sum extends over all solutions of yi = f
−1(x). Af-

ter integrating over the measurement readout and also
over the boundary state z0, and zn, the joint PDF is
transformed to a new joint PDF, a function of only the
intermediate z-variables,

P ({zk}
n−1
1 , zF ∣zI) = (

τm
2πδt

)

n
2

(
n−1

∏
k=0

1

1 − z2
k+1

) exp(S),

(16)

where the action S is,

S = −δt
n−1

∑
k=0

{
τm
2

(uk+1 − uk)
2

δt2
− tanhuk

(uk+1 − uk)

δt
+

1

2τm
}.

(17)
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We note that we have simplified the above equation by
defining a new variable uk ≡ tanh−1 zk to write the joint
PDF in a compact form. This joint PDF of the z-variable
is one of the main results shown in this paper. It is
also important to point out that since we have already
integrated over the boundary state variable z0 and zn,
the delta functions for the boundary states has applied
to the states z0 = zI and zn = zF in Eqs. (16) and (17).

The next step is to perform the integration over the in-
termediate variables zk for k = 1, ..., n−1. These integrals
can be done easily by expanding zk around the optimal
solution denoted by ūk. We substitute uk = ūk+ηk for all
k’s in the action, and perform integration by parts with
the vanishing boundaries, η0 = ηn = 0. This substitution
exactly simplifies to S[u] = S[ū] − τm

2δt ∑
n−1
k=0 (ηk+1 − ηk)

2

(see Appendix B for more detail). We then change the
integral measures to dηk ≡ dzk/(1− z

2
k) for k = 1, ..., n− 1

and write the probability distribution in Eq. (16) in terms
of η-variables,

P ({ηk}
n−1
1 , zF ∣zI) = (

τm
2πδt

)

n
2 exp(S [ū])

1 − z2
F

× exp{−
τm
2δt

n−1

∑
k=0

(ηk+1 − ηk)
2
} , (18)

where the optimal path ūk is a solution of the extrem-
ization of the action, which gives ∑

n−1
k=0 (ūk+1 − 2ūk +

ūk−1)δt
−1 = 0. The solution is ūk = c1tk + c2 with the

two constants of integration c1 =
1
T
(tanh−1 zF −tanh−1 zI)

and c2 = tanh−1 zI . The optimal solution (the most likely
path) is given by,

ūk =
tk
T

(tanh−1 zF − tanh−1 zI) + tanh−1 zI , (19)

where we wrote tk = kδt. We note that in the
time-continuum limit, this extremization is equivalent
to the vanishing functional derivative of the action,
δS[u]/δu(t) = τmü = 0, which is similar to the Euler-
Lagrange equation for the classical trajectory of a free
particle in the u coordinate transformation.

The integrals in Eq. (12), with the probability distri-
bution in η-variable Eq. (18), is now in this form,

P (zF ∣zI) = ∫ d[ηk]
n−1
1 P ({ηk}

n−1
1 , zF ∣zI). (20)

Fortunately, they are Gaussian integrals in multiple di-
mensions which can be calculated from the matrix in-
tegral, ∫ dη exp(− 1

2
ηT ⋅M ⋅ η) = (2π)

n−1
2 /(DetM)1/2,

where, in our case, ∫ dη = ∫d[ηk]
n−1
1 = ∫dη1⋯dηn−1, and

the matrix M and the vector η are given by,

M =
τm
δt

⎛
⎜
⎜
⎜
⎝

2 −1 0 ⋯

−1 2 −1 ⋯

0 −1 2 ⋯

⋮ ⋮ ⋮ ⋱

⎞
⎟
⎟
⎟
⎠

, and η =

⎛
⎜
⎜
⎜
⎝

η1

η2

⋮

ηn−1

⎞
⎟
⎟
⎟
⎠

, (21)

noting that DetM = n(τm/δt)n−1.

After substituting the optimal solution ūk into S[ū]
and performing the integrals over η1, ..., ηn−1 in Eq. (20),
we obtain the distribution of the final state fixing the
initial state and the duration of time tn = T ,

P (zF ∣zI) =

√
τm
2πT

(1 − z2
F )

exp{
−T

2τm
(r̄2

+ 1) +
1

2
ln(

1 − z2
I

1 − z2
F

)} ,

(22)

where we have defined r̄ = τm
T

(tanh−1 zF − tanh−1 zI)
as the optimal measurement readout. This solu-
tion is exactly the same as what we would get from
the change of variables of the probability distribu-
tion, P (zF ∣zI)dzF = P (rtot∣zI)drtot, where rtot =

(1/n)∑
n−1
k=0 rk = (τm/T )(tanh−1 zF − tanh−1 zI) is a time-

average measurement readout. The derivation of the lat-
ter distribution is presented in the methods section of
Ref. [19].

B. Means and variances of qubit trajectories in the
plain measurement case

We have derived the probability distribution for the
measured qubit given the fixed initial and final states, as
shown in Eq. (16) and (18). In this subsection, we con-
sider computing the qubit trajectory’s statistical quanti-
ties that can be written in this expectation form,

zF ⟨A⟩zI ≡∫ d[zk]
n−1
1 A

P ({zk}
n−1
1 , zF ∣zI)

P (zF ∣zI)
,

=

√
DetM

(2π)
n−1
2
∫ d[ηk]

n−1
1 A e−

1
2η

T ⋅M ⋅η, (23)

where A is an arbitrary functional of zj at any time tj for
j = 1, ..., n−1 and the matrix M is the same as defined in
Eq. (21). Note that we have used the notation zF ⟨⋯⟩zI
for a statistical average conditioned on fixed initial and
final states, zI and zF . Since the probability distribution
in the η-variables is Gaussian, it is preferable to write
z in terms of η, replacing z with z = tanh(ū + η), and
then perform the integration. For example, a conditional
average of zj at time tj is given by,

zF ⟨zj⟩zI =zF ⟨tanh(ūj + ηj)⟩zI

= tanh ūj +zF⟨ηj⟩zI tanh′ ūj

+
zF ⟨η

2
j ⟩zI

2!
tanh′′ ūj +O(η3

j ), (24)

expanding to second order in η, where the primes indicate
derivatives over the u-variable. In the second line, we
still use the bracket zF ⟨⋯⟩zI for the conditional average
of the variable η, even if its boundary values are shifted
to η0 = ηn = 0.

The expectation values in terms of η can be computed
using the definition of moments in the second line of
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FIG. 1. (Color online) The comparison between the analytical
solutions, Eq. (19),(28),(29), and the numerical simulation,
for the preselected and postselected average (green dashed
curve), the most likely path (magenta curve), and the variance
(the two gray thin curves on both side of the average are the
average ± standard deviation) of the measured qubit trajecto-
ries. The preselected state (initial state) and the postselected
state (final state) are zI = 0 and zF = cosπ/4, respectively.
The total time is T = 0.6 τm. The numerical data, plotted as
grey dots, is analyzed from 5×105 trajectories computed with
time steps of the size δt = 0.006 τ−1m , zero qubit Hamiltonian,
and the final selection tolerance zF ±0.02. The numerical data
shows excellent agreement with the theoretical solutions. The
three fluctuating curves are randomly chosen individual tra-
jectories. The inset shows the average (dashed green) and the
most likely path (magenta) on a Bloch sphere plotted in the
x-z plane.

Eq. (23). Because it is a multi-dimensional Gaussian in-
tegral, we find the result from Wick’s theorem,

zF ⟨ηj1ηj2⋯ηj2m⟩zI = ∑
all possible
pairings of

{j1,j2,...,j2m}

M−1
jk1 ,jk2

⋯ M−1
jk2m−1

,jk2m
,

(25)

where the left hand side is an expectation value of even
numbers of η at times t1, t2, ..., t2m, and the right hand
side is a product of m elements of the inverse matrix
M−1, summing over all possible pairings between the η’s
on the left side. Any other statistical averages with odd
numbers of η will vanish. As an example, pairing four
η-variables, zF ⟨ηjηkηlηm⟩zI , yields the sum, M−1

jkM
−1
lm +

M−1
jl M

−1
km +M−1

jmM
−1
kl .

The elements of the inverse matrixM−1 are of a simple
form, M−1

jk = M−1
kj = (δt/τm)j(n − k)/n for k ≥ j (the

full matrix is presented in Appendix C). Knowing these
matrix elements, we can then compute any expectation
values of the type shown in Eq. (25), such as a two-time
correlation,

zF ⟨ηjηk⟩zI =M
−1
jk =

tj

τm
(1 −

tk
T

) , (26)

for k ≥ j, and statistical moments of even orders of η,

zF ⟨η
2p
j ⟩zI =(2p − 1)!!(

tj

τm
)

p

(1 −
tj

T
)

p

, (27)

where we have used the discrete time notation tj = jδt
and T = tn = nδt, and the double factorial prefactor (2p−

1)!! = (2p)!
2pp!

for a positive integer p. This double factorial

comes from the number of ways of pairing 2p identical
variables.

Substituting these quantities into the expectation
value Eq. (24), we then obtain the preselected and post-
selected average of zj ,

zF ⟨zj⟩zI ≈ tanh ūj −
tj

τm
(1 −

tj

T
) sech2ūj tanh ūj , (28)

keeping terms up to first order of T /τm, which is equiv-
alent to second order of η because the conditional av-
erage of the second order of η scales as T /τm, i.e.,

zF ⟨ηjηj⟩zI ∼ T /τm. This solution Eq. (28) is justified
in a weak-coupling limit (τm ≫ T ), however, the full so-
lution to all orders can be computed and is presented
in Appendix D. Using the same approximation, we can
also compute another interesting quantity, the variance,
keeping terms up to first order of T /τm,

zF ⟨∆z
2
j ⟩zI ≡ zF ⟨z

2
j ⟩zI − (zF ⟨zj⟩zI )

2

≈
t

τm
(1 −

t

T
) sech4ūj , (29)

where its full solution to all orders in T /τm is also pre-
sented in Appendix D. Finally, we compute a two-time
correlation in z-coordinate, keeping up to first order in
T /τm,

zF ⟨zjzk⟩zI ≈
tj

τm
(1 −

tk
T

) sech2ūj sech2ūk, (30)

for tk ≥ tj , which decreases linearly in tk for a fixed tj .
We show in Figure 1, the average zF ⟨zj⟩zI , its variance,

and the optimal path (the most likely path) ūj , for the
preselected and postselected trajectories, compared with
data from a numerical simulation using the Monte Carlo
method (see Appendix E for more detail). We generate
5 × 105 trajectories with a postselection time T = 0.6 τm,
showing an excellent agreement with the analytical solu-
tions.

V. DIAGRAMMATIC EXPANSION THEORY

We have shown in the previous section that the prese-
lected and postselected moments (or expected values) for
quantum trajectory variables, in the plain measurement
case, can be computed by expanding the integral around
its optimal path. Since the action is Gaussian, however,
the path integral approach can be useful in other cases as
well, such as to compute the moments and expectation
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values of qubit trajectories when there is no final state
condition (state postselection), or with non-zero qubit
Hamiltonian. In this section, we present an alternative
method using a diagrammatic perturbation expansion of
the action, similar to how Feynman diagrams are used in
computing path integrals in quantum field theory.

In the following, we start with a brief introduction
to the perturbation method (a standard method used
in quantum field theory) and show how one can com-
pute expectation values of system variables from moment
generating functionals. We will then go on to the ex-
amples, for the case of qubit trajectories with non-zero
Hamiltonian and no state postselection. We note that
even though most of the derivations are shown in time-
continuous form for simplicity, the most straightforward
derivations are in time-discretized version, and some of
these are shown in Appendices G and H.

A. Brief introduction to the perturbation
expansion

Let us suppose that a quantity of interest is an expec-
tation value given in a path integral form,

⟨A⟩ ≡ N∫ DXDX̃e
S
A, (31)

where the quantity A is a functional of a system variable
X, the integral’s action S is a functional of the system
variable X and its conjugate variable X̃, and N is a con-
stant normalized factor. Although we are writing X and
X̃ as one-dimensional variables here, a generalization to
arbitrary dimensional vectors is straightforward.

To compute the integral above, we write the action as
a sum of two parts, S = SF + SI , one being terms in the
action that have bilinear forms, (e.g., ∼XX̃), which we
call the free action,

SF = −∫ dtdt′X̃(t)G−1
(t, t′)X(t′), (32)

and call the rest of terms in the action the interaction
action SI . We then define a free generating functional
ZF [J, J̃], a path integral of the free action adding extra

source terms with functions J and J̃ ,

ZF [J, J̃] = N∫ DXDX̃e
SF+∫dtX̃(t)J̃(t)+∫dtJ(t)X(t)

= exp{∫ dtdt′J(t)G(t, t′)J̃(t′)} , (33)

where G(t, t′) is an inverse of G−1(t, t′) in Eq. (32) sat-
isfying ∫dt

′′G−1(t, t′′)G(t′′, t′) = δ(t − t′), and we as-
sume that the Gaussian integrals in the first line pro-
duce a factor N −1 that leaves no prefactor in the sec-
ond line. Note that these integrals converge when X̃ is
purely imaginary. Moreover, if the bilinear terms are in-
stead quadratic terms (e.g., ∼X2), the free action will be
of the form SF,quad = − 1

2 ∫dtdt
′X(t)G−1(t, t′)X(t′), and

there will be only one source term ∫dtX(t)J(t) lead-

ing to a different generating functional ZF,quad[J, J̃] =

exp{ 1
2 ∫dtdt

′J(t)G(t, t′)J(t′)}.
The generating functional Eq. (33) is then used to com-

pute a free moment defined as ⟨⋯⟩F ≡ N ∫ DXDX̃e
SF⋯.

The free moment of the variable X(t) (or X̃(t)) at time
t is simply a functional derivative of the generating func-
tional over the variable J(t) (or J̃(t)), taking both vari-

ables J and J̃ to be zero at the end. By looking at the
second line of Eq. (33), one can see that the simplest non-
vanishing free moment is a two-point correlation func-
tion ⟨X(t)X̃(t′)⟩F = δ

δJ(t)
δ

δJ̃(t′)ZF [J, J̃]∣
J=J̃=0 = G(t, t′).

Generalizing this to moments of multiple time points, we
get

⟨X(tj1)X(tj2)⋯X̃(tj2m−1)X̃(tj2m)⟩F

=
δ

δJ(tj1)

δ

δJ(tj2)
⋯

δ

δJ̃(tj2m−1)

δ

δJ̃(tj2m)
ZF [J, J̃]∣

J=J̃=0
,

= ∑
all pairings between

variables X̃ and X

G(tjk1 , tjk2 )⋯G(tjk2m−1
, tjk2m ),

where the summation is for all possible pairings between
the variables X’s and their conjugate X̃’s. The number
of propagators in the summation on the right is equal to
the number of pairs presented in the expectation bracket
on the left. From this, one can see that if there is at least
one unpaired variable, the moment will vanish.

Using these definitions of the free moments, one can
then compute a path integral as in Eq. (31) where S =

SF + SI and the arbitrary functional A is a function of
the physical variable X,

⟨A[X]⟩ ≡ N∫ DXDX̃e
SF+SI[X,X̃]

A[X],

=A [
δ̂

δJ
] eSI[

δ̂
δJ ,

δ̂
δJ̃

]
ZF [J, J̃]∣

J=J̃=0
,

=⟨A[X]eSI[X,X̃]
⟩F , (34)

where in the second line we wrote the interaction action
SI and the arbitrary functional A as operators acting on
the free generating functional ZF [J, J̃].

The perturbation expansion refers to the series expan-
sion of the term exp{SI[X, X̃]} in Eq. (34). In some
cases, infinite series can be summed over, giving an exact
analytic result, though in many others, an approximation
is needed in order to truncate the series. An approx-
imation can be made when there is a small parameter
appearing in any (or all) of terms in the interaction ac-
tion SI , where the expansion is straightforward, keeping
terms up to any desired order of the small parameter.
Another type of approximation, which we present here
in more detail, is similar to a semiclassical expansion in
quantum mechanics, keeping terms up to any order of a
small parameter ν that appears as an inverse in front of
the action, for example,

S =
1

ν
{−∫ dtdt′X̃(t)G−1

(t, t′)X(t′) + SI[X, X̃]} , (35)
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where we explicitly write the the free action in a bilinear
from. To compute an expectation value of a functional A
using this action, one needs to expand the exponential of
the interaction action and then evaluate the free moments
in forms of the propagators. The order of expansion is
controlled by the parameter ν. There is a factor of 1/ν
for every single term in the expansion of SI , and a fac-
tor of ν for every propagator that emerges. This is the
basic idea behind the loop expansion in quantum theory,
where ν plays the role of the h̵ in the Feynman’s path
integral. We will discuss more about the loop expansion
in section V B 2.

This loop expansion based on the small parameter ν,
in our quantum measurement case, can be considered as
a small noise expansion around a saddle point solution (a
solution that extremizes the action). Moreover, as in the
Feynman’s path integral, under the approximation of the
small parameter ν, a saddle point approximation can also
be applied to estimate a path integral, using an expan-
sion of the action around the saddle point solution. For
our stochastic path integral, the saddle point approxima-
tion gives an estimation of total probability density for
the joint probability distribution that the path integral
represents.

B. Examples in continuous quantum measurements

Now we can apply the perturbation approach to our
quantum measurement problem. We use the joint prob-
ability density function introduced in Section II in its
generalized form Pζ = P ({qk},{rk}∣q0, ζ), a joint PDF
of the measurement outcomes and the quantum states
given an arbitrary set of constraints ζ. Statistical aver-
ages or expectation values using the joint PDF are then
given in this form,

⟨A⟩ζ ≡∫ d[qk]d[rk]Pζ A,

δt→0
≈ N∫ DqDrDp exp(S)A, (36)

where, in the second line, we have taken the time-
continuous limit and written the joint PDF in the path
integral form as Pζ = N ∫Dp exp(S), noting that the
time-continuous action is given by Eq. (8).

In the following examples, we present the perturba-
tive expansion approach in computing the statistical mo-
ments of qubit trajectories. We focus on the case when
the qubit Hamiltonian does not commute with the mea-
surement operators (∆ ≠ 0) and without a final state
constraint.

1. Diagrammatic rules for qubit measurement with Rabi
oscillation (∆ ≠ 0) and with no final state condition

The theoretical setup for the qubit with Rabi oscilla-
tion is analogous to the one used in Ref. [19], where the

qubit Hamiltonian is Ĥ = (−∆/2)σ̂x. Here we can calcu-
late important quantities such as average trajectories and
correlation functions, for the case when there is only an
initial state fixed and not the final state. For simplicity
of the diagrammatic expansions, we make a white noise
approximation and variable transformations to the qubit
system.

We make an idealized white noise limit on the qubit
measurement. The variance of the measurement readout
distribution P (r∣z) is assumed to be very broad, which in
this case it means τm ≫ δt, justifying an approximation of
the two Gaussian distribution in Eq. (9) to a single Gaus-

sian distribution, P (r∣z) ≈ (δt/2πτm)1/2e−(r−z)
2δt/2τm

(see Appendix F for more detail). The measurement
readout is then approximated to be its mean plus a noise,
r = z+

√
τm ξ, where ξ is the Gaussian noise with variance

δt−1, independent of the qubit state z. Because the na-
ture of this noise is highly fluctuating, in the derivation
of the state update equations, we need to keep an expan-
sion up to a second order in δt, replacing r2δt2 ∼ τmδt
[42]. This leads to the Itô stochastic differential equations
[34, 35],

ẋ = −Γx − xz ξ/τ1/2
m , (37a)

ẏ = −Γ y +∆z − y z ξ/τ1/2
m , (37b)

ż = −∆ y + (1 − z2
) ξ/τ1/2

m , (37c)

where x, y, z are Bloch sphere coordinates for the qubit
and a dephasing rate Γ is now a total dephasing rate Γ =

γ + 1/2τm. The white noise ξ has a Gaussian probability

distribution P (ξ) = (δt/2π)1/2 exp(−ξ2δt/2).
Before substituting the state update above into the

action of the path integral, we can make changes in the
variables of the system in order to simplify the later per-
turbation process. This is to avoid infinite series related
to the linear terms in Eqs. (37). We define a new set of
variables u, v,w where {u, v,w} =Q−1 ⋅ {x, y, z} and Q is
a matrix that diagonalizes the linear terms of Eqs. (37),

Q−1
⋅
⎛
⎜
⎝

−Γ 0 0
0 −Γ +∆
0 −∆ 0

⎞
⎟
⎠
⋅Q =

⎛
⎜
⎝

λ1 0 0
0 λ2 0
0 0 λ3

⎞
⎟
⎠
. (38)

The eigenvalues are λ1 = −Γ, λ2 = −(Γ + Ω)/2 and

λ3 = −(Γ − Ω)/2, where we define Ω =
√

Γ2 − 4∆2. The
diagonalizing matrix Q and the transformation of the
system variables x, y, z are described in the matrix equa-
tion,

⎛
⎜
⎝

x
y
z

⎞
⎟
⎠
=
⎛
⎜
⎝

1 0 0
0 Γ+Ω

2∆
Γ−Ω
2∆

0 1 1

⎞
⎟
⎠
⋅
⎛
⎜
⎝

u
v
w

⎞
⎟
⎠
, (39)

which gives the following transformation: x = u, y = v (Γ+
Ω)/2∆ + w (Γ − Ω)/2∆, and z = v + w, and the inverse
transformation: u = x, v = (2y∆ − Γz + Ωz)/(2Ω), and
w = (−2y∆ + Γz +Ωz)/(2Ω).



10

Type Labels of vertices Full forms Diagrams

Type 1
(initial)

pu0, pv0, pw0 uI∫
T

0 dt pu(t)δ(t)

Type 2
puuvξ, puuwξ, pvvvξ,
pvvwξ, pwwvξ, pwwwξ

α∫
T

0 dt pu(t)u(t)v(t)ξ(t)

Type 3 puξ, pvξ, pwξ κ1∫
T

0 dt pu(t)ξ(t)

TABLE I. We show the 12 terms in the interaction action Eq. (41b) (interaction vertices) classified into three types. The
second column shows the shorthand labels of the vertices, simply the variables contained in each of interaction terms, while the
third column presents examples of their full integration forms. In the fourth column, we illustrate the vertices as connecting
edges. The direction of the arrows shown on solid edges is from the pu,v,w variables to the u, v,w variables representing the
propagators Gu,v,w. The wavy lines are for the connection between noise variables. The number of edges (in-coming, out-going,
and curly edges) around the vertex (small circle) corresponds to the number of connections required for the vertex.

The stochastic differential equations (37) with this new
set of variables are,

u̇ = λ1 u + αu(v +w) ξ + κ1 ξ, (40a)

v̇ = λ2 v + αv(v +w) ξ + κ2 ξ, (40b)

ẇ = λ3w + αw(v +w) ξ + κ3 ξ, (40c)

where we have defined α = −1/τ
1/2
m and κ1 = 0, κ2 =

(−Γ +Ω)/(2τ
1/2
m Ω), κ3 = (Γ +Ω)/(2τ

1/2
m Ω).

Now we are ready to construct the action of the path
integral, substituting the update equations (40) and the
log-likelihood function F[q, ξ] = − 1

2
ξ2 into the action

Eq. (8). We write the action in two separated terms,
S = SF + SI , where

SF = ∫

T

0
dt{−pu (u̇ − λ1u) − pv (v̇ − λ2v)

− pw (ẇ − λ3w) − ξ2
/2}, (41a)

SI = ∫

T

0
dt{B + αpu u(v +w) ξ + κ1 pu ξ

+ αpv v(v +w) ξ + κ2 pv ξ

+ αpw w(v +w) ξ + κ3 pw ξ}, (41b)

are the free and interaction actions, respectively. We
note that the additional term B is not merely a time-
continuous form of the first term in Eq. (5) (we only con-
sider the initial condition). This is because the actual
initial condition term −p−1 ⋅ (q0 − qI) can be removed
simply by integrating over the initial variable q0, forc-
ing the condition {x(0), y(0), z(0)} = {xI , yI , zI} to the
variables at time t0 = 0. In place of the initial term,
when we write the free action Eq. (41a) in this form,

SF = − ∫dtdt
′X̃(t)G−1(t, t′)X(t′), there will be leftover

terms which contribute to the term B, resulting in,

B =∫ dt uIpu(t)δ(t) + ∫ dt vIpv(t)δ(t)

+ ∫ dtwIpw(t)δ(t). (42)

This can be easily shown with a discretized version of
the path integral, which is presented in more detail in

Appendix G. We note also that, in the rest of the paper,
the time integral is always from t = 0 to t = T , unless
stated otherwise.

The propagators (or Green’s functions) are computed
from the inverse Green’s functions, which in this par-
ticular case are G−1

k (t, t′) = δ(t − t′) ( d
dt′

− λk), where
k = 1,2,3 (or u, v,w) for the first three terms in Eq. (41a),
and G−1

ξ = δ(t − t′) for the noise term. With an identity

relation, ∫ dt′′G−1(t, t′′)G(t′′, t′) = δ(t − t′), the propa-
gators (Green’s functions, or two-point correlation func-
tions) are given by,

⟨u(t)pu(t
′
)⟩F = Gu(t, t

′
) = Θ(t − t′)eλ1(t−t′), (43a)

⟨v(t)pv(t
′
)⟩F = Gv(t, t

′
) = Θ(t − t′)eλ2(t−t′), (43b)

⟨w(t)pw(t
′
)⟩F = Gw(t, t

′
) = Θ(t − t′)eλ3(t−t′), (43c)

⟨ξ(t)ξ(t′)⟩F = Gξ(t, t
′
) = δ(t − t′), (43d)

where t > t′ for the first three lines. It is important to note
that Θ(t) is a left continuous Heaviside step function,
i.e., Θ(0) = 0 and limt→0+ Θ(t) = 1, causing the two-
point correlation functions for u, v,w to vanish when t ≤
t′. This is a result of the Itô interpretation we chose in
writing the state update equation in Eq. (40). This can
also be verified with the discretized version of the path
integral and is presented in Appendix H.

To compute quantities such as an expectation value
⟨A⟩ = ⟨A eSI ⟩F where A is an arbitrary function writ-
ten in the form of Eq. (34), one needs to expand the
exponential eSI in a power series of SI , and looks for
terms that contribute to its result. Fortunately, from the
two-point correlation functions Eq. (43), we know that
system variables u, v,w can only connect with the their
conjugate variables at earlier times, e.g., u(t1) can only
connect with pu(t2) if t1 > t2. Knowing this helps predict
which terms will contribute to the sum of the expansion.
For example, to show that ⟨1⟩ = ⟨eSI ⟩F = 1, we look at
terms in the interaction action Eq. (41b) and see that all
of them contain exactly one conjugate variable in each.
Looking at the propagators in Eqs. (43), we know that it
is impossible for any higher order terms in the expansion
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of eSI to have all conjugate variables matched with sys-
tem variables at their later times. This is because every
time we want to find terms with system variables at later
times, there will be at least one more unmatched conju-
gate variable appearing. Therefore, there are no other
contributions apart from 1, resulting in ⟨eSI ⟩F = 1.

In order to make the calculation of moments ⟨A⟩ =

⟨AeSI ⟩F more systematic, we develop diagrammatic rules
to ease the process of keeping track of the perturbative
expansion. Each term in the expansion of eSI is a com-
bination of 12 additive terms shown in the interaction
action Eq. (41b), with repeated appearance also possi-
ble. The 12 interaction terms (interaction vertices) are
shown in Table I with their labelling names and exam-
ples of their full integral forms, where we use the latter
to characterize the vertices into three types shown as the
three rows. At the end, all combinations of the interac-
tion vertices (all additive terms in the expansion of eSI )
are then multiplied with the function of interest A be-
fore taking the free expectation ⟨⋯⟩F . The functional
A is a function of system variables and noise variables
(i.e., u, v,w, ξ) at all times. These variables are called
ending vertices. Let us use the word combination for an
individual term combining interaction vertices (from ad-
ditive terms in the expansion eSI ) and the ending vertices
(from the function A). One can determine which com-
binations are non-vanishing and compute their values by
following these diagrammatic rules:

• A non-vanishing combination of vertices should
contain equal number of each of the system vari-
ables (u, v,w) and their conjugates (pu, pv, pw), and
there should be even number of the noise variables
(ξ).

• The system variable can only be connected to its
conjugate at earlier time, while the noise variable ξ
connects to another noise variable at the same time.
The connections are presented as ‘edges’, or lines
joining vertices. The number of edges for each ver-
tex is equal to the number of variables it contains
(graphical representations are shown in Table I, in
the column of ‘Diagrams’). A non-vanishing combi-
nation can have any number of vertices, but edges
have to all be connected.

• A non-vanishing combination is presented by con-
nected diagrams with the ending vertices (variables
with their time arguments being in the range of
t ∈ (0, T ]) on the most left and their time argu-
ments clearly stated. The time ordering decreases
from left to right, with variables at the same time
lining up in the same vertical line, and the vertices
with initial conditions (t = 0) on the most right.

• A result of the free expectation value (⟨⋯⟩F ) for
each combination is computed by taking into ac-
count the constants (i.e., uI , vI , ..., α, κ1, ...) and
integrals attached to each of the interaction ver-
tices, the propagators (the Green’s function), and

(a)
vt pv0 (b)

vt2 pv

puut1

(c)
vt2

w
vvt1

pw

pv
w0

w0

FIG. 2. Examples of diagrams, where the labels indicating the
variables contained in each of the vertices (we label only the
ones that are necessary). The filled dots represent the end-
ing vertices, while the open dots represent interaction (initial,
t = 0) vertices. (a) A ending vertex connects with an initial
vertex (pv0). (b) Two ending vertices connect with two inter-
action vertices (puξ and pvξ). (c) Two ending vertices connect
with six interaction vertices (from left-right, top-bottom or-
der: pvvwξ, pvξ, pvξ, pwwwξ, pw0 and pw0). The unequal
length of horizontal edges following the ending vertices vt1
and vt2 indicate that t1 ≥ t2.

the numbers of possible ways to connect diagrams.
From the point of view of graphical diagrams, edges
represent propagators, and points common to more
than one edge correspond to integrals over time.
Moreover, if there are m repeated vertices in a com-
bination, it needs to be multiplied by a factor 1

m!

(resulting from coefficients in the expansion of eSI ).
However, these factors usually cancel with the num-
ber of possible ways to connect the repeated ver-
tices.

In Figure 2, we show examples of non-vanishing dia-
grams showing connections of one and two ending ver-
tices. For each of the diagrams, we can determine its
contribution by explicitly writing out its full form and
computing its integrals. In the following subsections, we
present some of the calculations using these diagrams and
rules to estimate statistical averages of the qubit trajec-
tories.

We note that it is also possible to construct different
diagrammatic rules based on different formations of the
path integrals. For example, one can perform integrals
over the readout noise (e.g., the noise ξ), transforming
the action in Eq. (41a) and (41b) to a new action that
contains only the system variables u, v,w. In this case,
the diagrams will be completely different from the one
we presented above, but still giving exactly the same re-
sults for the statistical quantities related to the system
variables. Here, we choose to present the diagrammatic
rules with explicit noise variables because of the ability
to compute correlation functions between the noise and
the system states, as shown in section V B 4.
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2. Small noise approximation and loop expansion

The diagrammatic rules help in determining non-
vanishing terms, but we need a systematic approach to
keep track of the order of expansion, especially when
there are infinitely many ways to construct diagrams. We
consider the small noise approximation around the saddle
point solution mentioned in section V A. To obtain the
action of the form in Eq. (35), we introduce a small pa-
rameter denoted by ν to the noise term of Eqs. (41), con-
trolling the noise variance in the qubit dynamics, leading
to a modified action,

S
′
= ∫

T

0
dt{−pu (u̇ − λ1u) − pv (v̇ − λ2v)

− pw (ẇ − λ3w) − ξ2
/2ν} + SI , (44)

leaving all terms in the interaction action intact. We then
rescale the conjugate variables by replacing pu → pu/ν,
pv → pv/ν and pw → pw/ν (as well as changing variables
in the source term, e.g., Ju,v,w → Ju,v,w/ν), noting that
the rescaling of the auxiliary variables does not effect the
qubit dynamics. Since all terms in the action Eq. (44),
except for the noise term, have exactly one conjugate
variable (see Eqs. (41)), the resulting action is then in
the desired form,

S
′
=

1

ν
[∫

T

0
dt{−pu (u̇ − λ1u) − pv (v̇ − λ2v)

− pw (ẇ − λ3w) − ξ2
/2} + SI], (45)

where pu,v,w are the rescaled conjugate variables.

Following the discussion in section V A and the dia-
grammatic rules presented in the previous section, the
order of expansion can be determined by counting the
number of edges and vertices of a diagram. Each vertex
in a diagram contributes a factor of 1/ν to its result, while
each edge (which represents a propagator) contributes a
factor of ν. Therefore, each term (diagram) in the ex-
pansion carries a factor of νE+I−V , where E, I, and V
are numbers of its external edges (edges that connect
with ending vertices), internal edges, and vertices, re-
spectively. This corresponds to the loop expansion where
one instead counts the number of loops from L = I−V +1,
which leads to another way of writing the order of the ex-
pansion νE+L−1, noting that the number of external edges
E is fixed for each set of ending vertices.

We show how to count the power of ν of the diagrams
shown in Figure 2. The numbers of edges, vertices, and
loops are; (a) E = 1, I = 0, V = 1, L = 0, (b) E = 2, I = 1,
V = 2, L = 0, (c) E = 2, I = 6, V = 6, L = 1, giving the
zeroth(zeroth), zeroth(first), and first(second) orders of
loop(ν), respectively.

3. Example A: Average quantum trajectory

As an example of how to use the diagrammatic rules to
compute statistical expectation values, we show a deriva-
tion of ⟨z(t)⟩, an average of the z-coordinate of the quan-
tum trajectories. From the variable transformation in
Eq. (39), we know that z(t) = v(t) + w(t), therefore we
can write the expectation value in terms of the free mo-
ments and then compute the diagrams from the vertices
in Table I,

⟨z(t)⟩ =⟨v(t)eSI ⟩F + ⟨w(t)eSI ⟩F ,

=
vt pv0 +

wt pw0 ,

= ⟨v(t) vI∫ dt′ pv(t
′
)δ(t′)⟩

F

+ ⟨w(t)wI∫ dt′ pw(t
′
)δ(t′)⟩

F
,

= vI∫ dt′Gv(t, t
′
)δ(t′) +wI∫ dt′Gw(t, t

′
)δ(t′),

= vIe
λ2t +wIe

λ3t, where t ≥ 0, (46)

where the Green’s functions are from Eqs. (43). From
the types of vertices in Table I, there is only one possi-
bility connecting the ending vertices v(t) and w(t) with
pv0 and pw0, respectively. This is because choosing other
vertices will lead to at least one unmatched noise vari-
able ξ, which, when trying to pair it with another vertex
containing ξ, will result in more unmatched conjugate
variables.

As a result, the expectation value Eq. (46) is explic-
itly found by transforming back to the system variables
x, y, z,

⟨z(t)⟩ = e−Γt/2
(zI cosh

Ωt

2
+
zIΓ − 2∆yI

Ω
sinh

Ωt

2
) , (47)

which is exactly the same as the solution we would get
from averaging over all possible noise realizations in the
Itô stochastic master equations in Eqs. (37) and solv-
ing for an average of z(t). The averages of x and y
can be computed in the similar way. We note that the
exact solution for the average trajectory involves only
the diagrams with zeroth order of the small parameter ν
(E + I − V = 0).

Particularly, one can show that the average trajec-
tory coincides with a saddle point solution of the action
Eq. (44) when ν → 0. The vanishing functional deriva-
tives of the action over the variables pu,v,w gives the ex-
act same equations Eqs. (40) (though, the noise variable
ξ is no longer a stochastic function), while the vanishing
functional derivatives over u, v,w leads to the differential
equations for conjugate variables,

ṗu = −λ1pu − α(v +w)puξ, (48a)

ṗv = −λ2pv − α{upu + (2v +w)pv +wpw}ξ, (48b)

ṗw = −λ3pw − α{upu + vpv + (v + 2w)pw}ξ, (48c)
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where the noise variable is now a solution of extremizing
the action over ξ giving,

ξ = ν {α(v +w)(upu + vpv +wpw)

+ κ1pu + κ2pv + κ3pw}. (49)

As the noise parameter ν decreases to zero, as does the
noise term ξ, the ordinary differential equations of u, v,w
are uncoupled from Eqs. (48) and their solution (a saddle
point solution) is then the same as the average trajectory,
the solution of Eqs. (40) when ξ = 0.

4. Example B: Correlation function between system
variables and noise variables

Another example is a correlation function between the
system variable z and the noise variable ξ, given by
⟨z(t1)ξ(t2)⟩ = ⟨v(t1)ξ(t2)⟩ + ⟨w(t1)ξ(t2)⟩. Since there
are now two ending vertices, the situation is more com-
plicated and there are infinitely many ways to connect
the diagrams. However, we can compute terms to the
lowest order of the loop expansion, which in this case is
the zeroth loop (tree-level diagrams). There are in total
6 contributions to the correlation function, as shown in
the following,

⟨z(t1)ξ(t2)⟩
(0)

= ⟨v(t1)ξ(t2)e
SI ⟩

(0)
F + ⟨w(t1)ξ(t2)e

SI ⟩
(0)
F ,

=
ξt2

vt1 pv

+
ξt2

v
vvt1 v0

v0

+
ξt2

w
vvt1 v0

w0

+
ξt2

wt1 pw

+
ξt2

w
wwt1 w0

w0

+
ξt2

v
wwt1 w0

v0

,

=κ2∫ dt′Gv(t1, t
′
)Gξ(t

′, t2)

+ αv2
I∫ dt′Gv(t1, t

′
)Gξ(t

′, t2)Gv(t
′,0)2

+⋯,

= eλ2t1 (κ2e
−λ2t2 + αv2

Ie
λ2t2 + αvIwIe

λ3t2)

+ eλ3t1 (κ3e
−λ3t2 + αw2

Ie
λ3t2 + αvIwIe

λ2t2) , (50)

where the superscript (0) in the first line indicates the
number of loops in the expansion, and, in the third line,
we show only the integral form of the first two dia-
grams. This result involve diagrams with first order of
the small noise parameter ν. The definitions of the pa-
rameters such as uI , κ2, λ2 are defined in the discussion
of Eqs. (38)-(39).

We note that this result Eq. (50) is valid for t1 > t2
and it is zero otherwise, because of the special properties
of the left continuous Heaviside step function Θ(t). This
can be interpreted as the noise being correlated with the
qubit state at later times but not with the state at earlier
times. This property of the system variable and noise the
correlation function is also mentioned in Ref. [43].

5. Example C: Correlation function between two system
variables

Let us next consider correlation functions between sys-
tem variables at two points in time, such as ⟨z(t1)z(t2)⟩
and ⟨y(t1)z(t2)⟩. Both of them can be written in terms
of correlation functions between the transformed sys-
tem variables v,w, for example, the z-z-correlation is,
⟨z(t1)z(t2)⟩ = ⟨v(t1)v(t2)⟩+⟨v(t1)w(t2)⟩+⟨w(t1)v(t2)⟩+
⟨w(t1)w(t2)⟩. As in the previous example, we keep terms
up to the lowest order of loops, which is the zeroth order.

Each term of the correlation functions, for example
⟨v(t1)v(t2)⟩, involves 10 different diagrams, thus there
are in total 4×10 diagrams for computing the z-z correla-
tion function. We present in the following three samples
of diagrams and their integral forms for the correlation
function ⟨v(t1)v(t2)⟩,

⟨v(t1)v(t2)⟩
(0)

= ⟨v(t1)v(t2)e
SI ⟩

(0)
F ,

=
vt2 pv0

vt1 pv0

+
vt2 pv

pvvt1

+
vt2 pv

v
vvt1 v0

v0

+ (7 more similar diagrams),

= ⟨v(t1)⟩⟨v(t2)⟩

+ κ2
2∫ dt′dt′′Gv(t1, t

′
)Gv(t2, t

′′
)Gξ(t

′, t′′)

+ ακ2v
2
I∫ dt′dt′′{Gv(t1, t

′
)Gv(t2, t

′′
)

Gξ(t
′, t′′)Gv(t

′,0)Gv(t
′,0)} +⋯, (51)

where, apart from the first trivial diagram, each initial
vertex (vt1 or vt2) can connect to three possible interac-
tion vertices (pvξ, pvvvξ, or pvvwξ). As a result, there
are total of 9 + 1 possible ways, and they are presented
in Appendix I (all diagrams except the first one are of
the first order of ν). The similar kind of calculation is
applied to the other correlation functions ⟨v(t1)w(t2)⟩,
⟨w(t1)v(t2)⟩ and ⟨w(t1)w(t2)⟩.

The correlation function between y and z can be calcu-
lated in a similar way, with the same types of diagrams,
but with extra prefactors β1 and β2,

⟨y(t1)z(t2)⟩ = β1⟨v(t1)v(t2)⟩ + β1⟨v(t1)w(t2)⟩

+ β2⟨w(t1)v(t2)⟩ + β2⟨w(t1)w(t2)⟩,

where the coefficients β1 = (Γ + Ω)/2∆ and β2 = (Γ −

Ω)/2∆ come from the transformation of variables shown
in Eq. (39).

6. Discussion and comparison with numerical simulation

We compare the theoretical results, specifically the z-z
correlation computed in the previous section, with nu-
merically simulated quantum trajectories. Although, the
solution of ⟨z(t1)z(t2)⟩ is not explicitly presented here in
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FIG. 3. (Color online) The variances and covariances for the z-coordinate of the qubit trajectories, comparing the theoretical
solutions computed up to 4th order of vertices and numerical simulations (based on 105 trajectories). The qubit Rabi frequency
used in these cases is ∆ = 20π τ−1m , and the total time is T = 0.5 τm. The regime presented in the upper row of panels is the
case of efficient measurement with no extra decoherence (i.e., γ = 0, η ≡ 1/(2τmΓ) = 1), while the regime presented in the lower
row case is with low efficiency η = 0.02. The initial state used here is (xI , yI , zI) = (0,1,0). (a), (d) The simulated individual
trajectories for both regimes. (b), (e) The theoretical variances ⟨z(t)2⟩ − ⟨z(t)⟩2 (red curves) along with the numerical data
(gray dots). In the panel (e), the variance increases from zero at the initial point t = 0 and then converges to a value of
(Γ2 +∆2)/(2Γ∆2τm) ≈ 0.023. (c), (f) The covariances between z at time t1 = ta = 0.113 τm and time t2 = ta + τ (solid magenta
curve), and between z at time t1 = tb = 0.339 τm and time t2 = tb + τ (dashed blue curve), are presented along with results from
the numerical simulation (gray dots).

this paper, as it is too lenghty, it can be computed in a
similar way as shown in Eq. (51) and also in Appendix I.

We show in Figure 3(a) and 3(d) sampled individ-
ual trajectories generated from the Monte Carlo method
(Appendix E), in the regime where T < τm. The theo-
retical variances are computed from the z-z correlation
function, and they are shown in panels (b) and (e) along
with the variances from the numerical trajectories. In the
top panel, for efficient detection (η ≡ 1/(2τmΓ) = 1), the
numerical variance increases in time and gets saturated
(not shown) at around a value of 0.5 for a long enough
times, indicating that the qubit states at the later times
are distributed throughout the perimeter of the y-z plane
of the Bloch sphere. The variance from the tree-level
diagram approximation fails to exactly capture the long-
time behaviour, as we can see that the discrepancy in the
panel (b) starts to grow as time increases. However, for
the inefficient detection, η = 0.02 in Figure 3(e), we can
see that the theoretical approximation can explain the
behaviour quite well, predicting the saturated variance
at a value of (Γ2 +∆2)/(2Γ∆2τm) ≈ 0.023. To compute
this quantity theoretically, one takes a limit t→∞ of the
calculated variance ⟨z(t)2⟩ − ⟨z(t)⟩2.

For the correlation function at two different times, we
define a covariance as Cov[z(t1)z(t2)] ≡ ⟨z(t1)z(t2)⟩ −
⟨z(t1)⟩⟨z(t2)⟩, and show in Figure 3(c) and 3(f) its nu-

merical and theoretical comparisons. We plot the covari-
ance for t1 = ta,b and t2 = ta,b + τ where τ has its value
ranged from 0 to T − ta,b. For the efficient detection case,
shown in the panel (c), the agreement between the the-
ory and the simulation is better for the short time case,
ta = 0.113 τm. For the inefficient detection case, panel
(f), the agreement is excellent for both ta and tb.

Since our theoretical results are derived with the small
noise expansion around the saddle point solution (or the
average solution, see section V B 3) using ν as an expan-
sion tracking parameter, the diagrammatic approxima-
tion method works well whenever the qubit trajectories
are narrowly distributed around its average. This hap-
pens in the short-time regime when the diffusion is still
small from the initial state, as well as in the regime when
the dynamics is strongly suppressed by the dephasing
mechanism (when the detection efficiency is low). We
note that for the long-time limit, one needs to com-
pute higher order terms which contain more complex di-
agrams. However, there are other approaches, such as
using the qubit master equation to approximate the cor-
relation functions in the stationary limit and calculate
spectral densities of the measurement readouts. These
can be found in the works on continuous measurement of
mesoscopic electronics such as in Refs. [37, 43–45]. Com-
paring to these approaches, our results give much more
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accurate correlation functions at short times.

VI. STOCHASTIC PATH INTEGRAL FOR
CONTINUOUS MEASUREMENT WITH

FEEDBACK

We can extend the discussion of the stochastic path
integral formalism to its application to the system un-
der continuous measurement with feedback control. The
feedback loop consists of getting information about the
system state via the measurement, and feeding back a
control signal to the system in order to alter the state as
desired. One of the most intuitive models of the feedback
loop is that the system Hamiltonian changes as a function
of the system state, which then can be written as a func-
tion of the most recent measurement readout. For exam-
ple, in our qubit measurement case, taking into account
additional time delay τd, the Hamiltonian at any time t
can be written as a function of the measurement readout
in the past, Hfb(rt−τd , t) = ε(rt−τd)σ̂z/2 − ∆(rt−τd)σ̂x/2,
where the parameters ε and ∆, as defined in Section III,
are now functions of the measurement readout rt−τd at
time t − τd.

We consider an ideal case with instantaneous feedback
τd ≈ 0, i.e., the measurement readout at time t immedi-
ately changes the system parameters which are used in
computing the state update at the time. This way, the
formulation of the stochastic path integral as a time-local
subject, its action’s extremization equations, and the di-
agrammatic expansion we presented so far are perfectly
applicable. The only modification needed is to treat the
readout-dependent Hamiltonian parameters as functions
of rt = r(t) such as ε(rt) and ∆(rt) (or as functions of the
quantum state at the time). In this section, we present a
few examples of the continuous measurement of a qubit
with feedback, one with a linear feedback in the form
∆(rt) = ∆0 + ∆1rt, and another with a state-dependent
linear feedback to stabilize a qubit’s oscillation.

A. Linear feedback, most likely path, and its phase
space diagram

Let us consider an instantaneous feedback loop in a
qubit measurement introduced in section III, with ε = 0
and the qubit Rabi frequency being a function of the
measurement readout. We assume a linear form of the
Rabi frequency as

∆fb(rt) = ∆0 +∆1rt, (52)

where rt = r(t) is the readout as a function of time and
∆0,∆1 are constant parameters characterizing the bare
Rabi oscillation and the linear feedback, respectively. We
will see later in this subsection that this type of feedback
can stabilize pre-determined (arbitrary) quantum states.

This feedback loop in Eq. (52) has the advantage of
fast processing because the qubit Hamiltonian depends

directly on the value of the measurement readout, requir-
ing no knowledge of the qubit state. For simplicity, we
limit our discussion to an ideal case in which the qubit is
measured with an efficient detector and no extra environ-
ment dephasing. In this regime, we can re-parametrize
the qubit Bloch vector into a single state parameter θ
where z = cos θ and y = sin θ (we set x = 0 in this case).
We note that, with this linear feedback Eq. (52), a typi-
cal step size for the qubit state defined as ∆θ has average
drift ⟨∆θ⟩ ∼ δt and diffusion ⟨(∆θ)2⟩ ∼ δt of the first or-
der of the time step. Thus, the step size is still small.

The statistics of quantum trajectories with this in-
stantaneous feedback can be investigated following the
same procedure presented in previous sections for the no-
feedback qubit measurement. We start with writing the
joint probability distribution of the trajectories, and then
transform it into a path integral form. The action of the
stochastic path integral with the feedback Rabi frequency
∆fb(rt) is given by,

Sfb = ∫

T

0
dt{ − pθ(θ̇ −∆0 −∆1 r + r sin θ /τm)

− (r2
− 2 r cos θ + 1)/2τm}, (53)

where pθ, θ, and r are functions of time, omitting the
time argument. This is a generalization of the action
given in Ref. [18] where the quantum jump in qubit mea-
surement is analyzed. We note here that in Eq. (53),
we have chosen to use the δt-expansion in both the state
update and the readout probability distribution, because
we are interested in investigating the action-extremized
solutions, the optimal paths of the system.

The optimal paths of the action in Eq. (53) are ob-
tained by extremizing the action over all variables pθ, θ,
and r, leading to two ordinary differential equations and
one constraint,

θ̇ =∆0 +∆1 r − r sin θ/τm, (54a)

ṗθ =pθ r cos θ/τm + r sin θ/τm, (54b)

r =pθ∆1τm − pθ sin θ + cos θ, (54c)

with arbitrary boundary conditions on the variable θ and
pθ. The solutions of these equations are the most likely
paths of the system. By writing the action in the form
Sfb = ∫dt(−pθ θ̇ +H[pθ, θ, r]), where H = pθ(∆0 + ∆1 r −
r sin θ/τm)− (r2 − 2 r cos θ + 1)/2τm is a stochastic Hamil-
tonian, we can examine the most likely paths by using
phase space analysis [18], motivated by the phase space
concept in classical mechanics. Substituting the r con-
straint in Eqs. (54c) into the action (equivalent to inte-
grating the path integral over the variable r(t)), we ob-
tain the action and the stochastic Hamiltonian in terms
of only the system variable θ and its conjugate pθ,

H =
(pθ∆1τm + cos θ − pθ sin θ)2

2τm
+ pθ∆0 −

1

2τm
. (55)

This quantity is explicitly time-independent and so it is
a constant of motion for the most likely path, a solution
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FIG. 4. (Color online) The phase space portrait and the most likely paths for the continuous measurement with linear feedback.
(a) The θ-pθ phase space portrait for the pure linear feedback case (∆0 = 0) with ∆1 = 0.8 τ−1m , where the collapse angles shown
as two vertical lines are at θs1,s2 ≈ 0.3π,0.7π. The curves represent the most likely paths for different stochastic energies:
E = 0 (long dashed blue), E = Ec = −1/2τm = −0.5 (solid black), Ec < E < 0 (short dashed red), and E > 0 (dotted grey).
The arrows show directions of the quantum state evolution along the paths. These most likely curves have the same form as
in the plain measurement case, but with tunable collapse points. (b) Samples of numerically simulated qubit trajectories are
plotted (solid gray fluctuating curves) along with the most likely paths for three different initial states: θI = 0.1π (solid green),
θI = 0.5π (dashed purple), and θI = 1.2π (dotted orange), and the collapse states are shown as thin dashed black horizontal
lines. These most likely paths are computed numerically from Eqs. (54), using the initial states θ(t = 0) = θI and the final
condition pθ(T ) = 0 (the most likely paths without final fixed quantum states). For each set of boundary conditions (the 3
sets), multiple solutions are found. Both of the dotted orange curves represent local maximum where the bottom one is more
likely than the other. For the solid purple set, both curves are equally likely. For the dashed green curve, the initial condition is
close enough to an attractor that we only find one most likely solution. All curves in the three sets correspond to the stochastic
energies Ec < E < 0.

of the ordinary differential equations in Eqs. (54). Let us
define the stochastic energy E =H, and then solve for the
conjugate variable pθ(θ,E) as a function of θ and E from
Eq. (55). Each value of E will then correspond to a single
curve in the phase space portrait, describing dynamics of
the most likely paths, the same way the individual clas-
sical trajectories are depicted as constant-energy curves
on a phase space plot.

As an example, we show in Figure 4(a) the phase space
portrait for the pure linear feedback case (i.e., ∆0 = 0),
where we plot the conjugate variable pθ as a function of
θ,

pθ(θ,E) =
− cos θ ±

√
1 + 2Eτm

∆1τm − sin θ
, (56)

for different values of E. This is an interesting case.
We can see from the phase space plot in Figure 4(a) that
there exists some attractors to which all states eventually
limit to.

These attractors coincide with the divergence of the
conjugate variable pθ(θ,E) in Eq. (56), and also appear

as stationary points where θ̇ = 0 in Eqs. (54a). Solving
these equations, we obtain the attractors are located at
θs1 = jπ+arcsin(∆1τm) and θs2 = (j+1)π−arcsin(∆1τm)

where j = 0,2,4, ... is an even integer. These attractors
may be interpreted as stabilized states achieved by turn-

ing on a linear feedback 0 < ∣∆1τm∣ ≤ 1 and turning off
the bare qubit frequency ∆0 = 0. They are effectively
the new collapse points, rather than at the poles of the
Bloch sphere, i.e., θ = 0, π,2π, ... (z = ±1). Considering
only angles between 0 and 2π, for the positive feedback
0 < ∆1τm ≤ 1, as ∣∆1τm∣ increases from zero, the stabi-
lized states θs1, θs2 move from 0 and π toward each other
and coalesce at θs1 = θs2 = π/2 when ∆1τm = 1; whereas
in the negative feedback −1 ≤ ∆1τm < 0, as ∣∆1τm∣ grows,
the stabilized states move toward each other in the re-
gion of π and 2π and coalesce at 3π/2 when ∆1τm = −1.
We simulate numerical qubit trajectories using the Monte
Carlo method (Appendix E), showing that individual
trajectories initialized at different states are eventually
pinned to the stabilized states as predicted from the most
likely path phase space. This is shown in Figure 4(b) for
three different initial conditions, along with their most
likely paths.

B. Stabilizing Rabi oscillation and its correlation
function

In this subsection, we show an example using the path
integral to compute a correlation function for a system
with linear feedback loop. The feedback loop of this ex-
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ample resembles the one used in the solid-state qubit
measurement in Ref. [13] which has been adapted and
realized in the transmon qubit experiment [14]. The the-
oretical setup is an oscillating qubit (a double quantum
dot) continuously monitored by a near quantum-limited
detector (a quantum point contact), of which the Hamil-
tonian and the measurement operator are in the same
form as presented in Section III. We as before consider
the ideal symmetric qubit case where ε = 0, and the qubit
is measured with an efficient detector with no extra en-
vironment dephasing. The qubit state is represented by
a single parameter θ where z = cos θ and y = sin θ. The
stochastic master equation for the qubit state, in the δt-
expansion similar to Eqs. (10) (Stratonovich form, as dis-
cussed in Ref. [13]), is given by,

θ̇ = ∆fb(θ) − sin θ cos θ/τm − ξ sin θ/τ1/2
m , (57)

where θ and ξ are functions of time and ∆fb is the feed-
back Rabi frequency, which is assumed to be a function
of the qubit state θ. We later neglect the second term on
the right side of Eq. (57) because we consider a diffusive
Rabi limit ∆ ≫ τ−1

m .
The feedback protocol considered in this subsection

(and also in Ref [13]) is a linear feedback designed to sta-
bilize the quantum oscillation of the qubit state, against
the random phase kicks due to the measurement. The
desired qubit evolution is described by y = sin(∆d t) and
z = cos(∆d t) where we define ∆d as the target oscillation
frequency. The difference between the actual phase θ and
the target phase ∆d t, denoted as δθ(t) = θ(t) − ∆d t, is
used to control the oscillating part of the qubit Hamil-
tonian. Therefore, we write the feedback Rabi frequency
as, ∆fb = ∆d(1−F δθ), where F is the dimensionless feed-
back factor. This feedback loop continuously corrects the
random changes of the state made by the measurement
so that the outcome trajectory closely follows the desired
qubit oscillation.

Let us assume that the phase difference δθ is a slowly
changing variable as compared to the oscillation with the
desired frequency ∆d. Therefore, we can average the
fluctuating process described in Eq. (57) over the oscilla-

tion period δ̃t = 2π/∆d, taking δθ to be constant during

this period. The period δ̃t will eventually be our new
time scale. We define a new noise ξ̃ as a time-average
of the last term of Eq. (57) over the oscillation period,

ξ̃(t) = −(1/δ̃t) ∫
t+δ̃t
t dt′ sin(δθ(t′) + ∆d t

′) ξ(t′)/τ
1/2
m with

its zero ensemble average ⟨ξ̃(t)⟩ = 0 and its variance

being ⟨ξ̃(t)2⟩ = (1/δ̃t)2
∫
t+δ̃t
t dt′ sin2

(δθ(t′) + ∆d t
′)/τm =

1/2τmδ̃t. We then can simplify the differential equation
Eq. (57) to one in terms of the phase difference δθ,

δ̇θ(t) = −F∆dδθ(t) + ξ̃(t), (58)

with the new time scale δ̃t.
Here we will use the above differential equation

Eq. (58) to compute a correlation function Kz(τ) =

⟨z(t)z(t + τ)⟩ using the path integral approach. Follow-
ing the derivation of the action in Eq. (3) and (8) where

q = δθ and P (ξ̃) = (τmδ̃t/π)
1/2 exp(−τmξ̃

2δ̃t) are now
our new system variable and a noise probability density
function, we obtain the action in this form,

Sfb = ∫

T

0
dt′{ − ipδθ(δ̇θ + F∆0δθ − ξ̃) − τmξ̃

2}, (59)

omitting the boundary terms. Note that we have written
the pure imaginary conjugate variable (ipδθ) explicitly
with i. As before, we can compute an average quantity
by integrating the paths ⟨⋯⟩ = N∫DδθDpδθDξ̃e

Sfb⋯. So,
we first write the correlation function Kz(τ) in terms of
the phase difference δθ, then average over the oscillation
period δ̃t, getting rid of the fast fluctuating parts, and we
are left with Kz(τ) ≈ ⟨cos[δθ(t)−δθ(t+τ)]⟩ cos(∆dτ)/2+
sin[δθ(t) − δθ(t + τ)]⟩ sin(∆dτ)/2. The correlation func-
tion apparently can be written in terms of the real part
and imaginary part of the following quantity,

⟨eiδθ(t)−iδθ(t+τ)⟩ = N∫ DδθDpδθDξ̃e
Seiδθ(t)−iδθ(t+τ),

(60)

where we have used the same notations, such as ∫Dδθ
for the integral over all possible paths δθ(t), and N for
a normalized factor.

The Gaussian integral over ξ̃ in Eq. (60) is quite
straightforward resulting in a bilinear term in pδθ, which
then leads to another Gaussian integral of pδθ. As one
would expect, these integrals generate another prefactor
that cancels the normalized factor N . Consequently, the

last integral over δθ is left as ⟨eiδθ(t)−iδθ(t+τ)⟩ = ∫Dδθ e
S′

where the exponent S ′ is given by,

S
′
= ∫

T

0
dt′{ − τm(δ̇θ + F∆d δθ)

2

+ i δθ δ(t′ − t) − i δθ δ(t′ − t − τ)}. (61)

This effective action can be transformed further using the
integration by parts, for example, ∫dt δ̇θδ̇θ = − ∫dt δθ δ̈θ,
assuming that the boundary conditions for δθ at both end
points vanish. We then write the action in terms of the
inverse Green’s function and the source term as discussed
in section V A, S ′ = − 1

2 ∫dt
′dt′′δθ(t′)G−1

δθ (t
′, t′′)δθ(t′′) +

∫dt
′Jδθ(t

′)δθ(t′) where the inverse Green’s function, the
Green’s function, and a particular form of the source term
are given by,

G−1
δθ (t

′, t′′) = 2τmδ(t
′
− t′′) (−∂2

t′′ + F
2∆2

d) , (62)

Gδθ(t
′, t′′) = 1/(4τm∣F∆d∣) exp{−∣F∆d(t

′
− t′′)∣} , (63)

Jδθ(t
′
) = i δ(t′ − t) − i δ(t′ − t − τ). (64)

Performing the last Gaussian functional integral over
δθ gives,

⟨eiδθ(t)−iδθ(t+τ)⟩ = exp{
1

2
∫ dt′dt′′J(t′)G(t′, t′′)J(t′′)}

= exp{
e−∣F∆d∣τ − 1

4τm∣F∆d∣
} , (65)
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for the positive value of the time difference τ . This quan-
tity is a real number, therefore we obtain the correlation
function,

Kz(τ) =
cos(∆dτ)

2
exp{

e−F∆d τ − 1

4τmF∆d
} , (66)

assuming that F∆d ≥ 0. This result agrees with the so-
lution found in Ref. [11] which is presented in different
notation.

VII. CONCLUSION

We have developed and extended the stochastic path
integral technique to study statistical behaviour of a
quantum system under weak continuous measurement,
as well as measurement with feedback, presented with
several qubit examples. The path integral approach is
constructed based on the joint probability distribution
of the measurement records, which is then extended to
the distribution of quantum states, describing all possi-
ble quantum trajectories. We have shown that with this
path integral and its action formalism, the optimal dy-
namics, such as the most likely paths, can be obtained
naturally from the extremization of the action, whereas
other statistical quantities can be achieved from direct
integration or perturbation theory. In the case of plain
measurement of a qubit, we have derived analytic so-
lutions for the average trajectory, the variance, and the
correlation functions conditioning on the fixed initial and
final states, which show an excellent agreement with the
numerically simulated data.

We have also presented a diagrammatic perturbation
method used in computing expectation values and cor-
relation functions of quantum trajectories, and elabo-
rated it with examples of the qubit with Rabi oscilla-
tion case. The variances and multi-time correlation func-
tions of qubit trajectories in the short-time regime have
been revealed using this method given initial conditions,
and the results are in good agreement with the numer-
ical simulation. Moreover, we have considered quan-
tum measurement with feedback control, using the ac-
tion principle to investigate the dynamics of the most
likely paths of a qubit with linear feedback on its os-
cillating frequency. We have discovered that the direct
linear feedback, manipulating the qubit Hamiltonian in-
stantly using the measurement readout, can stabilize the
qubit state to arbitrarily chosen pure states. We have
also considered the example of the feedback loop stabi-
lizing the qubit Rabi frequency introduced in Ref. [13],
and we have computed the correlation function for the
qubit trajectory using the path integration method.

So far, the stochastic path integral formalism in the
context of continuous quantum measurement has been
proven to be useful in studying the statistics of quantum
trajectories; however, there are some unsolved issues that
need to be further explored. One is the limitation of the

statistical average solutions derived from the perturba-
tion expansion theory. Only the first few orders of the
expansion have been computed, resulting in the solutions
that are valid only in the certain parameter regimes. We
hope to find solutions in an arbitrary regime, possibly
with some modifications of our approach. Another issue
is the assumption of the instantaneous feedback, which
can be difficult to realize in experiments. Feedback loops
modelled with time delays will be taken into account in
future work.
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Appendix A: Connection to other path integral
formalisms for quantum measurement

There are interesting comparisons between the path
integral formalism we introduced in the main text and
other path integral approaches built upon Feynman’s
path integral in quantum mechanics [46]. As we have
shown, our formalism is aimed at describing the proba-
bility distribution of quantum trajectories, paths of state
of a system under continuous measurement, on its quan-
tum state space (such as Hilbert space for pure states).
Each individual quantum trajectory in the path integral
is realizable and tractable, as demonstrated experimen-
tally, such as, in solid-state systems [17, 19]. However, for
other path integral formalisms developed from the Feyn-
man path integral to investigate quantum systems under
measurement [22–24, 26, 47], the evolution of the quan-
tum state (or wavefunction) is based on interference of all
possible classical paths in measurable configuration space
(such as the system’s positions or spin states). Thus, in
this latter case, the integrations are over configuration
coordinates of the measured system.

Despite the differences in forms, the two approaches
mentioned above can be related. The path integral via
Feynman’s concept can be used to compute the proba-
bility distribution of the measurement results, which is
then, as shown in the main text, one of the most im-
portant ingredients in constructing our stochastic paths
in quantum state space. To elaborate this connection in
more detail, we consider the path integral method pre-
sented by Caves [24], for measurements providing infor-
mation about the position x(t) of a nonrelativistic, one-
dimensional quantum system, evolved in time. In that
approach, the effect of measurements is to restrict the
sum over paths by weighting each path differently de-
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pending on the measurement results. These weights ap-
pear in the path integral in Ref. [24] as the ‘resolution
amplitude’, Υ(x̄(t) − x(t)), which also accounts for the
imprecision of the measurements.

Let us assume instantaneous position measurements
that are equally distributed in times, at t0, t1, ..., tn−1

where tk = t0+kδt, giving measurement readouts denoted
by x̄0, x̄1, ..., x̄n−1. The joint probability amplitude Φ of
the measurement records, and that the system is at xn at
time tn, given an initial wavefunction ψ0, is in this form,

Φ(x̄0, ..., x̄n−1;xn, tn∣ψ0) = ∫ Dx(t)(
n−1

∏
k=0

Υ(x̄k − xk))

× (
n−1

∏
k=0

⟨xk+1∣e
−iδtĤ

∣xk⟩) ⟨x0∣ψ0⟩, (A1)

where the position coordinates are denoted by
x0, x1, ..., xn at time t0, t1, ..., tn, and the integral
measure is defined as ∫Dx(t) ≡ ∫ dx0⋯dxn−1. We
note here that we have modified the ordering of the
measurements from the original version by Caves, in
which he assumed that the measurements start only
after the initial state has evolved for time δt. We
assume that this change has an infinitesimal effect on
the probability amplitude as δt → 0. The first bracketed
term on the right hand side of Eq. (A1) describes the
influence of the measurement. Without it, the path
integral will be the usual Feynman path integral, exactly

equal to ⟨xn∣e
−iT Ĥ ∣ψ0⟩ or the wave function at the final

time tn = T .
From Eq. (A1), the joint probability distribution func-

tion (PDF) of the sequence of measurement readouts can
be obtained by integrating the square of the probability
amplitude over the final coordinate xn,

P (x̄0, x̄1, ..., x̄n−1∣ψ0) =∫ dxn∣Φ(x̄0, ..., x̄n−1;xn, tn∣ψ0)∣
2,

(A2)

given the initial wavefunction ψ0.
In order to see that this joint PDF in Eq. (A2) is the

same as what we have earlier in the main text (in this spe-

cial case), we first rewrite this term ∫dx0⟨x1∣e
−iδtĤΥ(x̄0−

x0)∣x0⟩⟨x0∣ψ0⟩ = ⟨x1∣ÛδtM̂0∣ψ0⟩ as a probability ampli-

tude right after one measurement (M̂0) and one uni-

tary transformation (Ûδt). Then, we obtain a probabil-
ity density function for the first measurement outcome
as P (x̄0∣ψ0) = ∫dx1∣⟨x1∣ÛδtM̂0∣ψ0⟩∣

2. We further intro-
duce an updated wavefunction ∣ψk+1⟩, a result of a state

∣ψk⟩ that has gone through one measurement M̂k and one

unitary transformation Ûδt,

∣ψk+1⟩ =
∫ dxke

−iδtĤΥ(x̄k − xk)∣xk⟩⟨xk ∣ψk⟩
√
P (x̄k ∣ψk)

,

=
ÛδtM̂k ∣ψk⟩
√
P (x̄k ∣ψk)

, (A3)

where the denominator assures the correct norm of
the wavefunction. Then, the joint distribution of
the measurement readouts of the first two times is
given by P (x̄1, x̄0∣ψ0) = ∫dx2∣⟨x2∣ÛδtM̂1∣ψ1⟩∣

2P (x̄0∣ψ0) =

P (x̄1∣ψ1)P (x̄0∣ψ0). Repeating this procedure further to
the next measurement readouts x̄2, x̄3, ...x̄n−1, at the end,
we obtain the full joint PDF,

P (x̄0, x̄1, ..., x̄n−1∣ψ0) =
n−1

∏
k=0

P (x̄k ∣ψk), (A4)

as a product of the conditional probability density
functions, defined in a general form as P (x̄k ∣ψk) =

∫dxk+1∣⟨xk+1∣ÛδtM̂k ∣ψk⟩∣
2. This is the joint PDF of the

measurement readouts, the main component of the joint
PDF in Eq. (1).

To obtain an analogous form of the joint PDF in
Eq. (1), we add probability density functions of the quan-
tum state (or wavefunction) as delta functions to every
single time step. We obtain the full joint PDF,

Pψ =
n−1

∏
k=0

P (ψk+1∣ψk, x̄k)P (x̄k ∣ψk), (A5)

where the update state in this case is written as

P (ψk+1∣ψk, x̄k) = δ
d{∣ψk+1⟩ − ÛδtM̂k ∣ψk⟩/

√
P (x̄k ∣ψk)} as

in Eq. (A3). The integer d is the dimension of the vec-
tor ∣ψk⟩ (which maybe generalized to infinite dimension
via a functional form of the δ-function), and Pψ is called
a joint probability density function of the measurement
outcomes {x̄k} and the wavefunctions {∣ψk⟩} of the mea-
sured system.

We note that our path integral presented in the main
text deals with mixed states instead of pure states, and
the system we consider is the qubit (or spin) system
with the discrete basis, i.e., ∫ dx∣x⟩⟨x∣ ⇒ ∑s=1,−1 ∣s⟩⟨s∣.

Therefore, the operator M̂k in the discussion above is
equivalent to what we have as the measurement operator
M̂k = M̂rk = Υ(rk − 1)∣1⟩⟨1∣ +Υ(rk + 1)∣ − 1⟩⟨−1∣, defined
in Section III, and the resolution function is a Gaussian
function, Υ(rk −s) = (δt/2πτm)1/4 exp{−δt(rk −s)

2/4τm}

for s = 1 and s = −1.

It is also worth mentioning that in our approach, the
stochastic trajectories in quantum state spaces can be
thought of as classical trajectories in configuration space,
such as trajectories on the Bloch sphere can be con-
sidered as three-dimensional random walks in a unit-
radius sphere. Then, one could find connections between
our path integral and the formalism in classical stochas-
tic processes, such as the Martin-Siggia-Rose formalism,
the Wiener integral, or Feynman-Kac path integral (see
Eqs. (16),(17), and (18)), however, we do not cover the
discussion in this paper.
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Appendix B: The path integral’s action for the qubit
measurement

We show the derivation here, how the action in Eq. (17)
can be written in this form,

S[u] = S[ū] −
τm
2δt

n−1

∑
k=0

(ηk+1 − ηk)
2, (B1)

where ū is the optimal path, extremizing the action S[u].
To see this, one can Taylor expand the action Eq. (17)

in discrete forms, such as S[u] = S[ū+η] = S[ū]+S ′[ū]η+
1
2
S ′[ū]η2+O(η3), and show that higher order terms van-

ish (O(η3) = 0). However, there is a simpler way to see
this, using the action in a continuous form,

S = −∫

T

0
dt{

τm
2
u̇(t)2

− tanhu(t)u̇(t) +
1

2τm
}, (B2)

which is the same action as in Eq. (17), with definitions of

the time integral, δt∑
n−1
k=0 Ak = ∫

T
0 dtA(t), and the deriva-

tive, (Ak+1−Ak)/δt = Ȧ(t). In this form, one can see that
the last two terms in the action can be integrated easily.
The second term can be written in this general form,

∫

T

0
dtF ′

(u(t))u̇(t) = ∫
T

0
dt Ḟ (u(t)),

= F (u(T )) − F (u(0)), (B3)

where F (u(t)) = ∫du tanhu = log(coshu(t)). The
contribution of this term to the action is only de-
pendent on the boundary terms. Therefore, we can
write the last two terms in Eq. (B2) as equivalent to

∫
T

0 dt{tanh ū(t) ˙̄u(t) − 1/2τm}.
After this simplification, the first term in Eq. (B2) can

be written as − ∫
T

0 dt τm
2

{ ˙̄u(t)2 + 2 ˙̄u(t)η̇(t) + η̇(t)2}, per-

forming the integration by parts giving ∫
T

0 dt ˙̄u(t)η̇(t) =

− ∫
T

0 dt ¨̄u(t)η(t) = 0. The action is then given by,

S[u] = S[ū] −
τm
2
∫ dt η̇(t)2, (B4)

where,

S[ū] = −∫
T

0
dt{

τm
2

˙̄u(t)2
− tanh ū(t) ˙̄u(t) +

1

2τm
} , (B5)

is the action in terms of the optimal solution ū(t).

Appendix C: Inverse matrix M−1

We show here the inverse of the matrix M in Eq. (21),
assuming that it is a square matrix with d dimensions.
The inverse matrix M−1 is given by,

M−1
=

( δt
τm

)

d + 1

⎛
⎜
⎜
⎜
⎜
⎜
⎝

d d − 1 d − 2 ⋯ 1
d − 1 2(d − 1) 2(d − 2) ⋯ 2(d − d + 1)
d − 2 2(d − 2) 3(d − 2) ⋯ 3
⋮ ⋮ ⋮ ⋱ ⋮

1 2 3 ⋯ d

⎞
⎟
⎟
⎟
⎟
⎟
⎠

,

where the diagonal elements are of the form M−1
kk =

(δt/τm)k(d − (k − 1))/(d + 1) = (δt/τm)k(n − k)/n, where
d = n − 1, and the other off-diagonal elements are M−1

jk =

M−1
kj = (δt/τm)j(n − k)/n for k ≥ j as verified by direct

calculation.

Appendix D: Full solutions for the qubit
measurement without Rabi oscillation

The solutions of the preselected and postselected av-
erage and variance in z to infinite order are shown here.
The average is given in terms of the infinite summation
as,

zF ⟨zj⟩zI =
∞
∑
m=0

1

(2m)!

⎛

⎝

d2m

du2m
j

tanh(uj)∣
uj=ūj

⎞

⎠
⟨η2m
j ⟩,

(D1)

where the differentials in the bracket are evaluated at the
optimal path ū. Similarly, the variance is given by,

zF ⟨z
2
j ⟩zI− zF ⟨zj⟩

2
zI

=
∞
∑
m=0

1

(2m)!

⎛

⎝

d2m

du2m
j

tanh2
(uj)∣

uj=ūj

⎞

⎠
⟨η2m
j ⟩

−
⎛

⎝

∞
∑
m=0

1

(2m)!

⎛

⎝

d2m

du2m
j

tanh(uj)∣
uj=ūj

⎞

⎠
⟨η2m
j ⟩

⎞

⎠

2

.

(D2)

The average ⟨η2m
j ⟩ are given explicitly in Eq. (27) in the

main text.

Appendix E: Numerical simulation

The numerical data presented in Figure 1, 3 and 4 is
from the simulation of quantum trajectories using Monte
Carlo method. The numerical trajectories are gener-
ated in n-discrete steps of δt. Starting from an initial
state q0, each step, we randomly generate a measure-
ment readout from a distribution, for example, P (rk ∣qk),
and compute a quantum state from the update equation
qk+1 = E[qk, rk] (or ρk+1 = OγUδtMrk[ρk]), repeating
the procedures from k = 0 to n−1 to get a full trajectory
{qk}

n
0 .

In Figure 1, we simulate the data using n = 100 time
steps, with the step size δt = 0.006 and τm = 1. In Fig-
ure 3, we use n = 500, δt = 0.01, and τm = 10, where the
Rabi frequency ∆ is set to 2π. We note that in the main
text we present these numbers in the unit of τm.

For the data presented in Figure 4, where the Rabi os-
cillation is linearly dependent on the highly fluctuating
measurement readouts, the state update equation needs
to be modified to minimize numerical errors in each time
step of the calculation. The update state is then com-

puted from ρk+1 = U
1/10
δt M

1/10
rk ⋯ U

1/10
δt M

1/10
rk [ρk], where
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the measurement operatorMrk and unitary operator Uδt
are each divided into 10 pieces and are operated onto the
qubit state ρk alternately. We simulate the data using
n = 1000 time steps, with the step size δt = 0.01 and
τm = 1. The feedback Rabi oscillation is ∆(tk) = 0.8 rk,
where rk is a generated measurement readout at time tk.

Appendix F: White noise limit

In the main text, the state updating procedure is based
on the assumption that a measurement outcome is ran-
domly generated from a readout distribution P (rk ∣qk),
which is a function of a state right before the measure-
ment. However, in the limit when the measurement read-
out is highly fluctuating, for example, the standard devi-
ation of the readout distribution is much larger than the
measurement response, (τm/δt)1/2 ≫ 1, we can approx-
imate the readout as a sum of two parts, one being its
average (which is related to the measured system state)
and another being a zero-mean independent fluctuating
noise. Following the readout distribution in Eq. (9), the
average of the readout at a time tk is exactly ⟨rk⟩ = zk,
therefore, we write rk = zk + ηk where ηk is a zero-mean
Gaussian white noise.

The next step is to find a probability distribution for
the independent noise ηk, which we then approximate
as having the same variance as the original distribution,
which in this case the variance is τm/δt. This approx-
imation is valid as long as the variance is much larger
than the separation between two outcomes r = 1 and
r = −1. A more rigorous proof can be done by writ-
ing ηk =

√
τmξk where ξ is a Gaussian white noise with

variance δt−1. Note that ξ is the time-derivative of the
Wiener increment, scaling as δt−1/2 (Itô calculus) [42],
therefore, in any expansion, we need to keep terms con-
taining r2

kδt
2 ≈ τmδt. Using these rules, we can write,

P (rk ∣zk) = N (
1 + zk

2
e−

δt
2τm

(rk−1)2
+

1 − zk
2

e−
δt

2τm
(rk+1)2

)

≈ N exp{−
δt

2τm
(rk − zk)

2
} , (F1)

where these two equations are exactly equal in the expan-
sion up to the first order of δt. The second line confirms
that the distribution of ηk is Gaussian with the same
variance τm/δt and the mean zk.

Appendix G: The initial-boundary source terms

Let us assume that x is the only system variable we
consider, where an update equation is written as xi+1 =

xi + L(xi, ξi)δt and the probability density function for

a measurement readout is proportional to e−ξ
2
i δt/2. We

then write the action for this system as,

S =
n−1

∑
i=0

{−pi(xi+1 − xi) + piL(xi, ξi)δt −
1

2
ξ2
i δt} . (G1)

where p is the conjugate variable. In this case,
we could write the first term, ∑

n−1
i=0 −pi(xi+1 − xi) =

−∑
n−1
i=0 ∑

n
j=0 piCi,jxj , where Ci,j = δi+1,j − δi,j , however,

the matrix C would not be a square matrix, and its in-
verse is not simply defined. Therefore, we separate out
one term, p0x0, from the sum, which symmetrizes the
double sum,

n−1

∑
i=0

−pi(xi+1 − xi) = p0x0 −
n−1

∑
i=0

n

∑
j=1

pi(G
−1
x )i,jxj , (G2)

resulting in a square matrix (G−1
x ),

(G−1
x )i,j =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 ⋯ 0
−1 1 0 ⋯ 0
0 −1 1 ⋯ 0
⋮ ⋱ ⋮

0 ⋯ 0 −1 1

⎞
⎟
⎟
⎟
⎟
⎟
⎠
i,j

, (G3)

with the row index, i = 0 to n− 1, and the column index,
j = 1 to n. For the measurement readout term, we define
its square matrix,

(G−1
ξ )i,j ≡δt

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 ⋯ 0
0 1 0 ⋯ 0
0 0 1 ⋯ 0
⋮ ⋱ ⋮

0 ⋯ 0 0 1

⎞
⎟
⎟
⎟
⎟
⎟
⎠
i,j

, (G4)

with the row and column index being i, j = 0 to n − 1.
As a result, we can rewrite the action S into two sep-

arated terms, a free action SF and an interaction action
SI , where

SF = −
n−1

∑
i=0

n

∑
j=1

pi(G
−1
x )i,jxj −

1

2

n−1

∑
i=0

n−1

∑
j=0

ξi(G
−1
ξ )i,jξj (G5)

SI =
n−1

∑
i=0

{p0x0δi,0 + piL(xi, ξi)δt}. (G6)

The appearance of the first term in the interaction ac-
tion, p0x0δi,0, is the reason we have the extra terms (we
represented them as B) in Eq. (41b).

Appendix H: The left continuous Heaviside step
function

We now show why the two-point correlation functions
derived from our path integrals, such as the one derived
from the free action in Eq. (G5), that is

⟨x(t)p(t′)⟩F = Gx(t, t
′
) = Θ(t − t′), (H1)

consist of a left continuous Heaviside step functions Θ(t)
that behaves differently from the usual Heaviside step
function. This left continuous Heaviside step function
has the properties, Θ(0) = 0 and limt→0+ Θ(t) = 1,
while the usual Heaviside step function has properties,
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Θ(0) = 1/2, limt→0+ Θ(t) = 1, and limt→0− Θ(t) = 0. This
is true from a point of view of the discrete form of a cor-
relation function, ⟨xapb⟩F = (Gx)a,b, that the propagator
has this property (Gx)a,b = 1 when a > b and it vanishes

otherwise.

Let us start from writing a free generating function in
a discrete form, ZF [Jx, Jp, Jξ]

ZF [Jx, Jp, Jξ] =
( δt

2π
)
n
2

(2πi)n
∫ d[xk]

n
1 ∫ d[pk]

n−1
0 exp

⎧⎪⎪
⎨
⎪⎪⎩

−
n−1

∑
i=0

n

∑
j=1

pi(G
−1
x )i,jxj +

n−1

∑
k=0

pk(Jp)kδt +
n

∑
k=1

(Jx)kxkδt

⎫⎪⎪
⎬
⎪⎪⎭

× ∫ d[ξk]
n−1
0 exp

⎧⎪⎪
⎨
⎪⎪⎩

−
1

2

n−1

∑
i=0

n−1

∑
j=0

ξi(G
−1
ξ )i,jξj +

n−1

∑
k=0

ξk(Jξ)kδt

⎫⎪⎪
⎬
⎪⎪⎭

. (H2)

These matrix integrals can be carried out using multi-
dimensional Gaussian integrals. The first one is,

∫ dpdxe−p
TA x+pTJp+JTx x = eJ

T
x A

−1Jp (2πi)d

Det[A]
, (H3)

where p is a pure imaginary d-dimensional vector,
x, Jp, Jx, are real vectors, and A is a real and invertible
matrix. Another is,

∫ dξ e−
1
2 ξ
TBξ+ξT Jξ = e

1
2J

T
u B

−1Ju (2π)d/2

(Det[B])1/2 , (H4)

where ξ is a real d-dimensional vector and B is a real and
symmetric matrix. After integrating over all variables,
the free generating function is given by,

ZF = exp

⎧⎪⎪
⎨
⎪⎪⎩

n

∑
i=1

n−1

∑
j=0

(Jx)i(Gx)i,j(Jp)jδt
2
⎫⎪⎪
⎬
⎪⎪⎭

× exp

⎧⎪⎪
⎨
⎪⎪⎩

1

2

n−1

∑
i=0

n−1

∑
j=0

(Jξ)i(Gξ)i,j(Jξ)jδt
2
⎫⎪⎪
⎬
⎪⎪⎭

. (H5)

We note that the integrals generate a prefactor
(2πi)n

Det(G−1
x ) = (2πi)n, knowing that Det(G−1

x ) = 1, and an-

other prefactor ( 2π
δt

)
n
2 , which both are then cancelled

with the prefactor in Eq. (H2). Also, from Eqs. (G3)-
(G4), we can compute the inverses of them as,

(Gx)i,j =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 ⋯ 0
1 1 0 ⋯ 0
1 1 1 ⋯ 0
⋮ ⋱ ⋮

1 ⋯ 1 1 1

⎞
⎟
⎟
⎟
⎟
⎟
⎠
i,j

, (H6)

with the row index, i = 1 to n, and the column index,
j = 0 to n − 1, and

(Gξ)i,j =
1

δt

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 ⋯ 0
0 1 0 ⋯ 0
0 0 1 ⋯ 0
⋮ ⋱ ⋮

0 ⋯ 0 0 1

⎞
⎟
⎟
⎟
⎟
⎟
⎠
i,j

. (H7)

with the row and column index, i, j = 0 to n − 1.

Now, let us compute the two-point correlation function
⟨xapb⟩F ,

⟨xapb⟩F ≡N∫ d[xk]
n
1 d[pk]

n−1
0 d[ξk]

n−1
0 (xapb) exp

⎧⎪⎪
⎨
⎪⎪⎩

−
n−1

∑
i=0

n

∑
j=1

pi(G
−1
x )i,jxj −

1

2

n−1

∑
i=0

n−1

∑
j=0

ξi(G
−1
ξ )i,jξj

⎫⎪⎪
⎬
⎪⎪⎭

=
1

δt

∂

∂(Jx)a

1

δt

∂

∂(Jp)b
ZF [Jx, Jp, Jξ]∣

Jx,Jp,Jξ=0

=
1

δt

∂

∂(Jx)a

1

δt

∂

∂(Jp)b
exp

⎡
⎢
⎢
⎢
⎣

n

∑
i=1

n−1

∑
j=0

(Jx)i(Gx)i,j(Jp)jδt
2
⎤
⎥
⎥
⎥
⎦
∣
J̃,J=0

=(Gx)a,b = {
1 , if, a ≥ b + 1, or, a > b,

0 , otherwise.
(H8)

where N = ( δt
2π

)
n
2 /(2πi)n. The conclusion in the last line comes from the fact that the square matrix, (Gx),
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has the row and column indices different by one time step
(see Eq. (H6)), which actually originates from the indices
of, {xk}

n
1 , and {pk}

n−1
0 .

Appendix I: The 10 diagrams of the correlation
function ⟨v(t1)v(t2)⟩

Continued from Eq. (51), we presented all 10 diagrams
here,

⟨v(t1)v(t2)⟩
(0)

= ⟨v(t1)v(t2)e
SI ⟩

(0)
F ,

=
vt2 v0

vt1 v0

+
vt2

vt1

+
vt2

v
vvt1 v0

v0

+
vt2

w
vvt1 v0

w0

+
vt2 v

v

vt1

v0

v0 +
vt2 v

w

vt1

w0

v0

+
vt2 v

v
v
vvt1

v0

v0

v0

v0

+
vt2 v

w
v
vvt1

w0

v0

v0

v0

+
vt2 v

v
v

wvt1

v0

v0

w0

v0

+
vt2 v

w
v

wvt1

w0

v0

w0

v0

,

=v2
I Gv(t1,0)Gv(t2,0) + ∫ dt′ [Gv(t1, t

′
)Gv(t2, t

′
) {κ2 + αv

2
IGv(t

′,0)2
+ αvIwIGv(t

′,0)Gw(t
′,0)}

2
] ,

=v2
Ie
λ2t1eλ2t2 + ∫ dt′ [eλ2(t1−t′)eλ2(t2−t′) {κ2 + αv

2
I (e

λ2t
′

)
2
+ αvIwIe

λ2t
′

eλ3t
′

}
2

] , (I1)

where the definitions of the parameters vI , α, κ2, ... are
discussed in Eqs. (38)-(39).
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